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ESTIMATE FOR THE FIRST FOURTH STEKLOV EIGENVALUE
OF A MINIMAL HYPERSURFACE WITH FREE BOUNDARY

RONDINELLE BATISTA, BARNABÉ LIMA, PAULO SOUSA AND BRUNO VIEIRA

We dedicate this paper to João Xavier da Cruz Neto on the occasion of his sixtieth birthday.

We explore the fourth-order Steklov problem of a compact embedded hyper-
surface 6n with free boundary in a (n+1)-dimensional compact manifold
Mn+1 which has nonnegative Ricci curvature and strictly convex boundary.
If 6 is minimal we establish a lower bound for the first eigenvalue of this
problem. When M = Bn+1 is the unit ball in Rn+1, if 6 has constant mean
curvature H6 we prove that the first eigenvalue satisfies σ1 ≤ n +|H6|. In
the minimal case (H6 = 0), we prove that σ1 = n.

1. Introduction

Let 6n be an n-dimensional compact Riemannian manifold with nonempty boundary
∂6 ̸= ∅. Consider the fourth-order Steklov eigenvalue problem

(1)


12ξ = 0 in 6,

ξ = 0 on ∂6,

1ξ = σ
∂ξ
∂ν6

on ∂6,

where σ is a real number, 1 is the Laplacian operator on 6 and ν6 denotes the
outward unit normal on ∂6. The first nonzero eigenvalue of the above problem will
be denoted by σ1 = σ(6). The first eigenvalue of (1) has the following variational
characterization:

(2) σ1 = inf
w|∂6=0

∫
6
(1w)2∫

∂6

(
∂w
∂ν6

)2 .

Wang and Xia [2009] proved that if 6 has nonnegative Ricci curvature and the
mean curvature of ∂6 is bounded below by a positive constant c then σ1 ≥ c · n.
Furthermore, equality occurs if and only if 6 is isometric to an n-dimensional
Euclidean ball of radius 1

c .
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Since their first appearance in [Stekloff 1902], elliptic problems with parameters
in the boundary conditions are called Steklov problems. Kuttler [1972] and Payne
[1970] studied the isoperimetric properties of the first eigenvalue σ1 of the fourth-
order Steklov problem (1). Moreover, as already noticed in [Kuttler 1972; 1979;
Kuttler and Sigillito 1985], σ1 is the sharp constant for L2 a priori estimates for
solutions of the (second-order) Laplace equation under nonhomogeneous Dirichlet
boundary conditions. In [Ferrero et al. 2005] the authors studied the spectrum
of the biharmonic Steklov problem (1) and obtained a characterization of it, and
presented a physical interpretation of σ1. For comprehensive references on such
Steklov problems, see [Berchio et al. 2006; Bucur et al. 2009; Wang and Xia 2009].

It should be pointed out that the problem

(3)


12ξ = 0 in 6,

ξ = 0 on ∂6,
∂2ξ

∂ν2
6

= λ
∂ξ
∂ν6

on ∂6,

is a natural Steklov problem and one can check that when the mean curvature of
∂6 is constant, it is equivalent to (1).

Let M be a compact Riemannian manifold with nonempty boundary ∂ M and
6 ⊂ M a compact hypersurface (with boundary ∂6) properly embedded into M ,
that is, 6 ∩∂ M = ∂6. We say that 6 is a minimal hypersurface with free boundary
if 6 is a minimal hypersurface and 6 meets ∂ M orthogonally along ∂6. In this
setting, Fraser and Li [2014] obtained a lower bound for the first eigenvalue of the
second-order Steklov problem.

If M = Bn is the unit ball in Rn , it is known [Fraser and Schoen 2013] that the
coordinate functions are eigenfunctions of the second-order Steklov problem with
eigenvalue 1. Taking that into consideration, Fraser and Li [2014] conjectured that
the first eigenvalue of the second-order Steklov problem of a compact properly
embedded minimal hypersurface in Bn is 1 and proved that this is limited from
below by 1

2 .
On the one hand, we did not find in the literature an extrinsic approach to the

fourth-order Steklov eigenvalue problem. Motivated by the work of Fraser and Li,
in this paper we consider the fourth-order Steklov problem of a compact properly
embedded minimal hypersurface 6 with free boundary in a compact manifold M .

On the other hand, Ferrero, Gazzola and Weth [Ferrero et al. 2005] explored
the fourth-order Steklov eigenvalue problem in a bounded domain � of Rn and
proved that the first eigenvalue of this problem is equal to n when � = Bn . It is
known that the unit ball Bn is a minimal hypersurface with free boundary in Bn+1.
In this setting, we have established an upper estimate for the first eigenvalue of the
fourth-order Steklov problem of a compact properly embedded CMC hypersurface
in Bn+1 with free boundary on ∂ Bn+1:
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Proposition 1. Let 6n be a compact properly embedded hypersurface in the unit
ball Bn+1, with free boundary on ∂ Bn+1

= Sn . Assume that 6 has constant
normalized mean curvature H6 . Then

σ1 ≤ n + |H6
|.

It follows from Proposition 1 that if 6 is minimal (H6
= 0), then σ1 ≤ n. This,

together with the result of Ferrero, Gazzola and Weth [Ferrero et al. 2005], naturally
led us to formulate and prove the main result of this paper:

Theorem 2. Let 6n be a compact properly embedded minimal hypersurface in the
unit ball Bn+1, with free boundary on ∂ Bn+1

= Sn . Then the first eigenvalue of the
fourth-order Steklov problem of 6 is equal to n.

Wang and Xia [2009] proved that any compact connected Riemannian manifold 6

with boundary ∂6 satisfies

(4) |6|σ1 ≤ |∂6|,

where |∂6| and |6| denote the area of ∂6 and the volume of 6, respectively. If in
addition the Ricci curvature of 6 is nonnegative and the equality holds, then 6 is
isometric to an n-dimensional Euclidean ball. In our context, the equality always
holds even for codimension greater than 1 (see Proposition 2.4 in [Li 2020]), i.e.,

k |6| = |∂6|

for every k-dimensional immersed free boundary minimal submanifold 6k in the
unit ball Bn+1. As a consequence of this equality and from (4) we get that σ1 ≤ k
for free boundary minimal submanifolds 6k

⊂ Bn+1.
Taking that into consideration, it is natural to consider the following question.

Problem 3. Under what additional assumption is it possible to ensure that a
compact properly embedded minimal hypersurface in the unit ball Bn+1, with free
boundary on ∂ Bn+1

= Sn , such that σ1 = n is the unit ball Bn?

In our next result, we prove a lower estimate for σ1 when 6n is a compact properly
embedded minimal hypersurface with free boundary in a compact manifold which
has nonnegative Ricci curvature and strictly convex boundary. More precisely, we
prove the following theorem.

Theorem 4. Let Mn+1 be an (n+1)-dimensional compact orientable Riemannian
manifold with nonnegative Ricci curvature and nonempty boundary ∂ M. Assume the
second fundamental form of ∂ M satisfies A∂ M(v, v) ≥ k > 0, for any unit vector v

tangent to ∂ M.
Let 6n be a properly embedded minimal hypersurface in M with free boundary

on ∂ M. Assume ∂6 has constant mean curvature H ∂6 . If
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(i) 6 is orientable, or

(ii) π1(M) is finite,

then we have the eigenvalue estimate σ1 ≥ H ∂6
+

k
2 , where σ1 is the first eigenvalue

of the fourth-order Steklov problem on 6.

This estimate for σ1 is analogous to the estimates of Fraser and Li [2014] for the
first nonzero Steklov eigenvalue of the Dirichlet-to-Neumann map on 6.

Remark 5. If M = Bn+1 is the unit ball in Rn+1 and 6 = Bn
⊂ Bn+1 is the unit ball

in Rn (“equatorial disk”), then H ∂6
= n−1 and k = 1, and we get that σ1 = H ∂6

+k.
For this reason, we believe that σ1 ≥ H ∂6

+ k is the sharp estimate. Consequently,
the hypothesis in Theorem 4 that ∂6 has constant mean curvature becomes natural
to assume.

Combining the inequality (4) with our Theorem 4 we deduce the following
corollary.

Corollary 6. Let Mn+1 be an (n+1)-dimensional compact orientable Riemannian
manifold with nonnegative Ricci curvature and nonempty boundary ∂ M. Assume the
second fundamental form of ∂ M satisfies A∂ M(v, v) ≥ k > 0, for any unit vector v

tangent to ∂ M.
Let 6 be a properly embedded minimal hypersurface in M with free boundary

on ∂ M. Assume ∂6 has constant mean curvature H ∂6 . Then

|∂6| ≥

(
H ∂6

+
k
2

)
|6|.

2. Preliminaries

In this section we will collect some basic results that are essential to deduce
Theorem 4. Let Mn+1 be a (n+1)-dimensional compact Riemannian manifold with
nonempty boundary ∂ M . Denote by ⟨ · , · ⟩ the metric on M and D the Riemannian
connection on M . We define the second fundamental form of the boundary ∂ M
with respect to the outward unit normal µ by A∂ M(u, v) = ⟨Duµ, v⟩, where u, v

are tangent to ∂ M . The mean curvature H ∂ M of ∂ M is then defined as the trace of
A∂ M , i.e.,

H ∂ M
=

n∑
j=1

A∂ M(e j , e j ),

where e1, . . . , en is any orthonormal basis for T ∂ M .
The following, known as Reilly’s formula, was settled in [Fraser and Li 2014,

Lemma 2.6]; see also [Choi and Wang 1983].

Proposition 7 [Fraser and Li 2014]. Let � be a compact (n+1)-manifold with
piecewise smooth boundary ∂� =

⋃ ∑k
i=1 6i . Suppose f is a continuous function
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on � where f ∈ C∞(� \ S), S =
⋃ ∑k

i=1∂6i , and there exists some C > 0 such
that ∥ f ∥C3(�

′
) ≤ C for all �

′

⊂ � \ S. Then, Reilly’s formula holds:

(5) 0 =

∫
�

Ric�(D f, D f )−(1� f )2
+∥Hess� f ∥

2

+

k∑
i=1

∫
6i

[(
16i f +H6i ∂ f

∂ηi

)
∂ f
∂ηi

−

〈
∇

6i f, ∇6i ∂ f
∂ηi

〉
+h6i (∇6i f, ∇6i f )

]
.

Here, Ric�is the Ricci tensor of �; 1�, Hess� and ∇� are the Laplacian, Hessian
and gradient operators on �, respectively; 16i and ∇

6i are the Laplacian and
gradient operators on each 6i , respectively; ηi is the outward unit normal of 6i ;
H6i and h6i are the mean curvature and second fundamental form of 6i in � with
respect to the outward unit normal, respectively.

To prove our main result we need a few considerations. Let ϕ : 6 → M
be a properly embedded minimal hypersurface with free boundary in a compact
orientable manifold M . Assume that ∂ M is strictly convex and M has nonnegative
Ricci curvature. Under these assumptions, ∂ M is connected [Fraser and Li 2014,
Proposition 2.8], and any properly embedded minimal hypersurface in M with free
boundary is connected [Fraser and Li 2014, Lemma 2.5]. Furthermore, if both
6 and M are orientable then M \ ϕ(6) consists of two components �1 and �2

(see [Fraser and Li 2014, Corollary 2.10]). Take � = �1. Let ∂� = 6 ∪ 0 where
0 ⊂ ∂ M . Thus, ∂6 = ∂0. Note that 0 is not necessarily connected, but each
component of 0 must intersect 6 along some component of ∂6. Otherwise, ∂ M
would have more than one component, a contradiction.

Remark 8. From a result due to M. C. Li [2011, Theorem 1.1.8], any compact Rie-
mannian 3-manifold M with nonempty boundary ∂ M admits a nontrivial compact
embedded minimal surface 6 with free boundary. Some examples of free boundary
submanifolds in the unit ball are given in [Fraser and Schoen 2013].

3. Proof of the results

3.1. Proof of Proposition 1.

Proof. Let ξ : Bn+1
→ R be defined by ξ(x) = 1 − ∥x∥

2. As can be easily seen

ξ|∂6 = 0 and 16ξ(x) = −2
(
n + H6

⟨x, N (x)⟩
)
,

where N is a unit vector field normal to 6n in Bn+1. Thus,

(16ξ)2
≤ 4n2

(
1 +

|H6
|

n

)2

.
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On the other hand, if ν6 is the outward unit conormal along ∂6 and xi are the
coordinate functions, the condition

∂xi

∂ν6

= xi

is equivalent to ν6 = x , which is equivalent to the condition that 6 meets ∂ Bn

orthogonally. Then, 6 meets ∂ Bn orthogonally if and only if

∂ξ

∂ν6

= −2.

Now, using the variational characterization of σ1 we get

σ1 · |∂6| ≤ n2
(

1 +
|H6

|

n

)2

· |6|,

and applying inequality (4) we conclude that

σ1 ≤ n + |H6
|. □

3.2. Proof of Theorem 2.
Proof. Again let us consider the function ξ : Bn+1

→ R defined by ξ(x) = 1−∥x∥
2.

Since 6 is minimal, it follows from the proof of Proposition 1 that 16ξ =−2n. Thus
12

6ξ = 0 in 6,

ξ = 0 on ∂6,

16ξ = n ∂ξ
∂ν6

on ∂6,

which implies that n is an eigenvalue. Now we will show that σ1 = n.
It is known (see Theorem 1 in [Berchio et al. 2006]) that the infimum in (2) is

achieved and that, up to a multiplicative constant, the minimizer is unique, smooth
up to the boundary, positive in 6, and the normal derivative relative to the outward
unit normal is negative on ∂6. Arguing as in the proof of Lemma 2.2 in [Ferrero
et al. 2005] we conclude that σ1 = n. □

3.3. Proof of Theorem 4.
Proof. Firstly suppose that 6 is orientable. Since M is orientable we have 6 is
connected and M \ϕ(6) consists of two components �1 and �2 (see [Fraser and
Li 2014, Corollaries 2.5 and 2.10]). Let � = �1 and ∂� = 6 ∪0, where 0 ⊂ ∂ M ,
so that ∂6 = ∂0.

Let ξ ∈ C∞(6) be an eigenfunction corresponding to the first eigenvalue σ1 of
the fourth-order Steklov problem, that is,

(6)


12

6ξ = 0 in 6,

ξ = 0 on ∂6,

16ξ = σ1
∂ξ
∂ν6

on ∂6,
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where ν6 is the outward conormal vector of ∂6 with respect to 6. Next, we consider
the Dirichlet–Neumann boundary value problem on the compact (n+1)-manifold �

with piecewise smooth boundary ∂� = 6 ∪ 0

(7)


1� f = 0 in �,

f = 16ξ on 6,
∂ f
∂η0

= (σ1 − H ∂6) f on 0.

Analyzing the relationship between the first eigenvalues of problems (1) and (3)
it is possible to conclude that σ1 > H ∂6 . To ensure the existence of a solution for
problem (7), we will consider the homogeneous problem

(8)


1� f = 0 in �,

f = 0 on 6,
∂ f
∂η0

= µ f on 0.

This mixed Steklov–Dirichlet problem has a discrete spectrum {µi } (see [Guo
and Xia 2019, Section 2]) where

0 < µ1 ≤ µ2 ≤ · · · → +∞.

Next, we will establish a lower bound for µ1. Consider f1 an eigenfunction asso-
ciated with µ1 and assume without loss of generality that

∫
6

h6(∇6 f1, ∇
6 f1) ≥ 0

(otherwise, we choose �=�2 instead). We get by Reilly’s formula (5) applied to f1

0 ≥ nk
∫

0

(
∂ f1

∂η0

)2

+

∫
0

10 f
∂ f1

∂η0

−

∫
0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
+ k

∫
0

|∇
0 f1|

2,

where η6 and η0 are the outward unit normals of 6 and 0, respectively, with
respect to �. Integrating by parts we get∫

0

10 f1
∂ f1

∂η0

= −

∫
0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
+

∫
∂0

∂ f1

∂ν0

∂ f1

∂η0

,

where ν6 and ν0 are the outward conormal vectors of ∂6 = ∂0 with respect to
6 and 0, respectively. Since 6 meets 0 orthogonally along ∂6 = ∂0, we have
ν6 = η0 and η6 = ν0 along the common boundary ∂6. Thereby

0 =

∫
∂6

∂ f1

∂ν6

∂ f1

∂η6

=

∫
∂6

∂ f1

∂ν6

∂ f1

∂ν0

=

∫
∂0

∂ f1

∂ν0

∂ f1

∂η0

,

which implies

2
∫

0

〈
∇

0 f1, ∇
0 ∂ f1

∂η0

〉
≥ nk

∫
0

(
∂ f1

∂η0

)2

+ k
∫

0

|∇
0 f1|

2.

We conclude that µ1 ≥
k
2 . Having proved this fact, we will make an analysis

divided into two cases. Namely, if there is i ∈ N such that σ1 − H ∂6
= µi ≥ µ1 we
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get σ1 ≥ H ∂6
+

k
2 . Otherwise, σ1 − H ∂6

̸= µi for all i ∈ N. So, the homogeneous
problem (8) has only the trivial solution, and it follows from standard elliptic PDE
theory, more specifically from the Fredholm alternative, that the problem (7) has
a unique solution f . Note that 16( f |6) = 12

6ξ = 0 in 6, and assuming without
loss of generality that

∫
6

h6(∇6 f, ∇6 f ) ≥ 0, by substituting this function f in
formula (5) we obtain

0 ≥ −

∫
6

〈
∇

6 f, ∇6 ∂ f
∂η6

〉
+ nk

∫
0

(
∂ f
∂η0

)2

+

∫
0

10 f
∂ f
∂η0

−

∫
0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+ k

∫
0

|∇
0 f |

2.

Now, using that∫
6

〈
∇

6 f, ∇6 ∂ f
∂η6

〉
= −

∫
6

∂ f
∂η6

16 f +

∫
∂6

∂ f
∂ν6

∂ f
∂η6

=

∫
∂6

∂ f
∂ν6

∂ f
∂η6

and ∫
0

10 f
∂ f
∂η0

= −

∫
0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+

∫
∂0

∂ f
∂ν0

∂ f
∂η0

,

we have

0 ≥ −

∫
∂6

∂ f
∂ν6

∂ f
∂η6

+

∫
∂0

∂ f
∂ν0

∂ f
∂η0

− 2
∫

0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
+ nk

∫
0

(
∂ f
∂η0

)2

+ k
∫

0

|∇
0 f |

2.

As we saw previously,∫
∂6

∂ f
∂ν6

∂ f
∂η6

=

∫
∂6

∂ f
∂ν6

∂ f
∂ν0

=

∫
∂0

∂ f
∂ν0

∂ f
∂η0

.

Therefore,

2
∫

0

〈
∇

0 f, ∇0 ∂ f
∂η0

〉
≥ nk

∫
0

(
∂ f
∂η0

)2

+ k
∫

0

|∇
0 f |

2.

Now, using the last equality in (7) we get

2(σ1 − H ∂6) ≥ k =⇒ σ1 ≥ H ∂6
+

k
2
.

This proves the theorem when 6 is orientable. In the case when 6 nonorientable
and π1(M) finite, we can argue as in [Fraser and Li 2014, Theorem 3.1]. □

3.4. Proof of Corollary 6.

Proof. The proof of Corollary 6 follows directly from (4) and Theorem 4. □



ESTIMATE FOR FIRST FOURTH STEKLOV EIGENVALUE OF HYPERSURFACE 9

References

[Berchio et al. 2006] E. Berchio, F. Gazzola, and E. Mitidieri, “Positivity preserving property for a
class of biharmonic elliptic problems”, J. Differential Equations 229:1 (2006), 1–23. MR Zbl

[Bucur et al. 2009] D. Bucur, A. Ferrero, and F. Gazzola, “On the first eigenvalue of a fourth order
Steklov problem”, Calc. Var. Partial Differential Equations 35:1 (2009), 103–131. MR Zbl

[Choi and Wang 1983] H. I. Choi and A. N. Wang, “A first eigenvalue estimate for minimal hypersur-
faces”, J. Differential Geom. 18:3 (1983), 559–562. MR Zbl

[Ferrero et al. 2005] A. Ferrero, F. Gazzola, and T. Weth, “On a fourth order Steklov eigenvalue
problem”, Analysis (Munich) 25:4 (2005), 315–332. MR Zbl

[Fraser and Li 2014] A. Fraser and M. M.-c. Li, “Compactness of the space of embedded minimal sur-
faces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary”,
J. Differential Geom. 96:2 (2014), 183–200. MR Zbl

[Fraser and Schoen 2013] A. Fraser and R. Schoen, “Minimal surfaces and eigenvalue problems”, pp.
105–121 in Geometric analysis, mathematical relativity, and nonlinear partial differential equations,
edited by M. Ghomi et al., Contemp. Math. 599, Amer. Math. Soc., Providence, RI, 2013. MR Zbl

[Guo and Xia 2019] J. Guo and C. Xia, “A partially overdetermined problem in a half ball”, Calc.
Var. Partial Differential Equations 58:5 (2019), art, id. 160. MR Zbl

[Kuttler 1972] J. R. Kuttler, “Remarks on a Stekloff eigenvalue problem”, SIAM J. Numer. Anal. 9
(1972), 1–5. MR Zbl

[Kuttler 1979] J. R. Kuttler, “Dirichlet eigenvalues”, SIAM J. Numer. Anal. 16:2 (1979), 332–338.
MR Zbl

[Kuttler and Sigillito 1985] J. R. Kuttler and V. G. Sigillito, Estimating eigenvalues with a posteriori/a
priori inequalities, Research Notes in Mathematics 135, Pitman (Advanced Publishing Program),
Boston, 1985. MR Zbl

[Li 2011] M. C. Li, On a free boundary problem for embedded minimal surfaces and instability
theorems for manifolds with positive isotropic curvature, Ph.D. thesis, Stanford University, Ann
Arbor, MI, 2011, available at https://www.proquest.com/docview/2452565773. MR

[Li 2020] M. M.-c. Li, “Free boundary minimal surfaces in the unit ball: recent advances and open
questions”, pp. 401–435 in Proceedings of the International Consortium of Chinese Mathematicians
2017, edited by S. Y. Cheng et al., Int. Press, Boston, MA, 2020. MR Zbl

[Payne 1970] L. E. Payne, “Some isoperimetric inequalities for harmonic functions”, SIAM J. Math.
Anal. 1 (1970), 354–359. MR Zbl

[Stekloff 1902] W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique (suite et
fin)”, Ann. Sci. École Norm. Sup. (3) 19 (1902), 455–490. MR Zbl

[Wang and Xia 2009] Q. Wang and C. Xia, “Sharp bounds for the first non-zero Stekloff eigenvalues”,
J. Funct. Anal. 257:8 (2009), 2635–2644. MR Zbl

Received October 25, 2022. Revised March 15, 2023.

RONDINELLE BATISTA

DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO PIAUÍ

TERESINA

BRAZIL

rmarcolino@ufpi.edu.br

http://dx.doi.org/10.1016/j.jde.2006.04.003
http://dx.doi.org/10.1016/j.jde.2006.04.003
http://msp.org/idx/mr/2265615
http://msp.org/idx/zbl/1142.35016
http://dx.doi.org/10.1007/s00526-008-0199-9
http://dx.doi.org/10.1007/s00526-008-0199-9
http://msp.org/idx/mr/2476427
http://msp.org/idx/zbl/1171.35089
http://projecteuclid.org/euclid.jdg/1214437788
http://projecteuclid.org/euclid.jdg/1214437788
http://msp.org/idx/mr/723817
http://msp.org/idx/zbl/0523.53055
http://dx.doi.org/10.1524/anly.2005.25.4.315
http://dx.doi.org/10.1524/anly.2005.25.4.315
http://msp.org/idx/mr/2247608
http://msp.org/idx/zbl/1112.49035
http://projecteuclid.org/euclid.jdg/1393424916
http://projecteuclid.org/euclid.jdg/1393424916
http://msp.org/idx/mr/3178438
http://msp.org/idx/zbl/1295.53062
http://dx.doi.org/10.1090/conm/599/11927
http://msp.org/idx/mr/3202476
http://msp.org/idx/zbl/1321.35118
http://dx.doi.org/10.1007/s00526-019-1603-3
http://msp.org/idx/mr/4010636
http://msp.org/idx/zbl/1423.35259
http://dx.doi.org/10.1137/0709001
http://msp.org/idx/mr/303760
http://msp.org/idx/zbl/0233.35071
http://dx.doi.org/10.1137/0716025
http://msp.org/idx/mr/526494
http://msp.org/idx/zbl/0405.65055
http://msp.org/idx/mr/863419
http://msp.org/idx/zbl/0634.65100
https://www.proquest.com/docview/2452565773
https://www.proquest.com/docview/2452565773
http://msp.org/idx/mr/4172315
http://msp.org/idx/mr/4251121
http://msp.org/idx/zbl/1465.53008
http://dx.doi.org/10.1137/0501032
http://msp.org/idx/mr/437782
http://msp.org/idx/zbl/0199.16902
http://dx.doi.org/10.24033/asens.516
http://dx.doi.org/10.24033/asens.516
http://msp.org/idx/mr/1509018
http://msp.org/idx/zbl/33.0800.01
http://dx.doi.org/10.1016/j.jfa.2009.06.008
http://msp.org/idx/mr/2555007
http://msp.org/idx/zbl/1175.35095
mailto:rmarcolino@ufpi.edu.br


10 RONDINELLE BATISTA, BARNABÉ LIMA, PAULO SOUSA AND BRUNO VIEIRA

BARNABÉ LIMA

DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO PIAUÍ

TERESINA

BRAZIL

barnabe@ufpi.edu.br

PAULO SOUSA

DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO PIAUÍ

TERESINA

BRAZIL

paulosousa@ufpi.edu.br

BRUNO VIEIRA

COORDENAÇÃO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO PIAUÍ

PICOS

BRAZIL

Current address:
DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO PIAUÍ

TERESINA

BRAZIL

bruno_vmv@ufpi.edu.br

mailto:barnabe@ufpi.edu.br
mailto:paulosousa@ufpi.edu.br
mailto:bruno_vmv@ufpi.edu.br


PACIFIC JOURNAL OF MATHEMATICS
Vol. 325, No. 1, 2023

https://doi.org/10.2140/pjm.2023.325.11

CATENOID LIMITS OF
SINGLY PERIODIC MINIMAL SURFACES

WITH SCHERK-TYPE ENDS

HAO CHEN, PETER CONNOR AND KEVIN LI

We construct families of embedded, singly periodic minimal surfaces of
any genus g in the quotient with any even number 2n > 2 of almost parallel
Scherk ends. A surface in such a family looks like n parallel planes connected
by n − 1 + g small catenoid necks. In the limit, the family converges to an
n-sheeted vertical plane with n − 1 + g singular points, termed nodes, in the
quotient. For the nodes to open up into catenoid necks, their locations must
satisfy a set of balance equations whose solutions are given by the roots of
Stieltjes polynomials.

Introduction

The goal of this paper is to construct families of singly periodic minimal surfaces
(SPMSs) of any genus in the quotient with any even number 2n > 2 of Scherk ends
(asymptotic to vertical planes). Each family is parameterized by a small positive
real number τ > 0. In the limit τ → 0, the Scherk ends tend to be parallel, and the
surface converges to an n-sheeted vertical plane with singular points termed nodes.
As τ increases, the nodes open up into catenoid necks, and the surface looks like
parallel planes connected by these catenoid necks.

There are many previously known examples of such SPMSs. Scherk [1835]
discovered examples with genus zero and four Scherk ends. Karcher [1988] gen-
eralized Scherk’s surface with any even number 2n > 2 of Scherk ends. In this
paper, examples of genus zero will be called “Karcher–Scherk saddle towers” or
simply “saddle towers”, and saddle towers with four Scherk ends will be called
“Scherk saddle towers”. Karcher also added handles between adjacent pairs of ends,
producing SPMSs of genus n with 2n Scherk ends. Traizet glued Scherk saddle
towers into SPMSs of genus (n2

−3n+2)/2 with 2n > 2 Scherk ends because he
was desingularizing simple arrangements of n > 1 vertical planes. Martín and
Ramos Batista [2006] replaced the ends of Costa’s surface by Scherk ends, thereby
constructing an embedded SPMS of genus one with six Scherk ends and, for the first
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time, without any horizontal symmetry plane. Hauswirth, Morabito, and Rodríguez
[Hauswirth et al. 2009] generalized this result, using an end-to-end gluing method
to replace the ends of Costa–Hoffman–Meeks surfaces by Scherk ends, thereby
constructing SPMSs of higher genus with six Scherk ends. Da Silva and Ramos
Batista [2010] constructed an SPMS of genus two with eight Scherk ends based on
Costa’s surface. Also, Yucra Hancco, Lobos, and Ramos Batista [Yucra Hancco
et al. 2014] constructed SPMSs with genus 2n and 2n Scherk ends.

The examples of da Silva and Ramos Batista as well as all examples of Traizet
admit catenoid limits that can be constructed using techniques in the present paper.

One motivation of this work is an ongoing project to address various technical
details in the gluing constructions.

Roughly speaking, given any “graph” G that embeds in the plane and minimizes
the length functional, one could desingularize G × R into an SPMS by placing a
saddle tower at each vertex. Previously, this was only proved for simple graphs
under the assumption of a horizontal reflection plane [Traizet 1996; 2001]. Recently,
we managed to allow the graph to have parallel edges, to remove the horizontal
reflection plane by Dehn twist [Chen and Traizet 2021], and to prove embeddedness
by analyzing the bendings of Scherk ends [Chen 2021].

However, we still require that the vertices of G are neither “degenerate” nor
“special”. Here, a vertex of degree 2k is said to be degenerate (resp. special) if k
(resp. k − 1) of its adjacent edges extend in the same direction while the other k
(resp. k − 1) edges extend in the opposite direction. This limitation is due to the
fact that a saddle tower with 2k Scherk ends cannot have k − 1 ends extending
in the same direction while the other k − 1 ends extend in the opposite direction.
Therefore, it is not possible to place a saddle tower at a degenerate or special vertex.

Nevertheless, we do know SPMSs that desingularize G × R where G is a graph
with a degenerate vertex. To include these in the gluing construction, we need
to place catenoid limits of saddle towers, as those constructed in this paper, at
degenerate vertices. From this point of view, the present paper can be seen as
preparatory: the insight gained here will help us to glue saddle towers with catenoid
limits of saddle towers in a future project.

This paper reproduces the main result of the thesis of Li [2012]. Technically, the
construction implemented in [Li 2012] was in the spirit of [Traizet 2002b], which
defines the Gauss map and the Riemann surface at the same time, and the period of
the surface was assumed horizontal. Here, for the convenience of future applications,
we present a construction in the spirit of [Traizet 2008; Chen and Traizet 2021;
Chen 2021], which defines all three Weierstrass integrands by prescribing their
periods, and the period of the surface is assumed vertical. In particular, we will
reveal that a balance condition in [Li 2012] is actually a disguise of the balance of
Scherk ends: the unit vectors in the directions of the ends sum up to zero.
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1. Main result

1.1. Configuration. We consider L + 1 vertical planes, L ≥ 1, labeled by integers
l ∈ [1, L +1]. Up to horizontal rotations, we assume that these planes are all parallel
to the xz-plane, which we identify as the complex plane C, with the x-axis (resp.
z-axis) corresponding to the real (resp. imaginary) axis. We use the term “layer”
for the space between two adjacent parallel planes. So there are L layers.

We want nl ≥ 1 catenoid necks on layer l, i.e., between the planes l and l + 1,
1 ≤ l ≤ L . For convenience, we adopt the convention that nl = 0 if l < 1 or l > L ,
and write N =

∑
nl for the total number of necks. Each neck is labeled by a pair

(l, k), where 1 ≤ l ≤ L and 1 ≤ k ≤ nl .
To each neck is associated a complex number ql,k ∈ C×

= C \ {0}, 1 ≤ l ≤ L ,
1 ≤ k ≤ nl . Then the positions of the necks are prescribed at ln ql,k + 2mπ i, m ∈ Z.
Recall that the z-axis is identified as the imaginary axis of the complex plane C, so
the necks are periodic with period vector (0, 0, 2π). Note that, if we multiply ql,k’s
by the same complex factor c, then the necks are all translated by ln c (mod 2π i).
So we may quotient out translations by fixing q1,1 = 1.

Also, each plane has two ends asymptotic to vertical planes. We label the end of
plane l that expands in the −x (resp. x) direction by 0l (resp. ∞l). To be compatible
with the language of graph theory that were used for gluing saddle towers [Chen
and Traizet 2021], we use

H = {ηl : 1 ≤ l ≤ L + 1, η ∈ {0,∞}}

to denote the set of ends. When 0l is used as subscript for parameter x , we write
xl,0 instead of x0l to ease the notation; the same applies to ∞l .

To each end is associated a real number θ̇h , h ∈ H. They prescribe infinitesimal
changes of the directions of the ends. More precisely, for small τ , we want the unit
vector in the direction of the end h to have a y-component of order τ θ̇h +O(τ 2).

Remark 1. Multiplying θ̇ by a common real constant leads to a reparameterization
of the family. Adding a common real constant to θ̇l,0 and subtracting the same
constant from θ̇l,∞ leads to horizontal rotations of the surface.

In the following, a configuration refers to the pair (q, θ̇ ), where

q = (ql,k) 1⩽l⩽L
1⩽k⩽nl

and θ̇ = (θ̇h)h∈H.

1.2. Force. Given a configuration (q, θ̇ ), let cl be the real numbers that solve

(1) −nlcl + nl−1cl−1 + θ̇l,0 + θ̇l,∞ = 0, 1 ≤ l ≤ L + 1.
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Recall the convention nl = 0 if l < 1 or l > L , so we also adopt the convention
cl = 0 if l < 1 or l > L . A summation over l yields

(2) 21 =

∑
h∈H

θ̇h = 0.

If (2) is satisfied, the real numbers cl are determined by (1) as functions of θ̇ .
For 1 ≤ l ≤ L + 1, let ψl be the meromorphic 1-form on the Riemann sphere Ĉ

with simple poles at ql,k with residue −cl for each 1 ≤ k ≤ nl , at ql−1,k with residue
cl−1 for each 1 ≤ k ≤ nl−1, at 0 with residue θ̇l,0, and at ∞ with residue θ̇l,∞. More
explicitly,

ψl =

( nl∑
k=1

−cl

z − ql,k
+

nl−1∑
k=1

cl−1

z − ql−1,k
+
θ̇l,0

z

)
dz.

We then see that (1) arises from the residue theorem.

Remark 2. In the definition of configuration, we may replace θ̇ by the param-
eters (cl, θ̇l+1,0 − θ̇l,0)1≤l≤L . Then θ̇l,0’s are defined up to an additive constant
(corresponding to a rotation), θ̇l,∞’s are determined by (1), and (2) is automatically
satisfied. To quotient out reparameterizations of the family, we may assume that
cl = 1 for some 1 ≤ l ≤ L .

We define the force Fl,k by

(3) Fl,k = Res
(
ψ2

l +ψ2
l+1

2
z

dz
, ql,k

)
.

Or, more explicitly,

(4) Fl,k =

∑
1≤k ̸= j≤nl

2c2
l ql,k

ql,k − ql, j
−

∑
1≤ j≤nl+1

clcl+1ql,k

ql,k − ql+1, j

−

∑
1≤ j≤nl−1

clcl−1ql,k

ql,k − ql−1, j
+ c2

l + cl(θ̇l+1,0 − θ̇l,0).

In [Li 2012], the force had two different formulas depending on the parity of l. One
verifies that both are equivalent to (4).

Remark 3 (electrostatic interpretation). The force equation (4) can be expressed as

Fl,k =

∑
1≤k ̸= j≤nl

c2
l (ql,k + ql, j )

ql,k − ql, j
−

∑
1≤ j≤nl+1

clcl+1(ql,k + ql+1, j )

2(ql,k − ql+1, j )

−

∑
1≤ j≤nl−1

clcl−1(ql,k + ql−1, j )

2(ql,k − ql−1, j )
+

cl

2
(θ̇l,∞ − θ̇l,0 − θ̇l+1,∞ + θ̇l+1,0).
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Note that

a+b
a−b

= coth
ln a−ln b

2
=

2
ln a−ln b

+

∞∑
m=1

(
2

ln a−ln b−2mπ i
+

2
ln a−ln b+2mπ i

)
.

Disregarding absolute convergence, we write this formally as

a + b
a − b

=

∑
m∈Z

2
ln a − ln b − 2mπ i

.

Then the force is given, formally, by

Fl,k =

∑
0̸=m∈Z

2c2
l

2mπ i
+

∑
m∈Z

1≤k ̸= j≤nl

2c2
l

ln ql,k − ln ql, j − 2mπ i

−

∑
m∈Z

1≤ j≤nl+1

clcl+1

ln ql,k − ln ql+1. j − 2mπ i
−

∑
m∈Z

1≤ j≤nl−1

clcl−1

ln ql,k − ln ql−1. j − 2mπ i

+
cl

2
(θ̇l,∞ − θ̇l,0 − θ̇l+1,∞ + θ̇l+1,0).

Recall that ln ql,k + 2mπ i are the real positions of the necks. So this formal
expression has an electrostatic interpretation similar to those in [Traizet 2002b;
2008]. Here, each neck interacts not only with all other necks in the same or
adjacent layers, but also with background constant fields given by θ̇ .

Remark 4 (another electrostatic interpretation). In fact, (4)/ql,k has a similar
electrostatic interpretation. But this time, the necks are seen as placed at ql,k . Each
neck interacts with all other necks in the same and adjacent layers, as well as a
virtual neck at 0 with “charge” cl + θ̇l+1,0 − θ̇l,0. This is no surprise, as electrostatic
laws are known to be preserved under conformal mappings (such as ln z).

1.3. Main result. In the following, we write F = (Fl,k)1≤l≤L ,1≤k≤nl .

Definition 5. The configuration is balanced if F = 0 and 21 = 0.

Summing up all forces yields a necessary condition for the configuration to be
balanced, namely

22 =

∑
1≤l≤L
1≤k≤nl

Fl,k =

∑
1≤l≤L+1

−
1
2

(
Res

(
zψ2

l

dz
, 0

)
+ Res

(
zψ2

l

dz
,∞

))

=

∑
1≤l≤L+1

θ̇2
l,∞ − θ̇2

l,0

2
= 0.

Lemma 6. The Jacobian matrix ∂(21,22)/∂θ̇ has real rank 2 as long as cl ̸= 0
for some 1 ≤ l ≤ L.
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The assumption of the lemma simply says that the surface does not remain a
degenerate plane to the first order.

Proof. The proposition says that the matrix has an invertible minor of size 2×2.
Explicitly, we have

∂(21,22)

∂(θ̇l,0, θ̇l,∞)
=

(
1 1

−θ̇l,0 θ̇l,∞

)
.

This minor is invertible if and only if θ̇l,0 + θ̇l,∞ does not equal 0. This must be
the case for at least one 1 ≤ l ≤ L because, otherwise, we have cl = 0 for all
1 ≤ l ≤ L . □

Definition 7. The configuration is rigid if the complex rank of ∂F/∂q is N − 1.

Remark 8. In fact, the complex rank of ∂F/∂q is at most N −1. We have seen that
a complex scaling of q corresponds to a translation of ln ql,k +2mπ i, m ∈ Z, which
does not change the force. It then makes sense to normalize q by fixing q1,1 = 1.

Theorem 9. Let (q, θ̇ ) be a balanced and rigid configuration such that cl ̸= 0 for
1 ≤ l ≤ L. Then for τ > 0 sufficiently small, there exists a smooth family Mτ of
complete singly periodic minimal surfaces of genus g = N − L , period (0, 0, 2π),
and 2(L + 1) Scherk ends such that, as τ → 0:

• Mτ converges to an (L+1)-sheeted xz-plane with singular points at

ln ql,k + 2mπ i, m ∈ Z.

Here, the xz-plane is identified as the complex plane C, with the x-axis (resp.
z-axis) identified as the real (resp. imaginary) axis.

• After suitable scaling and translation, each singular point opens up into a neck
that converges to a catenoid.

• The unit vector in the direction of each Scherk end h has the y-component
τ θ̇h +O(τ 2).

Also, Mτ is embedded if

(5) θ̇1,0 > · · ·> θ̇L+1,0 and θ̇1,∞ > · · ·> θ̇L+1,∞.

Remark 10. The family Mτ also depends smoothly on θ̇ belonging to the local
smooth manifold defined by 21 = 0 and 22 = 0. Up to reparameterizations of
the family and horizontal rotations, we obtain families parameterized by 2L − 1
parameters. Since we have 2(L + 1) Scherk ends, this parameter count is compati-
ble with the fact that Karcher–Scherk saddle towers with 2k ends form a family
parameterized by 2k − 3 parameters.
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Remark 11. If the embeddedness condition (5) is satisfied and21 =0, the sequence
θ̇l,0 + θ̇l,∞ is strictly monotonically decreasing, and changes sign once and only
once. Then the sequence nlcl is strictly concave (that is, nl−1cl−1+nl+1cl+1< 2nlcl

for 1 ≤ l ≤ L). Hence cl , 1 ≤ l ≤ L , are strictly positive, and the condition of
Lemma 6 is satisfied.

Remark 12. We could allow some cl to be negative, with the price of losing
embeddedness. Even worse, with negative cl , the vertical planes in the limit will
not be geometrically ordered as they are labeled. For instance, if L = 2, c1 > 0, but
c2 < 0, then the catenoid necks, as well as the first and third “planes”, will all lie
on the same side of the second “plane”.

Remark 13. We did not allow any cl to be 0 in Theorem 9. Otherwise, the surface
might still have nodes. In that case, the claimed family might not be smooth, and
the claimed genus would be incorrect.

2. Examples

2.1. Surfaces of genus zero. When the genus satisfies g = N − L = 0, we have
nl = 1 for all 1 ≤ l ≤ L , i.e., there is only one neck on every layer. It then makes
sense to drop the subscript k. For instance, the position and the force for the neck on
layer l are simply denoted by ql and Fl , respectively. We assume L > 1 in this part.

In this case, if 21 = 0, (1) can be explicitly solved by

cl =

l∑
i=1

(θ̇i,0 + θ̇i,∞), 1 ≤ l ≤ L ,

and the force can be written in the form

Fl = −Q̃l + Q̃l−1 + cl(θ̇l,∞ + θ̇l+1,0), 1 ≤ l ≤ L ,

where we changed to the parameters

Q̃l =
cl+1cl

1 − ql+1/ql
, 1 ≤ l < L ,

with the convention that Q̃0 = Q̃L = 0. Then the forces are linear in Q̃ and, if
22 = 0, the balance condition F = 0 is uniquely solved by

(6) Q̃l =

l∑
i=1

ci (θ̇i+1,0 + θ̇i,∞)= −

L∑
i=l+1

ci (θ̇i+1,0 + θ̇i,∞), 1 ≤ l < L .

Therefore, if we fix q1 = 1, all other ql , 1< l ≤ L , are uniquely determined.
Recall from Remark 11 that, under the embeddedness condition (5), the num-

bers cl , 1 ≤ l ≤ L , are positive. Furthermore, the summands in (6) change sign at
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most once, so the sequence Q̃ is unimodal, i.e., there exists 1 ≤ l ′ < L such that

0 = Q̃0 ≤ Q̃1 ≤ · · · ≤ Q̃l ′ ≥ · · · ≥ Q̃L−1 ≥ Q̃L = 0.

Hence Q̃l , 1 ≤ l ≤ L , are nonnegative. Lastly,

Q̃l <

l∑
i=1

ci (θ̇i,0 + θ̇i,∞)=

l∑
i=1

(c2
i − ci−1ci )≤ c2

l ≤ cl+1cl if l < l ′,

Q̃l <−

L∑
i=l+1

ci (θ̇i+1,0 + θ̇i+1,∞)=

L∑
i=l+1

(c2
i − ci+1ci )≤ c2

l+1 ≤ cl+1cl if l ≥ l ′.

So q consists of real numbers and ql+1/ql < 0 for all 1 ≤ l < L .
We have proved the following:

Proposition 14. If the genus satisfies g = N − L = 0, and θ̇ satisfies the balancing
condition 21 =22 = 0 as well as the embeddedness condition (5), then up to com-
plex scalings, there exist unique values for the parameters q , depending analytically
on θ̇ , such that the configuration (q, θ̇ ) is balanced. All such configurations are
rigid. If we fix q1 = 1, then q consist of real numbers, and we have ql > 0 (resp.
< 0) if l is odd (resp. even).

2.2. Surfaces with four ends. When L = 1, 21 =22 = 0 implies that

θ̇1,0 + θ̇2,∞ = θ̇2,0 + θ̇1,∞ = 0.

Up to reparameterizations of the family, we may assume that c1 = 1. It makes sense
to drop the subscript l, and write Fk for F1,k , qk for q1,k , and n for n1. The goal of
this part is to prove the following classification result.

Proposition 15. Up to a complex scaling, a configuration with L = 1 and n nodes
must be given by qk = exp(2π ik/n), and such a configuration is rigid.

Such a configuration is an n-covering of the configuration for Scherk saddle
towers. As a consequence, the arising minimal surfaces are n-coverings of Scherk
saddle towers. This is compatible with the result of [Meeks and Wolf 2007] that
the Scherk saddle towers are the only connected SPMSs with four Scherk ends.

Proof. To find the positions qk such that

(7) Fk =

∑
1≤k ̸= j≤n

2qk

qk − q j
− (n − 1)= 0, 1 ≤ k ≤ n,

we use the polynomial method. Consider the polynomial

P(z)=

n∏
k=1

(z − qk).
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Then we have

P ′
= P

n∑
k=1

1
z − qk

,

P ′′
= P

n∑
k=1

∑
1≤k ̸= j≤n

1
z − q j

1
z − qk

= 2P
n∑

k=1

1
z − qk

∑
1≤k ̸= j≤n

1
qk − q j

= P
n∑

k=1

n − 1
qk(z − qk)

= (n − 1)P
n∑

k=1

1
z

(
1
qk

+
1

z − qk

)
(by (7))

=
n − 1

z

(
P ′

−
P ′(0)
P(0)

P
)
.

For the last equation to have a polynomial solution, we must have P ′(0) = 0.
Otherwise, the left-hand side would be a polynomial of degree n−2, but the right-
hand side would be a polynomial of degree n−1.

Consequently, Fk = 0 if and only if

z P ′′(z)− (n − 1)P ′(z)= 0,

which, up to a complex scaling, is uniquely solved by

P(z)= zn
− 1.

So a balanced 4-end configuration must be given by the roots of unity qk =

exp(2π ik/n), 0 ≤ k ≤ n − 1.
We now verify that the configuration is rigid. For this purpose, we compute

∂Fk

∂q j
=

{
2 qk
(qk−q j )2

, j ̸= k,

2
∑

1≤k ̸=i≤n
−qi

(qk−qi )2
, j = k.

Note that
∑n

j=1 q j∂Fk/∂q j = 0 while

q j
∂Fk

∂q j
= 2

q j qk

(qk − q j )2
= 2

e2π i j+k
n

(e2π i j
n − e2π i k

n )2
∈ R<0

when j ̸= k, so the matrix

∂F
∂q

diag(q1, . . . , qn)

has real entries, has a kernel of complex dimension 1 (spanned by the all-one vector),
and any of its principal submatrices are diagonally dominant. We then conclude
that the matrix, as well as the Jacobian ∂F/∂q, has a complex rank n−1. This
finishes the proof of rigidity. □
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Remark 16. The perturbation argument as in the proof of [Traizet 2002b, Proposi-
tion 1] also applies here, word by word, to prove the rigidity.

2.3. Gluing two saddle towers of different periods. We want to construct a smooth
family of configurations depending on a positive real number λ such that, for small λ,
the configuration looks like two columns of nodes far away from each other, one
with period 2π/n1, and the other with period 2π/n2. If balanced and rigid, these
configurations would give rise to minimal surfaces that look like two Scherk saddle
towers with different periods that are glued along a pair of ends. The construction
is in the same spirit as [Traizet 2002b, §2.5; 2008, §4.3.4].

Proposition 17. For a real number λ > 0 sufficiently small, there are balanced and
rigid configurations (q(λ), θ̇(λ)) with L = 2 depending smoothly on λ such that, at
λ= 0,

q2, j

q1,k
= 0, 1 ≤ k ≤ n1, 1 ≤ j ≤ n2.

Up to a complex scaling and reparameterization, we may fix q1,1 = 1, and write
q2,1 = λ exp(iφ). Then, at λ= 0, we have

(8) θ̇1,0 + θ̇2,∞ = θ̇2,0 + θ̇3,∞ = θ̇3,0 + θ̇1,∞ = 0

and,

q1,k = exp
(

k − 1
n1

2π i
)
, 1 ≤ k ≤ n1,

q̃2,k := q2,k/q2,1 = exp
(

k − 1
n2

2π i
)
, 1 ≤ k ≤ n2,

where φ lcm(n1, n2) is necessarily a multiple of π .

In other words, the construction only works if the configuration admits a reflection
symmetry.

Remark 18. H. Chen was shown a video suggesting that, when two Scherk saddle
towers are glued into a minimal surface, one can slide one saddle tower with respect
to the other while the surface remains minimal. The proposition above suggests
that this is not possible.

In fact, the family of configurations also depends on θ̇ belonging to the local
manifold defined by 21 =22 = 0 and (one equation from) (8). Up to rotations of
the configuration and reparameterizations of the family of minimal surfaces, the
family of configurations is parameterized, as expected, by two parameters.
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Proof. Let us first study the situation at λ= 0. We compute, at λ= 0,

F1,k

c2
1

=

∑
1≤k ̸= j≤n1

2q1,k

q1,k − q1, j
−

∑
1≤ j≤n2

c2

c1

q1,k

q1,k − q2, j
+ 1 +

θ̇2,0 − θ̇1,0

c1

=

∑
1≤k ̸= j≤n1

2q1,k

q1,k − q1, j
− n2

c2

c1
+ 1 +

θ̇2,0 − θ̇1,0

c1
,

F2,k

c2
2

=

∑
1≤k ̸= j≤n2

2q2,k

q2,k − q2, j
−

∑
1≤ j≤n1

c1

c2

q2,k

q2,k − q1, j
+ 1 +

θ̇3,0 − θ̇2,0

c2

=

∑
1≤k ̸= j≤n2

2q2,k

q2,k − q2, j
+ 1 +

θ̇3,0 − θ̇2,0

c2
.

Write Gl =
∑

k Fl,k . Summing the above over k gives, at λ= 0,

1
n1

G1

c2
1

= n1 − n2
c2

c1
+
θ̇2,0 − θ̇1,0

c1
,

1
n2

G2

c2
2

= n2 +
θ̇3,0 − θ̇2,0

c2
.

So G1 = G2 = 0, at λ= 0, only if

0 = − (θ̇2,0 + θ̇3,∞)= θ̇3,0 − θ̇2,0 + n2c2

= − (θ̇1,0 + θ̇2,∞)= n1c1 − n2c2 + θ̇2,0 − θ̇1,0.

This together with 21 = 0 proves (8).
Now assume that (8) is satisfied. Then we have, at λ= 0,

F1,k

c2
1

=

∑
1≤k ̸= j≤n1

2q1,k

q1,k − q1, j
− (n1 − 1),

F2,k

c2
2

=

∑
1≤k ̸= j≤n2

2q2,k

q2,k − q2, j
− (n2 − 1).

These expressions are identical to the force (7) for single layer configurations. So
we know for l = 1, 2 that, at λ= 0, the configuration is balanced only if

q̃l,k :=
ql,k

ql,1
= exp

(
k − 1

nl
2π i

)
.

Up to complex scaling, we may fix q1,1 = 1 so q̃1,k = q1,k . And up to reparameteri-
zation of the family (of configurations), we write q2,1 = λ exp(iφ).
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Now assume these initial values for q̃l,k . Then we have, at λ= 0,

G2

c1c2
= −

n2∑
k=1

n1∑
j=1

q2,k

q2,k − q1, j
=

n2∑
k=1

n1∑
j=1

∞∑
m=1

(
q2,k

q1, j

)m

=

n2∑
k=1

n1∑
j=1

∞∑
m=1

qm
2,1 exp

(
2miπ

(
k − 1

n2
−

j − 1
n1

))
.

Seen as a power series of q2,1, the coefficient for qm
2,1 is

n2∑
k=1

n1∑
j=1

exp
(

2miπ
(

k − 1
n2

−
j − 1
n1

))
.

It is nonzero only if m is a common multiple of n1 and n2, in which case the
coefficient of qm

2,1 equals n1n2. In particular, let µ= lcm(n1, n2); then, at λ= 0,

(9) Im
G2

λµ
= c1c2n1n2 sin(µφ)

vanishes if and only if µφ is a multiple of π .
Now we use the implicit function theorem to find balanced configurations with

λ > 0. From the proof for Proposition 15, we know that (∂Fl,k/∂ q̃l, j )2≤ j,k≤nl ,
l = 1, 2, are invertible. Hence for λ sufficiently small, there exist unique values for
(̃ql,k)l=1,2;2≤k≤nl , depending smoothly on λ, θ̇ , and φ, where (Fl,k)l=1,2;2≤k≤nl = 0.
By (9), there exists a unique value for φ, depending smoothly on λ and θ̇ , such
that Im G2/λ

µ
= 0. Note also that Re G2 is linear in θ̇ . By Lemma 6, the solutions

(λ, θ̇) to Re G2 = 0 and 21 =22 = 0 form a manifold of dimension 4 (including
multiplication by common real factor on θ̇ and rotation of the configuration). Finally,
we have G1 = 0 by the residue theorem, and the balance is proved.

For the rigidity of the configurations with sufficiently small λ, we need to prove
that the matrix 

( ∂F1,k
∂q1, j

)
2≤ j,k≤n1 ( ∂F2,k

∂q̃2, j

)
2≤ j,k≤n2

∂G2
∂q2,1


is invertible. We know that the first two blocks are invertible at λ= 0. By continuity,
they remain invertible for λ sufficiently small. The last block is clearly nonzero for
λ ̸= 0 sufficiently small. □

2.4. Surfaces with six ends of type (n, 1). In this section, we investigate examples
with L = 2 (hence six ends), n1 = n, n2 = 1. Up to a reparameterization of the
family, we may assume that c1 = 1. Up to a complex scaling, we may assume that
q2,1 = 1.
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We will prove that the q1,k’s are given by the roots of hypergeometric polynomials.
Let us first recall their definitions. A hypergeometric function is defined by

2 F1(a, b; c; z)=

∞∑
k=0

(a)k(b)k
(c)k

zk

k!

with a, b, c ∈ C, c is not a nonpositive integer,

(a)k = a(a + 1) · · · (a + k − 1)=
0(a + k)
0(a)

,

and (a)0 = 1. The hypergeometric function w = 2 F1(a, b; c; z) solves the hyperge-
ometric differential equation

(10) z(1 − z)w′′
+ [c − (a + b + 1)z]w′

− abw = 0.

If a = −n is a negative integer,

2 F1(−n, b; c; z) :=

n∑
k=0

(−1)k
(n

k

)(b)k
(c)k

zk

is a polynomial of degree n, and is referred to as a hypergeometric polynomial.

Proposition 19. Let (q, θ̇ ) be a balanced configuration with L = 2, c1 = 1, n1 = n,
n2 = 1. Then, up to a complex scaling, we have q2,1 = 1 and (q1,k)1≤k≤n are the
roots of the hypergeometric polynomial 2 F1(−n, b; c; z) with

b := n − c2 + θ̇2,0 − θ̇1,0, c := 1 + θ̇2,0 − θ̇1,0.

As long as b and c are not nonpositive integers, and c − b is not a nonpositive
integer bigger than −n, the configuration is rigid.

Proof. The force equations are

F1,k =

∑
1≤k ̸= j≤n

2q1,k

q1,k − q1, j
−

q1,kc2

q1,k − 1
+ c, 1 ≤ k ≤ n,

F2,1 = −

n∑
j=1

c2

1 − q1, j
+ c2

2 + c2(θ̇3,0 − θ̇2,0),

where c := 1 + θ̇2,0 − θ̇1,0. To solve F1,k = 0 for k = 1, 2, . . . , n, we use again the
polynomial method. Let

P(z)=

n∏
k=1

(z − q1,k).
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Then we have

P ′
= P

n∑
k=1

1
z − q1,k

;

P ′′
= 2P

n∑
k=1

1
z − q1,k

∑
1≤k ̸= j≤n

1
q1,k − q1, j

= P
n∑

k=1

1
(z − q1,k)

(
c2

q1,k − 1
−

c
q1,k

)
(by F1,k = 0)

= P
n∑

k=1

(
c2

(z − 1)(z − q1,k)
+

c2

(z − 1)(q1,k − 1)
−

c
z(z − q1,k)

−
c

zq1,k

)
.

So the configuration is balanced if and only if

(11) P ′′
+

(
−c2

z − 1
+

c
z

)
P ′

+

(
c2

z − 1
P ′(1)
P(1)

−
c
z

P ′(0)
P(0)

)
P = 0.

Define
b := n − 1 − c2 + c.

For (11) to have a polynomial solution of degree n, we must have

c2
P ′(1)
P(1)

= c
P ′(0)
P(0)

= −nb,

so that the leading coefficients cancel. Then (11) becomes the hypergeometric
differential equation

z(1 − z)P ′′
+ [c − (−n + b + 1)z]P ′

+ nbP = 0

to which the only polynomial solution (up to a multiplicative constant) is given by
the hypergeometric polynomial P(z)= 2 F1(−n, b; c; z) of degree n.

Furthermore, in order for F2,1 = 0, we must have

(12) θ̇3,0 − θ̇2,0 =

n∑
j=1

1
1 − q1, j

− c2 =
P ′(1)
P(1)

− c2 = −
nb
c2

− c2.

Note that b and c are real. If b is not a nonpositive integer, and c − b is not a
nonpositive integer bigger than −n, then all the n roots of P(z)= 2 F1(−n, b; c; z)
are simple. Indeed, under these assumptions, we have P(0) = 1 and P(1) =

(c − b)n/(c)n ̸= 0 by the Chu–Vandermonde identity. If z0 is a root of P(z), then
z0 ̸= 0, 1. In view of the hypergeometric differential equation, if z0 is not simple,
we have P(z0)= P ′(z0)= 0; hence P(z)≡ 0 by the uniqueness theorem.



CATENOID LIMITS OF MINIMAL SURFACES WITH SCHERK-TYPE ENDS 25

The rigidity means that no perturbation of q1,k preserve the balance to the first
order. To prove this fact, we use a perturbation argument similar to that in the proof
of [Traizet 2002b, Proposition 1].

Let (q1,k(t))1≤k≤n be a deformation of the configuration such that q1,k(0)= q1,k

and (Ḟ1,k(0))1≤k≤n = 0, where dot denotes derivative with respect to t . Define

Pt(z)=

n∑
j=0

a j (t)z j
:=

n∏
k=1

(z − q1,k(t)).

Then we have

z(1 − z)P ′′

t + [c − (−n + b + 1)z]P ′

t + nbPt = o(t),

meaning that the coefficients from the left side are all o(t). So the coefficients of
Pt must satisfy

(13) (b + j)(n − j)a j (t)+ ( j2
+ j + cj)a j+1(t)= o(t), 0 ≤ j ≤ n.

Note that Pt(z) is monic by definition, meaning that an(t)≡ 1. Since b and c are
not nonpositive integers, we conclude that a j (t) = o(t) for all 0 ≤ j ≤ n. The
simple roots depend analytically on the coefficients, so q1,k(t)= q1,k + o(t). □

The simple roots of 2 F1(−n, b; c; z) are either real or form conjugate pairs. As
a consequence, if rigid, the configurations in the proposition above will give rise to
minimal surfaces with horizontal symmetry planes.

Example 20. For each integer n ≥ 2, Dominici, Johnston, and Jordaan [Dominici
et al. 2013] enumerated the real parameters (b, c) for which 2 F1(−n, b; c; z) has
only real simple roots. The results are plotted in blue in Figure 1. The embeddedness
conditions (5) are

θ̇1,0 > θ̇2,0 =⇒ c < 1,

θ̇1,∞ > θ̇2,∞ =⇒ b >−n,

θ̇2,0 > θ̇3,0 =⇒ c2
2 >−nb,

θ̇2,∞ > θ̇3,∞ =⇒ c2
2 > n(c2 + b),

where c2 = n − 1 − b + c. The region defined by these is plotted in red in Figure 1.
Then noninteger parameters (b, c) in the intersection of red and blue regions give
rise to balanced and rigid configurations with real q1,k .

Figure 2 shows the configurations of three examples with n = 5. □

Remark 21. As c → 0, 2 F1(−n, b; c; z)/0(c) converges to a polynomial with a
root at 0. One may interpret that, as c increases across 0, a root moves from the
interval (−∞, 0) to the interval (0, 1) through 0.
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n = 2

b

c

− n + 2

− n

−1 1
n = 3

b

c

− n + 2

− n

−1 1
n ≥ 4

b

c

− n + 2

− n

−1 1

Figure 1. The set of b and c for which 2 F1(−n, b; c; z) has only
real simple roots (blue), and for which the embeddedness conditions
are satisfied (red).

When b = 1 − n, 2 F1(−n, b; c; z) becomes a polynomial of degree n−1. One
may interpret that, as b increases across 1 − n, a root moves from the interval
(−∞, 0) to the interval (1,∞) through the infinity.

Example 22. Assume that b + c = 1 − n (hence c2 = −2b). Then by the identity

2 F1(−n, b; c; z)=
(b)n
(c)n

(−z)n2 F1

(
−n, 1 − c − n; 1 − b − n;

1
z

)
,

the simple roots must be symmetrically placed. That is, if z0 is a root, so is 1/z0.
This symmetry appears in the resulting minimal surfaces as a rotational symmetry.
If the simple roots are real, the rotation reduces to a vertical reflectional. In view of
Figure 1, we obtain the following concrete examples.

-6 -4 -2 2 4 6

-π

π

-6 -4 -2 2 4 6

-π

π

-10 -5 5 10

-π

π

Figure 2. (5, 1) balanced configurations with b = −3.4, c = −0.1
(top left), b = −3.4, c = 0.1 (top right), and b = −4.001, c = 0.5
(bottom). The circles and squares represent the necks at levels one
and two, respectively.
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Figure 3. Genus one example with n = 2 and 0< c < 1.

• n ≥ 2 and 0< c< 1. In this case 2 F1(−n, b; c; z) has n simple negative roots.
See Figure 3 for an example of this type with n = 2. Figure 4 shows the
configurations of two examples with n = 5.

• n ≥ 3 and −1< c < 0, or n = 3 and −
5
4 < c <−1, or n = 2 and −

1
2 < c < 0.

In these cases, 2 F1(−n, b; c; z) has n − 2 simple negative roots, one root
0< z0 < 1, and another root 1/z0 > 1. Figure 5 shows the configurations of
two examples with n = 5. □

Remark 23. Examples with six Scherk ends are parameterized by three real param-
eters, here by b, c, and the family parameter τ . We see that the relation b+c = 1−n
imposes a rotational symmetry. It can be imagined that removing the relation would
break this symmetry.

Remark 24. The polynomial method is often used to find balanced configurations
of interacting points in the plane. In minimal surface theory, it has been employed in
many implementations of Traizet’s node-opening technique [Traizet 2002a; 2002b;
Traizet and Weber 2005; Li 2012; Connor and Weber 2012; Connor 2017a; 2017b;
Chen and Freese 2022].

-10 -5 5 10

-π

π

-4 -2 2 4

-π

π

Figure 4. (5, 1) balanced configurations with c = 0.001 (left) and
c = 0.5 (right). The circles and squares represent the necks at levels
one and two, respectively.
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-4 -2 2 4

-π

π

-6 -4 -2 2 4 6

-π

π

Figure 5. (5, 1) balanced configurations with c = −0.5 (left) and
c = −0.999 (right). The circles and squares represent the necks at
levels one and two, respectively.

2.5. Surfaces with eight ends of type (1, n, 1). Proposition 19 generalizes to the
following lemma with similar proof:

Lemma 25. We fix ql±1,k’s and assume that cl = 1. Then ql,k’s in a balanced
configuration are given by the roots of a Stieltjes polynomial P(z) of degree nl

that solves the generalized Lamé equation (a.k.a. second-order Fuchsian equation)
[Marden 1966]

(14) P ′′
+

(
c
z

+

nl−1∑
k=1

−cl−1

z − ql−1,k
+

nl+1∑
k=1

−cl+1

z − ql+1,k

)
P ′

+

(
γ0

z
+

nl−1∑
k=1

γl−1,k

z − ql−1,k
+

nl+1∑
k=1

γl+1,k

z − ql+1,k

)
P = 0,

where c = 1 + θ̇l+1,0 − θ̇l,0, subject to conditions

γ0 +

nl−1∑
k=1

γl−1,k +

nl+1∑
k=1

γl+1,k = 0,

nl−1∑
k=1

γl−1,kql−1,k +

nl+1∑
k=1

γl+1,kql+1,k =: −nlb,

and
c − nl−1cl−1 − nl+1cl+1 = 1 − nl + b.

Also, the matrix (∂Fl,k/∂ql, j )1≤ j,k≤nl is nonsingular as long as b is not a nonpositive
integer bigger than nl .

A root of P(z) is simple if and only if it does not coincide with 0 or any ql±1,k . If
the roots (ql,k) of P(z) are all simple, then they solve the equations [Marden 1966]∑
1≤k ̸= j≤nl

2
ql,k −ql, j

+

∑
1≤ j≤nl+1

−cl+1

ql,k −ql+1, j
+

∑
1≤ j≤nl−1

−cl−1

ql,k −ql−1, j
+

c
ql,k

=
Fl,k

ql,k
=0,
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which is exactly our balance condition; see Remark 4. In addition, an equation
system generalizing (13) has been obtained in [Heine 1878, §136], from which we
may conclude the nonsingularity of the Jacobian. In fact, there are(

nl−1+nl+nl+1−1
nl−1+nl+1−1

)
choices of γ for which (14) has a polynomial solution of degree nl [Heine 1878,
§135].

This observation allows us to easily construct balanced and rigid configurations
of type (1, n, 1). Up to reparametrizations and complex scalings, we may assume
that c2 = 1 and q1,1 = 1. Then q3,1 must be real, and (q2,k)1≤k≤n are given by
roots of a Heun polynomial. Such a configuration depends locally on four real
parameters, namely q3,1, c1, c3 and c (or b). When these are given, we have n + 1
Heun polynomials, each of which gives balanced positions of q2,k’s. For each of
the Heun polynomials P , we have

θ̇2,0 − θ̇1,0 =
P ′(1)
P(1)

− c1,

θ̇3,0 − θ̇2,0 = c − 1 = b + c1 + c3 − n,

θ̇4,0 − θ̇3,0 =
P ′(q3,1)

P(q3,1)
− c3.

Together with the family parameter τ , the surface depends locally on five parameters,
which is expected because there are eight ends.

Example 26 (symmetric examples). When q3,1 = q1,1 = 1, the Heun polynomial re-
duces to a hypergeometric polynomial 2 F1(−n, b; c; z), where c1+c3 =n−1−b+c.
Assume further that b+c = 1−n, so c1+c3 =−2b. This imposes a symmetry in the
configuration. Because (c1 + c3)P ′(1)/P(1)= −nb, the embeddedness conditions
simplify to

c1 >
1
2 n, c3 >

1
2 n, 1 −

1
2 n < c < 1, −n < b <−

1
2 n.

As explained in Example 22, the hypergeometric polynomial has real roots if b and
c lie in the blue regions of Figure 1. More specifically:

• When n ≥ 2 and 0< c < 1, 2 F1(−n, b; c; z) has n simple negative roots. See
Figure 6 for an example with n = 5.

• When n ≥4 and −1<c<0, or n =3 and −
1
2 <c<0, 2 F1(−n, b; c; z) has n−2

simple negative roots, one root 0< z0 < 1, and another root 1/z0 > 1. □

Example 27 (offset handles). There are embedded examples in which the handles
are not symmetrically placed. For instance, one balanced configuration of type
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Figure 6. Genus four example with n = 5 and 0< c < 1.

(1, 2, 1) is given by

q3,1 =
2
3 , q2,1 = −

1
3 , q2,2 = −23,

c1 =
8
5 , c3 =

4189
2890 , b = −

9857
8670 ,

so c =
3956
4335 . □

2.6. Concatenating surfaces of type (1, n, 1). We describe a family of examples
in the same spirit as [Traizet 2002a, Proposition 2.3]. Assume that we are in
possession of R configurations of type (1, n(r), 1), n(r) > 1, 1 ≤ r ≤ R. In the
following, we use superscript (r) to denote the parameters of the r -th configuration.
Up to reparameterizations and complex scalings, we may assume that c(r)2 = 1 and
q(r)1,1 = 1. Then we may concatenate these configurations into one of type

(1, n2, 1, n4, 1, . . . , 1, n2R, 1)

such that q1,1 = 1, c1 = 1, and for 1 ≤ r ≤ R, we have n2r = n(r),

q2r,k = q2r−1,1q(r)2,k, q2r+1,1 = q2r−1,1q(r)3,1, c2r =
c2r−1

c(r)1

, c2r+1 = c2r−1
c(r)3

c(r)1

,

and
θ̇2r+1,0 − θ̇2r,0 = c2r (c(r) − 1).

The balance of even layers then follows from the balance of each subconfiguration.
The balance of odd layers leads to

θ̇2r,0 − θ̇2r−1,0 = c2r (θ̇
(r)
2,0 − θ̇

(r)
1,0 + c(r)1 )+ c2r−2(θ̇

(r−1)
4,0 − θ̇

(r−1)
3,0 + c(r−1)

3 )− c2r−1

for 1 ≤ r ≤ R + 1. As expected, such a configuration depends locally on 4R real
parameters, namely q(r)3,1, c(r)1 , c(r)3 , and c(r), 1 ≤ r ≤ R.
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We may impose symmetry by assuming that q(r)3,1 = 1, so q2r+1,1 = 1 for all

0 ≤ r ≤ R, and that b(r)+c(r)= 1−n(r), so c(r)1 +c(r)3 = n(r)−1−b(r)+c(r)=−2b(r).
Then q2r,k = q(r)2,k , 1 ≤ k ≤ n(r), are given by the roots of 2 F1(−n(r), b(r); c(r); z),
1 ≤ r ≤ R. Recall from Remark 11 that the embeddedness conditions simplifies
to the concavity of the sequence (nlcl)1≤l≤L . For even l, the concavity implies
that b(r) > −n; hence c(r) < 1 for all 1 ≤ r ≤ R. We may choose, for instance,
nlcl = ln(1 + l) or nlcl = (exp l − 1)/ exp(l − 1) to obtain embedded minimal
surfaces.

Remark 28. We can also append a configuration of type (1, n(r)) to the sequence
of (1, n(r), 1)-configurations to obtain a configuration of type

(1, n2, 1, n4, 1, . . . , 1, n2R−2, 1, n2R),

where the ql,k, cl, θ̇l,0 terms are defined as above. Therefore, an embedded example
of any genus with any even number (> 2) of ends can be constructed.

2.7. Numerical examples. The balance equations can be combined into one differ-
ential equation that is much easier to solve. A solution to this differential equation
corresponds to several balance configurations that are equivalent by permuting the
locations of the nodes.

Lemma 29. Let L be a positive integer, n1, n2, . . . , nL ∈ N, and suppose {ql,k} is
a configuration such that the ql,k are distinct. Let

Pl(z)=

nl∏
k=1

(z − ql,k), P(z)=

L∏
l=1

Pl(z), P0(z)= PL+1(z)= 1,

and

F P(z)=

L∑
l=1

(
c2

l z P ′′

l (z)P(z)
Pl(z)

−
clcl+1z P ′

l (z)P
′

l+1(z)P(z)

Pl(z)Pl+1(z)

+ (c2
l + cl(θ̇l+1,0 − θ̇l,0))

P ′

l (z)P(z)
Pl(z)

)
.

Then the configuration {ql,k} is balanced if and only if F P(z)≡ 0.

Proof. We have seen that

P ′′

l (ql,k)

P ′

l (ql,k)
=

∑
1≤k ̸= j≤nl

2
ql,k − ql, j

,
P ′

l±1(ql,k)

Pl±1(ql,k)
=

nl±1∑
j=1

1
ql,k − ql±1, j

.

Define

Fl(z)=
c2

l z P ′′

l (z)
P ′

l (z)
−

clcl+1z P ′

l+1(z)

Pl+1(z)
−

clcl−1z P ′

l−1(z)

Pl−1(z)
+ c2

l + cl(θ̇l+1,0 − θ̇l,0).



32 HAO CHEN, PETER CONNOR AND KEVIN LI

Then Fl,k = Fl(ql,k). Set

Ql(z)=
P ′

l (z)P(z)
Pl(z)

Fl(z)

=
c2

l z P ′′

l (z)P(z)
Pl(z)

−
clcl+1z P ′

l (z)P
′

l+1(z)P(z)

Pl(z)Pl+1(z)
−

clcl−1z P ′

l−1(z)P
′

l (z)P(z)

Pl−1(z)Pl(z)

+ (c2
l + cl(θ̇l+1,0 − θ̇l,0))

P ′

l (z)P(z)
Pl(z)

.

Then Fl,k = 0 if and only if Ql(ql,k)= 0.
Now observe that Ql(z) and Q(z)=F P(z) are polynomials with degree strictly

less than

deg P = N =

L∑
l=1

nl,

and Q(ql,k) = Ql(ql,k) for 1 ≤ k ≤ nl and 1 ≤ l ≤ L . If Q ≡ 0 then Ql(ql,k) = 0
and so {ql,k} is a balanced configuration. If {ql,k} is a balanced configuration then
Q(ql,k) = Ql(ql,k) = Fl,k = 0. Hence, Q has at least N distinct roots. Since the
degree of Q is strictly less than N , we must have Q ≡ 0. □

It is relatively easy to numerically solve F P(z) ≡ 0 as long as we don’t have
too many levels and necks. So we use this lemma to find balanced configurations.
Since all previous examples admit a horizontal reflection symmetry, we are most
interested in examples without this symmetry, or with no nontrivial symmetry at all.

Figure 7 shows an example with L = 3,

n1 = 1, n2 = 3, n3 = 2,

c1 = 2, c2 = 1, c3 =
13
16 ,

θ1,0 = 0, θ2,0 = −
1
2 , θ3,0 = −

27
16 , θ4,0 = −

29
16 .

This configuration corresponds to an embedded minimal surface with eight ends
and genus three in the quotient. It has no horizontal reflectional symmetry, but does
have a rotational symmetry.

Figure 8 shows two examples with L = 3,

n1 = 1, n2 = 4, n3 = 3,

c1 =
7
2 , c2 = 1, c3 =

3
4 ,

θ1,0 = 0, θ2,0 = −2, θ3,0 = −
13
5 , θ4,0 = −

541
180 .

These configurations correspond to embedded minimal surfaces with eight ends
and genus five in the quotient, with no nontrivial symmetry.
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-4 -2 2 4

-π

π

Figure 7. A (1, 3, 2) balanced configuration with no horizontal
reflectional symmetry. The circles, squares, and diamonds represent
the necks at levels one, two, and three, respectively.

Figure 9 shows two examples with L = 3,

n1 = 1, n2 = 7, n3 = 3,

c1 =
17
7 , c2 = 1, c3 =

3
2 ,

θ1,0 = 0, θ2,0 = −
1
2 , θ3,0 = −

3
2 , θ4,0 = −

2468
441 .

These configurations correspond to embedded minimal surfaces with eight ends
and genus eight in the quotient, with no nontrivial symmetry.

3. Construction

3.1. Opening nodes. To each vertical plane is associated a punctured complex
plane C×

l ≃C\{0}, 1≤ l ≤ L+1. They can be seen as Riemann spheres Ĉl ≃C∪{∞}

with two fixed punctures at pl,0 = 0 and pl,∞ = ∞, corresponding to the two ends.
To each neck is associated a puncture p◦

l,k ∈ C×

l and a puncture p′◦

l,k ∈ C×

l+1. Our
initial surface at τ = 0 is the noded Riemann surface 60 obtained by identifying
p◦

l,k and p′◦

l,k for 1 ≤ l ≤ L and 1 ≤ k ≤ nl .

-6 -4 -2 2 4 6

-π

π

-6 -4 -2 2 4 6

-π

π

Figure 8. (1, 4, 3) balanced configurations with no symmetries.
The circles, squares, and diamonds represent the necks at levels
one, two, and three, respectively.
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-2 -1 1 2

-π

π

-2 -1 1 2

-π

π

Figure 9. (1, 7, 3) balanced configurations with no symmetries.
The circles, squares, and diamonds represent the necks at levels
one, two, and three, respectively.

As τ increases, we open the nodes into necks as follows. Fix local coordinates
wl,0 = z in the neighborhood of 0 ∈ Ĉl and wl,∞ = 1/z in the neighborhood of
∞ ∈ Ĉl . For each neck, we consider parameters (pl,k, p′

l,k) in the neighborhoods
of (p◦

l,k, p′◦

l,k) and local coordinates

wl,k = ln
z

pl,k
and w′

l,k = ln
z

p′

l,k

in a neighborhood of pl,k and p′

l,k , respectively. In this paper, the branch cut of ln z
is along the negative real axis, and we use the principal value of ln z with imaginary
part in the interval (−π, π].

As we only open finitely many necks, we may choose δ > 0 independent of k
and l such that the disks

|wh|< 2δ, h ∈ H (= [1, L + 1] × {0,∞}),

|wl,k |< 2δ and |w′

l,k |< 2δ, 1 ≤ l ≤ L , 1 ≤ k ≤ nk

are all disjoint. For parameters t = (tl,k)1≤l≤L ,1≤k≤nl in a neighborhood of 0 with
|tl,k |< δ2, we remove the disks

|wl,k |<
|tl,k |
δ

and |w′

l,k |<
|tl,k |
δ

and identify the annuli

|tl,k |
δ

≤ |wl,k | ≤ δ and
|tl,k |
δ

≤ |w′

l,k | ≤ δ



CATENOID LIMITS OF MINIMAL SURFACES WITH SCHERK-TYPE ENDS 35

by

wl,kw
′

l,k = tl,k .

If tl,k ̸= 0 for all 1 ≤ l ≤ L and 1 ≤ k ≤ nl , we obtain a Riemann surface denoted
by 6t .

3.2. Weierstrass data. We construct a conformal minimal immersion using the
Weierstrass parameterization in the form

z 7→ Re
∫ z
(81,82,83),

where 8i are meromorphic 1-forms on 6t satisfying the conformality equation

(15) Q :=82
1 +82

2 +82
3 = 0.

3.2.1. A-periods. We consider the following fixed domains in all 6t :

Ul,δ =
{
z ∈ Ĉv : |w◦

l,k(z)|> δ/2 ∀1 ≤ k ≤ nl if 1 ≤ l ≤ L
and |w′◦

l,k(z)|> δ/2 ∀1 ≤ k ≤ nl−1 if 2 ≤ l ≤ L + 1
}

and Uδ =
⊔

1≤l≤L Ul,δ.
Let Al,k denote a small counterclockwise circle in Ul,δ around pl,k ; it is then

homologous in 6t to a clockwise circle in Ul+1,δ around p′

l,k . Moreover, let Al,0

(resp. Al,∞) denote a small counterclockwise circle in Ul,δ around 0 (resp. ∞).
Recall that the vertical period vector is assumed to be (0, 0, 2π), so we need to

solve the A-period problems

Re
∫

Ah

(81,82,83)= (0, 0, 2πσh) and Re
∫

Al,k

(81,82,83)= (0, 0, 0)

for h ∈ H, 1 ≤ l ≤ L , and 1 ≤ k ≤ nl . Here, the orientation σh = ±1 satisfies

σh = −σς(h),

where the “counterclockwise rotation” ς on H is defined by

(16)


ς(0l)= 0l−1, 2 ≤ l ≤ L + 1,
ς(01)= ∞1,

ς(∞l)= ∞l+1, 1 ≤ l ≤ L ,
ς(∞L+1)= 0L+1.

In particular, we have σl,0 = −σl,∞ for all 1 ≤ l ≤ L + 1.
Recall that the surface tends to an (L+1)-sheeted xz-plane in the limit τ → 0. So

we define the meromorphic functions 81, 82 and 83 as the unique regular 1-forms
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on 6t (see [Traizet 2013, §8]) with simple poles at ph , h ∈ H, and the A-periods∫
Ah

(81, 8̃2,83)= 2π i(αh, βh, γh − iσh), h ∈ H,∫
Al,k

(81, 8̃2,83)= 2π i(αl,k, βl,k, γl,k), 1 ≤ l ≤ L , 1 ≤ k ≤ nl,

where 82 = τ8̃2 and, by the residue theorem, it is necessary that

αl,0 +αl,∞ +

∑
1≤k≤nl

αl,k −

∑
1≤k≤nl−1

αl−1,k = 0,(17)

βl,0 +βl,∞ +

∑
1≤k≤nl

βl,k −

∑
1≤k≤nl−1

βl−1,k = 0,(18)

γl,0 + γl,∞ +

∑
1≤k≤nl

γl,k −

∑
1≤k≤nl−1

γl−1,k = 0,(19)

for 1 ≤ l ≤ L + 1. Then the A-period problems are solved by definition.

3.2.2. Balance of ends. Summing up (18) over l gives

(20)
∑
h∈H

βh = 0,

which we use to replace (18) with l = L + 1.
In this paper, the punctures pl,0 and pl,∞ correspond to Scherk-type ends. Hence

we fix

(21) α2
h + τ 2β2

h ≡ 1 and γh ≡ 0

for all h ∈ H, so that (the stereographic projection of) the Gauss map

G = −
81 + i82

83

extends holomorphically to the punctures ph with unitary values. Then (19) is not
independent: if it is solved for 1 ≤ l ≤ L , it is automatically solved for l = L + 1.

In particular, at τ = 0, we have α2
h = 1. In view of the orientation of the ends,

we choose αl,0 = 1 and αl,∞ = −1 so that G(pl,∞)= G(pl,0)= iσl,0.
Summing up (17) over l gives

(22)
∑

1≤l≤L+1

(√
1 − τ 2β2

l,∞ −

√
1 − τ 2β2

l,0
)
= 0,

which we use to replace (17) with l = L + 1.

Remark 30. The conditions (20) and (22) are disguises of the balance condition of
Scherk ends, namely that the unit vectors in their directions should sum up to 0.
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3.2.3. B-periods. For 1 ≤ l ≤ L + 1, we fix a point Ol ∈ Ul,δ . For every 1 ≤ l ≤ L
and 1 ≤ k ≤ nl and tl,k ̸= 0, let Bl,k be the concatenation of

(1) a path in Ul,δ from Ol to wl,k = δ,

(2) the path parameterized by wl,k = δ1−2s t s
l,k for s ∈ [0, 1], from wl,k = δ to

wl,k = th/δ, which is identified with w′

l,k = δ, and

(3) a path in Ul+1,δ from w′

l,k = δ to Ol+1.

We need to solve the B-period problem, namely that

(23) Re
∫

Bl,k

(81,82,83)= Re
∫

Bl,1

(81,82,83).

3.2.4. Conformality.

Lemma 31. For t sufficiently close to 0, the conformality condition (15) is equiva-
lent to

Gl,k :=

∫
Al,k

wl,k Q
dwl,k

= 0, 1 ≤ l ≤ L , 1 ≤ k ≤ nl,(24)

Fl,k :=

∫
Al,k

Q
dwl,k

= 0, 1 ≤ l ≤ L , 2 ≤ k ≤ nl,(25)

F′

l,k :=

∫
A′

l,k

Q
dw′

l,k
= 0, 1 ≤ l ≤ L , 1 + δl,L ≤ k ≤ nl,(26)

where A′

l,k in (26) denotes a small counterclockwise circle in Ul+1,δ around p′

l,k
(hence homologous to −Al,k), and δl,L = 1 if l = L and 0 otherwise.

Proof. By our choice of αh and γh , the quadratic differential Q has at most simple
poles at the 2L +2 punctures ph , h ∈H. The space of such quadratic differentials is
of complex dimension 3(N − L)− 3 + (2L + 2)= 3N − L − 1. We will prove that

Q 7→ (G,F,F′)

is an isomorphism. We prove the claim at t = 0; then the claim follows by continuity.
Consider Q in the kernel. Recall from [Traizet 2008] that a regular quadratic

differential on 60 has at most double poles at the nodes pl,k and p′

l,k . Then (24)
guarantees that Q has at most simple poles at the nodes. By (25) and (26), Q may
only have simple poles at pl,1 ∈ C×

l , 1 ≤ l ≤ L , and p′

L ,1 ∈ C×

L+1. So, on each
Riemann sphere Ĉl , Q is a quadratic differential with at most simple poles at three
punctures; the other two being 0, ∞. But such a quadratic differential must be 0. □

3.3. Using the implicit function theorem. All parameters vary in a neighborhood
of their central values, denoted by a superscript ◦. We will see that

β◦

h = θ̇h, α◦

l,k = γ ◦

l,k = 0, β◦

l,k = −cl, p′◦

l,k = pl,k .

Let us first solve (20) and (22).



38 HAO CHEN, PETER CONNOR AND KEVIN LI

Proposition 32. Suppose we are given a configuration (q, θ̇ ) such that21 =22 =0.
For τ sufficiently small and βh close to β◦

h = θ̇h , the solutions (τ, β) to (20) and (22)
form a smooth manifold of dimension 2L+1.

Proof. At τ = 0, (20) is solved by β◦

h = θ̇h if 21 = 0. Taking the derivative of (22)
with respect to τ 2 gives

(27)
∑

1≤l≤L+1

β2
l,∞ −β2

l,0

2
= 0,

which is solved by β◦

h = θ̇h if 22 = 0. The proposition then follows from Lemma 6
and the implicit function theorem. □

From now on, we assume that the parameters (τ, (βh)h∈H) are solutions to (20)
and (22) in a neighborhood of (0, θ̇ ).

3.3.1. Solving conformality problems.

Proposition 33. For τ sufficiently small and βl,k , pl,k , and p′

l,k in a neighborhood
of their central values, there exist unique values of tl,k , αl,k , and γl,k , depending
real-analytically on (τ 2, β, p, p′), such that the balance equations (17) and (19)
with 1 ≤ l ≤ L and the conformality equations (24) and (25) are solved. Also, at
τ = 0, we have tl,k = 0, αl,k = γl,k = 0,

∂tl,k
∂(τ 2)

=
1
4
β2

l,k,

and, for 2 ≤ k ≤ nl ,

(28)
∂

∂(τ 2)
(αl,k − iσl,0γl,k)= −

1
2

Res
(
8̃2

2

dwl,k
, pl,k

)
= −

1
2

Res
(

z8̃2
2

dz
, pl,k

)
.

Note that, according to this proposition, if β◦

l,k ̸= 0, then tl,k > 0 for sufficiently
small τ .

Proof. At τ = 0, for 2 ≤ k ≤ nl we have

Gl,k =

∫
Al,k

wl,k Q
dwl,k

= 2π i(α2
l,k + γ 2

l,k)= 0,

which vanishes when
αl,k = γl,k = 0.

Recall that αh = ±1 at τ = 0 and that γh ≡ 0. Then by the residue theorem, we have

αl,1 = γl,1 = 0.
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As a consequence, we have at τ = 0

8◦

1 =
dz
z
, 8◦

2 = 0, and 8◦

3 = −iσl,0
dz
z

;

so Q = 0 as we expect.
We then compute the partial derivatives at τ = 0:

∂

∂αl,k
Fl,k =

∫
Al,k

2
8◦

1

dwl,k

∂81

∂αl,k

∣∣∣∣
τ=0

=

∫
Al,k

2
dz/z
dz/p

dz
z − pl,k

= 4π i,

∂

∂γl,k
Fl,k =

∫
Al,k

2
8◦

3

dwl,k

∂83

∂γl,k

∣∣∣∣
τ=0

=

∫
Al,k

−2iσl,0
dz/z
dz/p

dz
z − pl,k

= 4πσl,0,

∂

∂tl,k
Gl,k =

∫
Al,k

2wl,k

dwl,k

(
8◦

1
∂8◦

1

∂tl,k
+8◦

3
∂8◦

3

∂tl,k

)
=

−1
π i

( ∫
Al,k

8◦

1

wl,k

∫
A′

l,k

8◦

1

w′

l,k
+

∫
Al,k

8◦

3

wl,k

∫
A′

l,k

8◦

3

w′

l,k

)
= −8π i,

where the second to last line is true by [Traizet 2008, Lemma 3]. All other partial
derivatives vanish. Therefore, by the implicit function theorem, there exist unique
values of αl,k , γl,k (with 2 ≤ k ≤ nl), and tl,k (with 1 ≤ k ≤ nl) that solve the
conformality equations (24) and (25). Recall that αh are determined by (21). Then
αl,1 and γl,1 are uniquely determined by the linear balance equations (17) and (19).

Moreover,

∂

∂(τ 2)
Fl,k =

∫
Al,k

8̃2
2

dwl,k
,

∂

∂(τ 2)
Gl,k = 2π iβ2

l,k .

Hence the total derivatives satisfy

d
d(τ 2)

Fl,k = 4π i ∂αl,k
∂(τ 2)

+ 4πσl,0
∂γl,k
∂(τ 2)

+ 2π i Res
(
8̃2

2
dwl,k

, pl,k

)
= 0

and
d

d(τ 2)

∫
Al,k

Gl,k = −8π i ∂tl,k
∂(τ 2)

+ 2π iβ2
l,k = 0.

This proves the claimed partial derivatives with respect to τ 2. □

Remark 34. We see from the computations that our local coordinates w and w′ are
chosen for convenience. Had we used other coordinates, the computations would
be very different, but ∂(αl,k − iσl,0γl,k)/∂(τ

2) would be invariant, and ∂tl,k/∂(τ 2)

would be rescaled to keep the conformal type of 6t (to the first order). So the
choice of local coordinates has no substantial impact on our construction.
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3.3.2. Solving B-period problems. In the following, we make a change of variable
τ = exp(−1/ξ 2).

Proposition 35. Let the parameters tl,k , αl,k , and γl,k be given by Proposition 33.
For ξ sufficiently small and pl,k and p′

l,k in a neighborhood of their central values,
there exist unique values of βl,k , depending smoothly on (ξ, p, p′) and (βh)h∈H,
such that the balance equation (18) with 1 ≤ l ≤ L and the y-component of the
B-period problem (23) are solved. In addition, at ξ = 0 and βh = β◦

h = θ̇h , we have
βl,k = βl,1 = −cl where cl is given by (1).

Proof. By Lemma 8.3 of [Chen and Traizet 2021],( ∫
Bl,k

8̃2

)
−βl,k ln tl,k

extends holomorphically to t = 0 as bounded analytic functions of other parameters.
We have seen that tl,k ∼ τ 2β2

l,k/4. So

H := −
ξ 2

2
Re

( ∫
Bl,k

8̃2 −

∫
Bl,1

8̃2

)
= βl,k −βl,1

at ξ = 0. Therefore, H = 0 is solved at ξ = 0 by βl,k = βl,1 for all 2 ≤ k ≤ nl ,
and βl,1 = −cl follows as (1) is just a reformulation of (18). The proposition then
follows by the implicit function theorem. □

Proposition 36. Assume that the parameters tl,k , αl,k , βl,k and γl,k are given by
Propositions 33 and 35. For ξ sufficiently small and pl,k in a neighborhood of their
central values, there exist unique values of p′

l,k , depending smoothly on ξ , p, and
(βh)h∈H, such that the x- and z-components of the B-period problem (23) are solved.
In addition, up to complex scalings on C×

l+1, 1 ≤ l ≤ L , we have p′

l,k = pl,k at ξ = 0
for any 1< k ≤ nl .

Proof. At ξ = 0, recall that 81 = dz/z and 83 = −iσl,0 dz/z. So

Re
∫

Bl,k

81 − Re
∫

Bl,1

81 = Re ln pl,k
pl,1

− Re ln
p′

l,k
p′

l,1
;

Re
∫

Bl,k

83 − Re
∫

Bl,1

83 = σl,0

(
Im ln pl,k

pl,1
+ Im ln

p′

l,k
p′

l,1

)
.

They vanish if and only if ln(pl,k/pl,1)= ln(p′

l,k/p′

l,1). We normalize the complex
scaling on C×

l+1, 1 ≤ l ≤ L , by fixing p′

l,1 = pl,1. Then the B-period problem is
solved at ξ = 0 with p′

l,k = pl,k . By the same argument as in [Traizet 2008], the
integrals are smooth functions of ξ and other parameters, so the proposition follows
by the implicit function theorem. □
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3.3.3. Balancing conditions. Define

Rl,k = Res
( z8̃2

2

dz
, pl,k

)
and R′

l,k = Res
( z8̃2

2

dz
, p′

l,k

)
.

Let the central values p◦

l,k equal conjl ql,k , where q is from a balanced configuration.
So the central values p′◦

l,k equal conjl+1 ql,k and

8̃◦

2 =

{
conj∗ ψl on C×

l for l odd,
ψl on C×

l for l even.

Then we have

Rl,k +R′

l,k = 2 conjl+1 Fl,k

at the central values, where Fl,k is the force given by (4). Also, by the residue
theorem on C×

l ,

(29)
nl−1∑
k=1

R′

l−1,k +

nl∑
k=1

Rl,k +β2
l,0 −β2

l,∞ = 0.

Proposition 37. Assume that the parameters tl,k , αl,k , and γl,k are given as analytic
functions of τ 2 by Proposition 33. Then F̃′

l,k := τ−2F′

l,k extends analytically to
τ = 0 with the value{

4π i conjl+1 Fl,k, 2 ≤ k ≤ nl,

4π i conjl+1(Fl,1 +
∑l−1

j=1
∑n j

k=1 F j,k
)
, k = 1.

Proof. If f (z) is an analytic function in z and f (0) = 0, then f (z)/z extends
analytically to z = 0 with the value d f/dz |z=0. We compute at τ = 0 that

∂

∂α
F′

l,k = −4π i and
∂

∂γ
F′

l,k = 4πσl,0.

Then
d

d(τ 2)
F′

l,k = −4π i
∂αl,k

∂(τ 2)
+ 4πσl,0

∂γl,k

∂(τ 2)
+ 2π iR′

l,k .

For 2 ≤ k ≤ nl , by (28), F̃′

l,k := τ−2F′

l,k extends to τ = 0 with the value

d
d(τ 2)

F′

l,k = 2π i(Rl,k +R′

l,k)= 4π i conjl+1 Fl,k .
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As for k = 1 and l < L , we compute at τ = 0

nl∑
k=1

dF′

l,k

d(τ 2)
+

nl−1∑
k=1

conj
(dF′

l−1,k

d(τ 2)

)
= −4π i

∂

∂τ 2

( nl∑
k=1

αl,k −

nl−1∑
k=1

αl−1,k

)

+4πσl,0
∂

∂τ 2

( nl∑
k=1

γl,k −

nl−1∑
k=1

γl−1,k

)
(because σl−1,0 = −σl,0)

+2π i
( nl∑

k=1

R′

l,k −

nl−1∑
k=1

R′

l−1,k

)

= 4π i
∂

∂τ 2 (αl,0+αl,∞)−4πσl,0
∂

∂τ 2 (γl,0+γl,∞) (by (17) and (19))

+2π i
( nl∑

k=1

R′

l,k +

nl∑
k=1

Rl,k +β2
l,0−β2

l,∞

)
(by (29))

= 2π i
(
β2

l,∞−β2
l,0+

nl∑
k=1

(Rl,k +R′

l,k)+β
2
l,0−β2

l,∞

)
(by (21))

= 4π i
nl∑

k=1

conjl+1 Fl,k,

Then

nl∑
k=1

dF′

l,k

d(τ 2)
=

dF′

l,1

d(τ 2)
+ 4π i conjl+1

nl∑
k=2

Fl,k

= (− conj)l
l∑

m=1

(− conj)m
( nm∑

k=1

dF′

m,k

d(τ 2)
+

nm−1∑
k=1

conj
(dF′

m−1,k

d(τ 2)

))

= (− conj)l
l∑

m=1

(− conj)m
(

4π i
nm∑

k=1

conjm+1 Fm,k

)

= 4π i conjl+1
l∑

m=1

nm∑
k=1

Fm,k,

so F̃′

l,1 := τ−2F′

l,1 extends to τ = 0 with the value

dF′

l,1

d(τ 2)
= 4π i conjl+1

(
Fl,1 +

l−1∑
m=1

nm∑
k=1

Fm,k

)
. □
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Therefore, if (q, θ̇ ) is balanced, F̃′
= 0 is solved at τ = 0. Recall that we

normalize the complex scaling on C×

1 by fixing p1,1. If (q, θ̇ ) is rigid, because
22 =

∑
Fl,k = 0 independent of p, the partial derivative of (̃F′)(l,k) ̸= (L , 1) with

respect to (pl,k)(l,k) ̸=(1,1) is an isomorphism from CN−1 to CN−1. The following
proposition then follows by the implicit function theorem.

Proposition 38. Assume that the parameters tl,k , αl,k , βl,k , γl,k , p′

l,k are given by
Propositions 33, 35, and 36. Assume further that the central values ql,k = conjl p◦

l,k
and θ̇h = β◦

h form a balanced and rigid configuration (q, θ̇ ). Then for (τ, β) in
a neighborhood of (0, θ̇ ) that solves (20) and (22), there exists values for pl,k ,
unique up to a complex scaling, depending smoothly on τ and (βh)h∈H, such that
pl,k(0, θ̇ )= p◦

l,k and the conformality condition (26) is solved.

3.4. Embeddedness. It remains to prove that:

Proposition 39. The minimal immersion given by the Weierstrass parameterization
is regular and embedded.

Proof. The immersion is regular if |81|
2
+|82|

2
+|83|

2 > 0. This is easily verified
on Uδ. On the necks and the ends, the regularity follows if we prove that 8̃2 has
no zeros outside Uδ. At τ = 0, 8̃2 has nl + nl−1 + 2 poles on Ĉl , hence nl + nl−1

zeros. By taking δ sufficiently small, we may assume that all these zeros lie in Ul,δ .
By continuity, 8̃2 has nl + nl−2 zeros in Ul,δ also for τ sufficiently small. But for
τ ̸= 0, 8̃2 is meromorphic on a Riemann surface 6τ of genus g = N − L and has
2L + 2 simple poles, hence has 2(N − L)− 2 + 2L + 2 = 2N zeros. So 8̃2 has no
further zeros in 6t , and, in particular, not outside Uδ.

We now prove that the immersion

z 7→ Re
∫ z
(81, 8̃2,83)

is an embedding, and the limit positions of the necks are as prescribed.
On Ul,δ , the Gauss map G =−(81+i82)/83 converges to iσl,0, so the immersion

is locally a graph over the xz-plane. Fix an orientation σ1,0 = −1; then up to
translations, we have

lim
τ→0

(
Re

∫ z
81 + i Re

∫ z
83

)
= conjl(ln z)+ 2mπ i,

where m depends on the integral path, and

lim
τ→0

Re
∫ z

8̃2 = Re
∫ z
(conj∗)lψl =:9l(conjl z),

which is well defined for z ∈ Ul,δ because the residues of ψl are all real.
With a change of variable z 7→ ln z, we see that the immersion restricted to

Ul,δ converges to a periodic graph over the xz-planes, defined within bounded
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x-coordinate and away from the points ln ql,k + 2mπ i, and the period is 2π i. Here,
again, we identified the xz-plane with the complex plane.

This graph must be included in a slab parallel to the xz-plane with bounded
thickness. We have seen from the integration along Bk that the distance between
adjacent slabs is of the order O(ln τ). So the slabs are disjoint for τ sufficiently
small.

As for the necks and ends, note that there exists Y > 0 such that 9−1
l ([−Y, Y ])

is bounded by nl + nl−1 + 2 convex curves. After the change of variable z 7→ ln z,
all but two of these curves remain convex; those around 0 and ∞ become periodic
infinite curves. If Y is chosen sufficiently large, there exists X > 0 independent
of l such that the curves |z| = exp(±X) are included in 9−1

l ([−Y, Y ]) for every
1 ≤ l ≤ L + 1. After the change of variable z 7→ ln z, these curves become curves
with Re z = ±X .

Hence for τ sufficiently small, we may find Y +

l and Y −

l , with Y −

l < Y +

l < Y −

l+1,
and X > 0, such that:

• The immersion with Y −

l < y < Y +

l and −X < x < X is a graph bounded by
nl +nl−1 planar convex curves parallel to the xz-plane and two periodic planar
infinite curves parallel to the yz-plane.

• The immersion with Y +

l < y < Y −

l+1 and −X < x < X consists of annuli, each
bounded by two planar convex curves parallel to the xz-plane. These annuli
are disjoint and, by a theorem of Schiffman [1956], all embedded.

• The immersion with |x | > X are ends, i.e., graphs over vertical half-planes,
extending in the direction (−1,−θ̇l,0) and (+1,−θ̇l,∞), 1 ≤ l ≤ L + 1. If the
inequality (5) is satisfied, these graphs are disjoint.

This finishes the proof of embeddedness. □
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We propose a reduction scheme for polydifferential operators phrased in
terms of L∞-morphisms. The desired reduction L∞-morphism has been
obtained by applying an explicit version of the homotopy transfer theorem.
Finally, we prove that the reduced star product induced by this reduction
L∞-morphism and the reduced star product obtained via the formal Koszul
complex are equivalent.
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1. Introduction

This paper aims to propose a reduction scheme for equivariant polydifferential
operators that is phrased in terms of L∞-morphisms, generalizing the results from
[Esposito et al. 2022b], obtained for polyvector fields. Our main motivation comes
from formal deformation quantization: deformation quantization has been intro-
duced by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer in [Bayen et al.
1978a; 1978b] and it relies on the idea that the quantization of a phase space
described by a Poisson manifold M is described by a formal deformation, so-called
star product, of the commutative algebra of smooth complex-valued functions
C∞(M) in a formal parameter h̄. The existence and classification of star products
on Poisson manifolds has been provided by Kontsevich’s formality theorem [2003],
whereas the invariant setting of Lie group actions has been treated by Dolgushev
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[2005a; 2005b]. More explicitly, the formality theorem provides an L∞-quasi-
isomorphism between the differential graded Lie algebra (DGLA) of polyvector
fields Tpoly(M) and polydifferential operators Dpoly(M) as well as between their
invariant versions. As such, it maps Maurer–Cartan elements in the DGLA of
polyvector fields, i.e., (formal) Poisson structures, to Maurer–Cartan elements in
the DGLA of polydifferential operators, which correspond to star products.

One open question and our main motivation is to investigate the compatibility of
deformation quantization and phase space reduction in the Poisson setting, and in this
present paper we propose a way to describe the reduction on the quantum side by an
L∞-morphism. Given a Lie group G acting on a manifold M , we aim to reduce equi-
variant star products (⋆, H), that is, pairs consisting of an invariant star product ⋆
and a quantum momentum map H =

∑
∞

r=0 h̄r Jr : g−→C∞(M)[[h̄]], where g is the
Lie algebra of G. In this case, J0 is a classical momentum map for the Poisson struc-
ture induced by ⋆. Interpreting it as smooth map J0 : M −→ g∗ and assuming that
0∈g∗ is a value and regular value, it follows that C= J−1({0}) is a closed embedded
submanifold of M and by the Poisson version of the Marsden–Weinstein reduction
[1974] we know that under suitable assumptions the reduced manifold Mred=C/G
is again a Poisson manifold if the action on C is proper and free. In this setting,
there is a well-known BRST-like reduction procedure [Bordemann et al. 2000; Gutt
and Waldmann 2010] of equivariant star products on M to star products on Mred.

In order to describe this reduction by an L∞-morphism, we have to fix at first the
DGLA controlling Hamiltonian actions in the quantum setting, i.e., a DGLA whose
Maurer–Cartan elements correspond to equivariant star products. We denote it by

(Dg(M)[[h̄]], h̄λ, ∂g− [J0, · ]g, [ · , · ]g),

where λ=
∑

i ei
⊗ (ei )M is given by the fundamental vector fields of the G-action

in terms of a basis e1, . . . , en of g with dual basis e1, . . . , en of g∗. It is called the
DGLA of equivariant polydifferential operators.

The construction of the desired L∞-morphism to (Dpoly(Mred), ∂, [ · , · ]G) is
then based on the following steps:

• Assuming for simplicity M = C × g∗, which always holds locally in suitable
situations, we can perform a Taylor expansion around C and end up with a DGLA
DTay(C × g∗). Using a ‘partial homotopy’, we find a deformation retract to a
DGLA structure on the space

(∏
∞

i=0(S
ig⊗ Dpoly(C))

)G, that is, we get rid of
differentiations in the g∗-direction.

• For the polyvector fields in [Esposito et al. 2022b] we used the canonical linear
Poisson structure πKKS on the dual of the action Lie algebroid C × g for the
reduction. The analogue structure in our quantum setting is the product on the
quantized universal enveloping algebra Uh̄(C × g) of the action Lie algebroid. We
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use this product to perturb the deformation retract from the last point. This is more
complicated than the polyvector field case since we have to use now the homological
perturbation lemma to perturb the involved chain maps, and the deformed maps are
no longer compatible with the Lie brackets.

• We use the homotopy transfer theorem to construct the L∞-projection from
the Taylor expansion to

(∏
∞

i=0(S
ig⊗ Dpoly(C))

)G with transferred L∞-structure.
Notice that in the polyvector field case it was not necessary to transfer the DGLA
structure.

• We check in Proposition 3.10 that the transferred L∞-structure is just a DGLA
structure, and in Proposition 3.11 that the transferred Lie bracket is compatible
with the projection to Dpoly(Mred)[[h̄]]. Thus we get the reduction L∞-morphism
from the Taylor expansion to the polydifferential operators on Mred. Twisting it by
the product on the universal enveloping algebra ensures that we start in the right
curved DGLA structure.

Finally, the morphism can be globalized to general smooth manifolds M with
sufficiently nice Lie group actions and we get the following result (Theorem 3.15):

Theorem. There exists an L∞-morphism

(1-1) Dred : (Dg(M)[[h̄]], h̄λ, ∂g− [J0, · ]g, [ · , · ]g)

−→ (Dpoly(Mred)[[h̄]], 0, ∂, [ · , · ]G),

called the reduction L∞-morphism.

Finally, we compare the reduction of equivariant star products via Dred to a
slightly modified version of the BRST reduction from [Bordemann et al. 2000; Gutt
and Waldmann 2010]; see Theorem 4.4:

Theorem. Let (⋆, H) be an equivariant star product on M. Then the reduced star
product induced by Dred from (1-1) and the reduced star product via the formal
Koszul complex are equivalent.

Together with [Esposito et al. 2022b, Theorem 5.1] we have now the diagram

(T •g (M)[[h̄]], h̄λ, [−J0, · ]g, [ · , · ]g) (D•g(M)[[h̄]], h̄λ, ∂g− [J0, · ]g, [ · , · ]g)

(T •poly(Mred)[[h̄]], 0, 0, [ · , · ]S) (D•poly(Mred)[[h̄]], 0, ∂, [ · , · ]G)

Tred Dred

Fred

where Fred is the standard Dolgushev formality with respect to a torsion-free covari-
ant derivative on Mred. Also, in [Esposito et al. 2022a] we show that the Dolgushev
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formality is compatible with λ under suitable flatness assumptions. In these flat
cases it induces an L∞-morphism

Fg
: (T •g (M)[[h̄]], h̄λ, [−J0, · ]g, [ · , · ]g)−→ (D•g(M)[[h̄]], h̄λ, ∂g−[J0, · ]g, [ · , · ]g),

which gives the fourth arrow in the above diagram, and we plan to investigate its
commutativity (up to homotopy) in future work.

The results of this paper are partially based on [Kraft 2021] and the paper is
organized as follows. In Section 2 we recall the basic notions of (curved) L∞-
algebras, L∞-morphisms and twists and fix the notation. Then we introduce in
Section 2B the curved DGLA of equivariant polydifferential operators and show
that they indeed control Hamiltonian actions. In Section 3 we construct the global
reduction L∞-morphism to the polydifferential operators on the reduced manifold.
Finally, we compare in Section 4 the reduction via this reduction morphism Dred

with a slightly modified BRST reduction of equivariant star products as explained
in Appendix A, where we also recall the homological perturbation lemma. In
Appendix B we give explicit formulas for the transferred L∞-structure and the
L∞-projection induced by the homotopy transfer theorem.

2. Preliminaries

2A. L∞-algebras, Maurer–Cartan elements and twisting. In this section we recall
the notions of (curved) L∞-algebras, L∞-morphisms and their twists by Maurer–
Cartan elements to fix the notation. Proofs and further details can be found in
[Dolgushev 2005a; 2005b; Esposito and de Kleijn 2021].

We denote by V • a graded vector space over a field K of characteristic 0 and
define the shifted vector space V [k]• by

V [k]ℓ = V ℓ+k .

A degree +1 coderivation Q on the coaugmented counital conilpotent cocommuta-
tive coalgebra Sc(L) cofreely cogenerated by the graded vector space L[1]• over K

is called an L∞-structure on the graded vector space L if Q2
= 0. The (universal)

coalgebra Sc(L) can be realized as the symmetrized deconcatenation coproduct
on the space

⊕
n≥0 SnL[1] where SnL[1] is the space of coinvariants for the usual

(graded) action of Sn (the symmetric group in n letters) on ⊗n(L[1]); see, for
example, [Esposito and de Kleijn 2021]. Any degree +1 coderivation Q on Sc(L)

is uniquely determined by the components

(2-1) Qn : Sn(L[1])−→ L[2]
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through the formula

(2-2) Q(γ1 ∨ · · · ∨ γn)=
n∑

k=0

∑
σ∈Sh(k,n−k)

ϵ(σ )Qk(γσ(1) ∨ · · · ∨ γσ(k))∨ γσ(k+1) ∨ · · · ∨ γσ(n).

Here Sh(k, n−k) denotes the set of (k, n−k) shuffles in Sn , ϵ(σ )= ϵ(σ, γ1, . . . , γn)

is a sign given by the rule γσ(1) ∨ · · · ∨ γσ(n) = ϵ(σ )γ1 ∨ · · · ∨ γn and we use the
conventions that Sh(n, 0)= Sh(0, n)= {id} and that the empty product equals the
unit. Note in particular that we also consider a term Q0 and thus we are actually
considering curved L∞-algebras. Sometimes we also write Qk = Q1

k and, following
[Canonaco 1999], we denote by Qi

n the component of Qi
n : S

nL[1] → SiL[2] of Q.
It is given by

(2-3) Qi
n(x1 ∨ · · · ∨ xn)=∑

σ∈Sh(n+1−i,i−1)

ϵ(σ )Q1
n+1−i (xσ(1)∨· · ·∨xσ(n+1−i))∨xσ(n+2−i)∨· · ·∨xσ(n),

where Q1
n+1−i are the usual structure maps.

Example 2.1 (curved DGLA). A basic example of an L∞-algebra is that of a
(curved) differential graded Lie algebra (g, R, d, [ · , · ]) obtained by setting Q0(1)=
−R, Q1 = −d, Q2(γ ∨µ) = −(−1)|γ |[γ, µ] and Qi = 0 for all i ≥ 3. Note that
we denoted by | · | the degree in g[1].

Let us consider two L∞-algebras (L, Q) and (L̃, Q̃). A degree-0 counital coal-
gebra morphism

F : Sc(L)−→ Sc(L̃)

such that F Q = Q̃F is said to be an L∞-morphism. A coalgebra morphism F from
Sc(L) to Sc(L̃) such that F(1)= 1 is uniquely determined by its components (also
called Taylor coefficients)

Fn : Sn(L[1])−→ L̃[1],

where n ≥ 1. Namely, we set F(1)= 1 and use the formula

F(γ1 ∨ ·· · ∨ γn)=
∑
p≥1

∑
k1,...,kp≥1

k1+···+kp=n

∑
σ∈Sh(k1,. . . , k p)

ϵ(σ )

p!
Fk1(γσ(1) ∨ ·· · ∨ γσ(k1))∨ ·· · ∨ Fkp(γσ(n−kp+1) ∨ ·· · ∨ γσ(n)),

where Sh(k1, . . . , kp) denotes the set of (k1, . . . , kp)-shuffles in Sn (again we set
Sh(n) = {id}). We also write Fk = F1

k and similarly to (2-3) we get coefficients
F j

n : SnL[1]→ S j L̃[1] of F by taking the corresponding terms in [Dolgushev 2006,
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Equation (2.15)]. Note that F j
n only depends on F1

k = Fk for k ≤ n− j + 1. Given
an L∞-morphism F of (noncurved) L∞-algebras (L, Q) and (L̃, Q̃), we obtain the
map of complexes

F1 : (L, Q1)−→ (L̃, Q̃1).

In this case the L∞-morphism F is called an L∞-quasi-isomorphism if F1 is a
quasi-isomorphism of complexes. Given a DGLA (g, d, [ · , · ]) and an element
π ∈g[1]0 we can obtain a curved Lie algebra by defining a new differential d+[π, · ]
and considering the curvature Rπ = dπ + 1

2 [π, π]. In fact the same procedure can
be applied to a curved Lie algebra (g, R, d, [ · , · ]) to obtain the twisted curved Lie
algebra (L, Rπ , d+ [π, · ], [ · , · ]), where

(2-4) Rπ := R+ dπ + 1
2 [π, π].

The element π is called a Maurer–Cartan element if it satisfies the equation

(2-5) R+ dπ + 1
2 [π, π] = 0.

Finally, it is important to recall that given a DGLA morphism, or more generally an
L∞-morphism, F : g→ g′ between two DGLAs, one may associate to any (curved)
Maurer–Cartan element π ∈ g[1]0 a (curved) Maurer–Cartan element

(2-6) πF :=
∑
n≥1

1
n!

Fn(π ∨ · · · ∨π) ∈ g
′
[1]0.

In order to make sense of these infinite sums we consider DGLAs with complete
descending filtrations

(2-7) · · · ⊇ F−2g⊇ F−1g⊇ F0g⊇ F1g⊇ · · · , g∼= lim
←−−

g/Fng

and

(2-8) d(Fkg)⊆ Fkg and [Fkg,Fℓg] ⊆ Fk+ℓg.

In particular, F1g is a projective limit of nilpotent DGLAs. In most cases the
filtration is bounded below, i.e., bounded from the left with g=Fkg for some k ∈ Z.
If the filtration is unbounded, then we assume always that it is exhaustive, i.e., that

(2-9) g=
⋃

n

Fng,

even if we do not mention it explicitly. Also, we assume that the DGLA morphisms
are compatible with the filtrations. Considering only Maurer–Cartan elements in
F1g1 ensures the well-definedness of (2-6). Mainly, the filtration is induced by
formal power series in a formal parameter h̄. Starting with a DGLA (g, d, [ · , · ]), its
h̄-linear extension to formal power series G= g[[h̄]] of a DGLA g has the complete
descending filtration FkG= h̄kG.
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One cannot only twist the DGLAs and L∞-algebras, but also the L∞-morphisms
between them. Below we need the following result; see [Dolgushev 2006, Proposi-
tion 2; 2005b, Proposition 1].

Proposition 2.2. Let F : (g, Q)→ (g′, Q′) be an L∞-morphism of DGLAs, π ∈
F1g1 a Maurer–Cartan element and S = F1(exp(π)) ∈ F1g′1.

(i) The map

Fπ = exp(−S∨)F exp(π∨) : S(g[1])−→ S(g′[1])

defines an L∞-morphism between the DGLAs (g, d+[π, · ]) and (g′, d+[S, · ]).

(ii) The structure maps of Fπ are given by

(2-10) Fπn (x1, . . . , xn)=

∞∑
k=0

1
k!

Fn+k(π, . . . , π, x1, . . . , xn).

(iii) Let F be an L∞-quasi-isomorphism where F1
1 is not only a quasi-isomorphism

of filtered complexes L→ L ′ but even induces a quasi-isomorphism

F1
1 : F

k L −→ Fk L ′

for each k. Then Fπ is an L∞-quasi-isomorphism.

2B. Equivariant polydifferential operators. In the following we present some
basic results concerning equivariant polydifferential operators, which are basically
folklore knowledge and are based on [Tsygan 2010].

Let us consider the DGLA of polydifferential operators on a smooth manifold M

(2-11) (D•poly(M), ∂ = [µ, · ]G, [ · , · ]G)

Here

D•poly(M)=
∞⊕

n=−1

Dn
poly(M),

where Dn
poly(M)=Homdiff(C

∞(M)⊗n+1,C∞(M)) are the differentiable Hochschild
cochains vanishing on constants. We use the sign convention from [Bursztyn et al.
2012] for the Gerstenhaber bracket [ · , · ], not the original one from [Gerstenhaber
1963]. Explicitly

(2-12) [D, E]G = (−1)|E ||D|(D ◦ E − (−1)|D||E |E ◦ D)
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with

(2-13) D ◦ E(a0, . . . , ad+e)=
|D|∑
i=0

(−1)i |E |D(a0, . . . , ai−1, E(ai , . . . , ai+e), ai+e+1, . . . , ad+e)

for homogeneous D, E ∈ D•poly(M) and a0, . . . , ad+e ∈ C∞(M). Also, µ denotes
the commutative pointwise product on C∞(M)[[h̄]] and ∂ is the usual Hochschild
differential.

We are interested in the case of group actions where we always consider a (left)
action 8 : G×M→ M of a connected Lie group G. Let M be now equipped with
a G-invariant star product ⋆, that is, an associative product ⋆= µ+

∑
∞

r=1 h̄r Cr =

µ0 + h̄m⋆ ∈ (D1
poly(M))

G
[[h̄]]. Recall that a linear map H : g→ C∞(M)[[h̄]] is

called a quantum momentum map if

LξM =−
1
h̄
[H(ξ), · ]⋆ and 1

h̄
[H(ξ), H(η)]⋆ = H([ξ, η]),

where ξM denotes the fundamental vector field corresponding to the action 8.
A pair (⋆, H) consisting of an invariant star product ⋆=µ+ h̄m⋆ and a quantum

momentum map H is also called equivariant star product. They are useful since
they allow for a BRST like reduction scheme; see Appendix A. We introduce now
the DGLA that contains the data of Hamiltonian actions, i.e., of equivariant star
products. Here we follow [Tsygan 2010].

Definition 2.3 (equivariant polydifferential operators). The DGLA of equivariant
polydifferential operators (D•g(M), ∂

g, [ · , · ]g) is defined by

(2-14) Dk
g(M)=

⊕
2i+ j=k

(Sig∗⊗ D j
poly(M))

G

with bracket

(2-15) [α⊗ D1, β⊗ D2]g = α∨β⊗[D1, D2]G

and differential

(2-16) ∂g(α⊗ D1)= α⊗ ∂D1 = α⊗[µ, D1]G

for α⊗D1, β⊗D2 ∈ D•g(M). Here we denote by ∂ and [ · , · ]G the usual Hochschild
differential and Gerstenhaber bracket on the polydifferential operators, respectively,
and by µ the pointwise multiplication of C∞(M).

Notice that invariance with respect to the group action means invariance under
the transformations Ad∗g ⊗8

∗
g for all g ∈G, and that the equivariant polydifferential
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operators can be interpreted as equivariant polynomial maps g→ Dpoly(M). We
introduce the canonical linear map

λ : g ∋ ξ 7−→ LξM ∈ D0
poly(M),

and see that λ ∈ D2
g(M) is central and moreover ∂gλ = 0. This implies that we

can see D•g(M) either as a flat DGLA with the above structures or as a curved
DGLA with the above structures and curvature λ. In the case of formal power series
we rescale the curvature again by h̄2 and obtain the following characterization of
Maurer–Cartan elements:

Lemma 2.4. A curved formal Maurer–Cartan element 5 ∈ h̄ D1
g(M)[[h̄]], that is,

an element 5 satisfying

(2-17) h̄2λ+ ∂g5+ 1
2 [5,5]g = 0,

is equivalent to a pair (m⋆, H), where m⋆ ∈ D1
poly(M))

G
[[h̄]] defines a G-invariant

star product via ⋆= µ+ h̄m⋆ with quantum momentum map H : g→ C∞(M)[[h̄]].
In other words, (⋆, H) is an equivariant star product.

Proof. We have the decomposition

5= h̄m⋆− h̄ H ∈ h̄(D1
poly(M))

G
⊕ (g∗⊗ D−1

poly(M))
G
[[h̄]].

Then the curved Maurer–Cartan equation applied to an element ξ ∈ g reads

−h̄2LξM =−h̄2λ(ξ)= ∂g5(ξ)+ 1
2 [5,5]g(ξ)

= h̄[µ,m⋆]G+
1
2 h̄2
[m⋆,m⋆]G− h̄2

[m⋆, H(ξ)]G.

This is equivalent to the fact that h̄m⋆ is Maurer–Cartan in the flat setting and that
LξM = −

1
h̄ [H(ξ),−]⋆, since h̄[m⋆, H(ξ)]G( f ) = −[H(ξ), f ]⋆ for f ∈ C∞(M).

Then the invariance of both elements implies that ⋆= µ+ h̄m⋆ is a G-invariant star
product with quantum momentum map H . □

Two equivariant star products h̄(m⋆ − H) and h̄(m′⋆ − H ′) are called equiv-
ariantly equivalent if they are gauge equivalent, i.e., if there exists an h̄T ∈
h̄ D0

poly(M)
G
[[h̄]] ⊂ D0

g(M) such that

h̄(m′⋆− H ′)= exp(h̄[T, · ]g) ▷ h̄(m⋆− H)= exp(h̄[T, · ]g)(µ+ h̄(m⋆− H))−µ.

This means that S = exp(h̄T ) satisfies for all f, g ∈ C∞(M)[[h̄]]

S( f ⋆ g)= S f ⋆′ Sg and SH = H ′.
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3. Reduction of the equivariant polydifferential operators

Now we aim to describe a reduction scheme for general equivariant polydifferential
operators via an L∞-morphism denoted by Dred, generalizing the results for the
polyvector fields from [Esposito et al. 2022b].

Let M be a smooth manifold with action 8 : G×M→ M of a connected Lie
group and let (⋆, H = J + h̄ J ′) be an equivariant star product, that is, a curved
formal Maurer–Cartan element in the equivariant polydifferential operators; see
Lemma 2.4. Here the component J : M→ g∗ of the quantum momentum map H
in h̄-order zero is a classical momentum map with respect to the Poisson structure
induced by the skew-symmetrization of the h̄1-part of ⋆. We assume from now on
that 0 ∈ g∗ is a value and a regular value of J and set C = J−1({0}). In addition,
we require the action to be proper around C and free on C . Then Mred = C/G is a
smooth manifold and we denote by ι : C→ M the inclusion and by pr : C→ Mred

the projection on the quotient. Moreover, the properness around C implies that
there exists an G-invariant open neighborhood Mnice ⊆ M of C and a G-equivariant
diffeomorphism9 :Mnice→Unice⊆C×g∗, where Unice is an open neighborhood of
C×{0} in C×g∗. Here the Lie group G acts on C×g∗ as8g =8

C
g ×Ad∗g−1 , where

8C is the induced action on C , and the momentum map on Unice is the projection
to g∗ (see [Bordemann et al. 2000, Lemma 3; Gutt and Waldmann 2010]).

From now on we assume M = Mnice. Then we can define an equivariant prolon-
gation map by

prol : C∞(C) ∋ φ 7−→ (pr1 ◦9)
∗φ ∈ C∞(Mnice)

and we directly get ι∗ prol= idC∞(C).
Consider the Taylor expansion around C in the g∗-direction as in [Esposito et al.

2022b, Section 4.1], which is a map

Dg∗ : Dk
poly(C × g∗) 7−→

∞∏
i=0

(Sig⊗ T k+1(Sg∗)⊗ Dk
poly(C)),

where T •(Sg∗) denotes the tensor algebra of Sg∗. Note that we are only interested
in a subspace since we consider polydifferential operators vanishing on constants.
Slightly abusing the notation, the Taylor expansion of the equivariant polydifferential
operators takes then the following form:

(3-1) DTay(C × g∗)=

(
Sg∗⊗

∞∏
i=0

(Sig⊗ T (Sg∗)⊗ Dpoly(C))
)G

and one easily checks that this yields an equivariant DGLA morphism

(3-2) Dg∗ : (Dg(M), λ, ∂g, [ · , · ]g)−→ (DTay(C × g∗), λ, ∂, [ · , · ]).
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Our goal consists in finding a reduction morphism from

Dred : (DTay(C×g∗)[[h̄]], h̄λ, ∂+[−J, · ], [ · , · ])−→ (Dpoly(Mred)[[h̄]], ∂, [ · , · ]G).

Following a similar strategy as in [Esposito et al. 2022b], we construct L∞-
morphisms

(3-3) DTay(C × g∗)[[h̄]] −→
( ∞∏

i=0

(Sig⊗ Dpoly(C))
)G

[[h̄]] −→ Dpoly(Mred)[[h̄]]

with suitable L∞-structures on the three spaces, where
(∏
∞

i=0(S
ig⊗Dpoly(C))

)G
[[h̄]]

is a candidate for a Cartan model.

3A. A ‘partial’ homotopy for the Hochschild differential. In order to find a suit-
able analogue of the Cartan model for the polydifferential operators, we need to
understand the cohomology of

(Dg(M), ∂g− [J, · ]g, [ · , · ]g)

and in particular the role of the differential [−J, · ]g. To this end we construct a
‘partial’ homotopy for ∂g−[J, · ]g. Here we use the results concerning the homotopy
for the Hochschild differential from [De Wilde and Lecomte 1995]. In particular,
we restrict ourselves to the subspace of normalized differential Hochschild cochains,
i.e., polydifferential operators vanishing on constants. One can show that they are
quasi-isomorphic to the differential ones. Recall the maps

8 : Da
poly(M)−→ Da−1

poly (M),

8(A)( f0, . . . , fa−1)=

n∑
t=1

∑
i

a−1∑
j=i

(−1)i A
(

f0, . . . , fi−1, x t , . . . ,
∂

∂x t
f j , . . . , fa−1

)
,

for f1, . . . , fa−1 ∈ C∞(M), and

9 :Da
poly(M)∋ A 7−→ (−1)a[x i , A]G∪

∂

∂x i
= (−1)a+1

n∑
i=1

(A◦x i )∪
∂

∂x i
∈Da

poly(M),

for local coordinates (x1, . . . , xn) of M . They satisfy, by [De Wilde and Lecomte
1995, Proposition 4.1], the condition

(3-4) 8 ◦ ∂ + ∂ ◦8=−(degD · id+9),

where degD is the order of the differential operator.
We assume from now on for simplicity M = C × g∗ and J = prg∗ and we want

to find a suitable Cartan model for the polydifferential operators. Similarly to
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[Esposito et al. 2022b, Definition 4.14] for the polyvector field case, we want to
obtain a DGLA structure on

(3-5)
( ∞∏

i=0

(Sig⊗ Dpoly(C))
)G

.

Hence we adapt the maps 8 and 9 in such a way that they only include coordinates
Ji = αi = ei on g∗ with i = 1, . . . , n:

8(A)( f0, . . . , fa−1)=

n∑
t=1

∑
i≤ j<a

(−1)i A
(

f0, . . . , fi−1, et , . . . ,
∂

∂et
f j , . . . , fa−1

)
,

9(A)= (−1)a+1
n∑

i=1

(A ◦ ei )∪
∂

∂ei
,

where A ∈ Da
poly(C × g∗) and f0, . . . , fa−i ∈ C∞(C × g∗).

Proposition 3.1. One has on Dpoly(C × g∗)

(3-6) 8 ◦ ∂ + ∂ ◦8=−(degg · id+9),

where degg is the order of differentiations in the direction of g∗-coordinates.

Proof. The proof follows the same lines as in [De Wilde and Lecomte 1995,
Proposition 4.1]. It is proven by induction on the degree of a of A ∈ Da

poly(C×g∗).
For a = 0 and A ∈ D0

poly(C × g∗) as well as f ∈ C∞(C × g∗) we get

((8 ◦ ∂ + ∂ ◦8)(A))( f )= (∂A)
(

ei ,
∂

∂ei
f
)

= ei A
(
∂

∂ei
f
)
− A

(
ei
∂

∂ei
f
)
+ A(ei )

∂

∂ei
f

= (− degg(A) A−9(A))( f ).

Note that 9 has the following compatibility with the ∪-product:

9(A∪ B)= (9A)∪ B+ A∪ (9B)+ (−1)a(A ◦ei )∪
(
∂

∂ei
∪ B+ (−1)b B∪ ∂

∂ei

)
.

Writing i(A)( · )= ( · ) ◦ A one computes

(3-7) (8◦∂+∂◦8)(A∪B)= ((8◦∂+∂◦8)A)∪B+A∪((8◦∂+∂◦8)B)

+((i(ei )◦∂+∂◦i(ei ))A)∪i
(
∂

∂ei

)
B

+(−1)a(i(ei )A)∪
(
∂◦i

(
∂

∂ei

)
−i

(
∂

∂ei

)
◦∂

)
B.

The operators (i(ei ) ◦ ∂ + ∂ ◦ i(ei )) and (∂ ◦ i(∂/∂ei )− i(∂/∂ei ) ◦ ∂) are graded
commutators of derivations of the ∪-product and are therefore graded derivations.
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Thus they are determined by their action on D−1
poly(C × g∗) and D0

poly(C × g∗). The
first one obviously vanishes. The second coincides on these generators with

A 7−→−
(
∂

∂ei
∪ A+ (−1)a A∪ ∂

∂ei

)
and the proposition is shown. □

As in [Esposito et al. 2022b], we define a homotopy on the equivariant polydif-
ferential operators

ĥ : (Sg∗⊗ Dd
poly(C × g∗))G ∋ P ⊗ D 7−→

(−1)d+1 is(ei )P ⊗ D ∪ ∂

∂ei
∈ (Sg∗⊗ Dd+1

poly (C × g∗))G.

The fact that ĥ maps invariant elements to invariant ones follows as in the case of
polyvector fields. Finally, note that 8 and 9 are equivariant, whence they can be
extended to the equivariant polydifferential operators, where we can show:

Proposition 3.2. One has on (Sg∗⊗ Dpoly(C × g∗))G

(3-8) [ĥ−8, ∂g+ [−J, · ]g] = (degSg∗ + degg) id,

where degg is again the order of differentiations in the direction of g∗-coordinates.

Proof. From (3-6) we know [8, ∂g] = −(degg · id+9). In addition, one has for
homogeneous P ⊗ D

ĥ◦∂g(P⊗D)= (−1)d+2 is(ei )P⊗(∂D)∪ ∂

∂ei
=−(−1)d+1 is(ei )P⊗∂

(
D∪ ∂

∂ei

)
=−∂g◦ĥ(P⊗D).

Since we consider only differential operators vanishing on constants, one checks
easily that also [8, [−J, · ]g] = 0. Finally,

[ĥ, [−J, · ]g](P⊗D)= (−1)d is(ei )(e j
∨P)⊗[−J j , D]∪ ∂

∂ei

+(−1)d+1e j
∨is(ei )P⊗

[
−J j , D∪ ∂

∂ei

]
=−9(P⊗D)+(−1)de j

∨is(ei )P⊗[−J j , D]∪ ∂

∂ei

+(−1)d+1e j
∨is(ei )P⊗[−J j , D]∪ ∂

∂ei
+degSg∗(P)P⊗D

= (degSg∗ · id−9)P⊗D.

Thus the proposition is shown. □

The above constructions work also for the Taylor series expansion of the equivari-
ant polydifferential operators, where we restrict ourselves again to polydifferential
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operators vanishing on constants. We slightly abuse the notation and denote them
again by DTay(C × g∗); see (3-1). Writing

(3-9) h =

{
1

degSg∗ + degg
(ĥ−8) if degSg∗ + degg ̸= 0,

0 else,

we get the following result:

Proposition 3.3. One has a deformation retract

(3-10)
((∏

∞

i=0(S
ig⊗ Dpoly(C))

)G
[[h̄]], ∂

)
(DTay(C × g∗)[[h̄]], ∂ + [−J, · ])

i
h

p

where p and i denote the obvious projection and inclusion. This means that one
has pi = id and id−i p = [h, ∂ + [−J, · ]]. Also, the identities hi = 0= ph hold.

Remark 3.4. Note that one has h2
̸= 0, i.e., the above retract is not a special

deformation retract. However, by the results of [Huebschmann 2011b, Remark 2.1]
we know that this could also be achieved.

The reduction works now in two steps. At first, we use the homological pertur-
bation lemma from Proposition A.1 to deform the differential on DTay(C × g∗)[[h̄]],
and in the second step we use the homotopy transfer theorem, see Theorem B.2,
to extend the deformed projection to an L∞-morphism. This will possibly give us
higher brackets on

(∏
∞

i=0(S
ig⊗ Dpoly(C))

)G
[[h̄]] that we have to discuss.

3B. Application of the homological perturbation lemma. In our setting, the bundle
C × g→ C can be equipped with the structure of a Lie algebroid since g acts on C
by the fundamental vector fields. The bracket of this action Lie algebroid is given by

(3-11) [ξ, η]C×g(p)= [ξ(p), η(p)] − (LξCη)(p)+ (LηC ξ)(p)

for ξ, η ∈ C∞(C, g). The anchor is given by ρ(p, ξ)=−ξC |p. In particular, one
can check that πKKS is the negative of the linear Poisson structure on its dual C×g∗

in the convention of [Neumaier and Waldmann 2009].
For Lie algebroids there is a well-known construction of universal enveloping

algebras [Moerdijk and Mrčun 2010; Neumaier and Waldmann 2009; Rinehart
1963]. It turns out that in our special case we get a simpler description of the
universal enveloping algebra:

Proposition 3.5. The universal enveloping algebra U (C × g) of the action Lie
algebroid C × g is isomorphic to C∞(C)⋊U (g) with product

(3-12) ( f, x) · (g, y)=
∑

( f L(x(1))(g), x(2)y).

Here y(1) ⊗ y(2) = 1(y) denotes the coproduct on U (g) induced by extending
1(ξ)= 1⊗ ξ + ξ ⊗ 1 as an algebra morphism. Also, L :U (g)→ Diffop(C∞(C))
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is the extension of the anchor of the action algebroid, that is, of the negative
fundamental vector fields, to the universal enveloping algebra. The same holds also
in the formal setting of Uh̄(g) with bracket rescaled by h̄. Note that in this case one
has to rescale L by powers of h̄, that is, Lξ =−h̄LξC for ξ ∈ g.

Proof. Note that the product is associative since

(( f, x) · (g, y)) · (h, z)=
∑

( f L(x(1))g, x(2)y) · (h, z)

=

∑
( f L(x(1))gL(x(2)y(1))h, x(3)y(2)z)

=

∑
( f, x) · (gL(y(1))h, y(2)z)= ( f, x) · ((g, y) · (h, z)),

where the penultimate identity follows with the coassociativity of 1 and the identity
L(x)( f g)=L(x(1))( f )L(x(2))(g). The inclusions κC : C

∞(C)→ C∞(C)⋊U (g)
and κ : C∞(C)⊗ g→ C∞(C)⋊U (g) satisfy

[κ(s), κC( f )] = κ(ρ(s) f ) and κC( f )κ(s)= κ( f s).

Thus the universal property gives the desired morphism U (C×g)→C∞(C)⋊U (g).
Recursively we can show that the right-hand side is generated by u ∈ C∞(C) and
ξ ∈C∞(C)⊗g which gives the surjectivity of the morphism. Concerning injectivity,
suppose ( f i1, ei1) · · · ( f in , ein )= 0 in C∞(C)⋊U (g). We have to show that also
( f i1ei1) · · · ( f i1ei1)= 0 in U (C × g). But this follows from a direct comparison of
the terms in the corresponding associated graded algebras. □

It is worth mentioning that in [Huebschmann 1990] the above smashed product
(used for Hopf algebras) is studied in a more general context.

Recall that by the Poincaré–Birkhoff–Witt theorem the map

S(g) ∋ x1 ∨ · · · ∨ xn 7−→
1
n!

∑
σ∈Sn

xσ(1) · · · xσ(n) ∈U (g)

is a coalgebra isomorphism with respect to the usual coalgebra structures induced
by extending 1(ξ) = ξ ⊗ 1+ 1⊗ ξ for ξ ∈ g; see, for example, [Berezin 1967;
Higgins 1969]. This statement holds also in the case of formal power series in
h̄ whence we can transfer the product on the universal enveloping algebra as in
Proposition 3.5 to an associative product ⋆G = µ+ h̄mG on C∞(C)⊗S(g)[[h̄]].

Lemma 3.6. The Gutt product ⋆G on C∞(C)⊗ S(g)[[h̄]] is G-invariant and J =
prg∗ : M = C × g∗→ g∗ is a momentum map, i.e.,

(3-13) −LξM =
1
h̄

ad⋆G(J (ξ)).

Proof. The lemma follows directly from the explicit formula in Proposition 3.5. □
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We deform the differential ∂+[−J, · ] by [h̄mG, · ], that is, exactly by the higher
orders of this product. The perturbed differential ∂g+[h̄mG− J, · ] = [⋆G− J, · ]
squares indeed to zero since we have with the above lemma

[⋆G− J, · ]2 = 1
2 [[⋆G− J, ⋆G− J ], · ] = [−h̄λ, · ] = 0,

where again λ= ei
⊗ (ei )M . By the homological perturbation lemma as formulated

in Section A1 this yields a homotopy retract

(3-14)
((∏

∞

i=0(S
ig⊗Dpoly(C))

)G
[[h̄]], ∂h̄

)
(DTay(C×g∗)[[h̄]], [⋆G− J, · ])

ih̄

ph̄
hh̄

with B = [h̄mG, · ] and

(3-15)
A = (id+Bh)−1 B, ∂h̄ = ∂ + p Ai, ih̄ = i − h Ai,

ph̄ = p− p Ah, h h̄ = h− h Ah;

compare with Proposition A.1. More explicitly, we have

(3-16) ih̄ =

∞∑
k=0

(8̃ ◦ B)k ◦ i and h h̄ = h ◦
∞∑

k=0

(−Bh)k,

where 8̃ is the combination of 8 with the degree-counting coefficient from h
from (3-9). We want to take a closer look at the induced differential:

Proposition 3.7. One has

(3-17) ph̄ = p and ∂h̄ = ∂ + δ

with
δ(P ⊗ D)= (−1)d P(1)⊗ D ∪LP(2) − (−1)d P ⊗ D ∪ id

for homogeneous P ⊗ D ∈ Sg⊗ Dd
poly(C).

Proof. The fact that ph̄ = p follows since Bh always adds differentials in the
g-direction. For the deformed differential we compute for homogeneous P ⊗ D ∈
Sg⊗ Dd

poly(C) and fi ∈ C∞(C)

(δ(P⊗D))( f0, f1, . . . , fd+1)=

(
p◦
∞∑

k=0

(B◦8̃)k B◦i(P⊗D)
)
( f0, f1, . . . , fd+1)

= p(B(P⊗D)( f0, f1, . . . , fd+1))

= (−1)d p(h̄mG(P⊗D( f0, . . . , fd), fd+1)

= (−1)d P(1)⊗D( f0, . . . , fd)·LP(2) fd+1

for all P(2) ̸= 1. Here we used the explicit form of the Gutt product as in
Proposition 3.5 and the fact that S(g)[[h̄]] and Uh̄(g) are isomorphic coalgebras. □
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Since the classical homotopy equivalence data (3-10) is not a special deformation
retract, the perturbed one is also not a special one. But it still has some nice
properties.

Proposition 3.8. One has

(3-18) ph̄ ◦ h h̄ = 0= h h̄ ◦ ih̄ and ph̄ ◦ ih̄ = id .

Proof. The properties follow from p ◦ h = 0= h ◦ i , p ◦ i = id and 8̃2
= 0. □

Thus the deformation retract (3-14) satisfies all properties of a special deformation
retract except for h h̄ ◦h h̄ = 0, and we can still apply the homotopy transfer theorem.

3C. Application of the homotopy transfer theorem. We use the homotopy trans-
fer theorem to extend ph̄ to an L∞-morphism. We denote the L∞-structure on
the Taylor expansion by Q and the extension of h h̄ to the symmetric algebra as
in (B-2) by H . Then applying the homotopy transfer theorem in the form of
Theorem B.2 to the deformation retract (3-14) induces higher brackets (QC)

1
k on(∏

∞

i=0(S
ig⊗ Dpoly(C))

)G
[[h̄]]:

Proposition 3.9. The maps

(3-19) (QC)
1
1 =−∂h̄, (QC)

1
k+1 = P1

k ◦ Qk
k+1 ◦ i∨(k+1)

h̄ ,

where

(3-20)

P1
1 = ph̄ = p,

P1
k+1 =

( k+1∑
ℓ=2

Q1
C,ℓ ◦ Pℓk+1− P1

k ◦ Qk
k+1

)
◦ Hk+1 for k ≥ 1,

induce a codifferential QC on the symmetric coalgebra of( ∞∏
i=0

(Sig⊗ Dpoly(C))
)G

[[h̄]][1]

and an L∞-quasi-isomorphism

P :(DTay(C×g∗)[[h̄]], [⋆G− J, · ], [ · , · ])−→
(( ∞∏

i=0

(Sig⊗Dpoly(C))
)G

[[h̄]], QC

)
.

Proof. The proposition follows directly from the homotopy transfer theorem as in
Theorem B.2. Note that we do not need h h̄ ◦ h h̄ = 0, only the other properties of a
special deformation retract from Proposition 3.8. □

Let us take a closer look at the higher brackets QC induced by the homotopy
transfer theorem. One can check that they vanish:
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Proposition 3.10. One has

(3-21) (QC)
1
k+1 = 0 for all k ≥ 2.

Proof. In the higher brackets with k ≥ 2 one has

Hk ◦ Qk
k+1 ◦ i∨(k+1)

h̄ ,

where in Hk one component consists of the application of 8̃, that is, contains an
insertion of a linear coordinate function et . We claim that it has to vanish. At first,
it is clear that the image of i vanishes if one argument is et . Let us now show that
ih̄ satisfies the same property, which directly gives the proposition since then also
the bracket vanishes if one inserts a g∗-coordinate.

For homogeneous D ∈ Dd
Tay(C × g∗) and f0, . . . , fd ∈

∏
i (S

ig⊗C∞(C)), we
can compute

8◦B(D)( f0, . . . , fd)

=

n∑
t=1

d∑
j=1

j∑
i=0

(−1)i (B(D))
(

f0, . . . , fi−1,et , . . . ,
∂

∂et
f j , . . . , fd

)

=

n∑
t=1

d∑
j=1

j∑
i=0

(−1)i
(

h̄mG

(
f0,D( f1, . . . , fi−1,et , . . . ,

∂

∂et
f j , . . . , fd)

)
−D

(
h̄mG( f0, f1), . . . , fi−1,et , . . . ,

∂

∂et
f j , . . . , fd

)
+·· ·

+(−1)d h̄mG

(
D

(
f0, . . . , fi−1,et , . . . ,

∂

∂et
f j , . . . , fd−1

)
, fd

))
.

If D vanishes if one of the arguments is a g∗-coordinate, then this simplifies to

8 ◦ B(D)( f0, . . . , fd)

=

d∑
j=0

(
h̄mG

(
et , D

(
f0, . . . , fi−1, . . . ,

∂

∂et
f j , . . . , fd

))
− D

(
h̄mG(et , f0), . . . , fi−1, . . . ,

∂

∂et
f j , . . . , fd

))
+

d∑
j=1

D
(

h̄mG( f0, et), . . . , fi−1, . . . ,
∂

∂et
f j , . . . , fd

)
+ · · · ,

where et is always an argument of h̄mG. In particular, we know h̄mG(ei , e j ) =
h̄
2 [ei , e j ] and we see that the above sum vanishes if one of the functions fi is a
g∗-coordinate, that is, 8 ◦ B(D) has the same vanishing property as D. The same
holds for 8̃ ◦ B(D); hence by induction the image of ih̄ has the same property and
the proposition is shown. □
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Considering (QC)
1
2, we can simplify (3-19) to

(QC)
1
2 =

∞∑
k=1

p ◦ Q1
2 ◦ ((8̃ ◦ B)k ◦ i ∨ i + i ∨ (8̃ ◦ B)k ◦ i)+ p ◦ Q1

2 ◦ (i ∨ i),

where the last term is the usual Gerstenhaber bracket. This is clear since 8̃ adds a
differential in the g∗-direction and the bracket can only eliminate it on one argument.
Recall that we also have the canonical projection pr :

(∏
∞

i=0(S
ig⊗ Dpoly(C))

)G
→

Dpoly(Mred) which projects first to symmetric degree zero and then restricts to
C∞(C)G ∼= C∞(Mred). It is a DGLA morphism with respect to classical structures,
namely, Hochschild differentials and Gerstenhaber brackets. We extend it h̄-linearly
and can show that it is also a DLGA morphism with respect to the deformed DGLA
structure QC :

Proposition 3.11. The projection induces a DGLA morphism

(3-22) pr :
(( ∞∏

i=0

(Sig⊗Dpoly(C))
)G

[[h̄]],QC

)
−→ (Dpoly(Mred)[[h̄]],∂, [ · , · ]G).

Proof. By the explicit form of the differential (QC)
1
1 = −∂h̄ = −(∂ + δ) from

Proposition 3.7 we know that pr ◦∂h̄ = pr ◦∂ = ∂ ◦pr. Thus it only remains to show
that pr ◦(QC)

1
2 = Q1

2 ◦ pr∨2, which is equivalent to showing

pr ◦
∞∑

k=1

p ◦ Q1
2 ◦ ((8̃ ◦ B)k ◦ i ∨ i + i ∨ (8̃ ◦ B)k ◦ i)= 0.(∗)

In the proof of Proposition 3.10 we computed 8◦ B(D) of some D ∈ Dd
Tay(C×g∗)

and we saw that the image of i vanishes if one inserts a g∗-coordinate and that
8 ◦ B preserves this property. Therefore, we got for such a D that vanishes if one
of the arguments is et

(∗∗) 8 ◦ B(D)( f0, . . . , fd)

=

d∑
j=0

(
h̄mG

(
et , D

(
f0, . . . , fi−1, . . . ,

∂

∂et
f j , . . . , fd

))
− D

(
h̄mG(et , f0), . . . , fi−1, . . . ,

∂

∂et
f j , . . . , fd

))
+

d∑
j=1

D
(

h̄mG( f0, et), . . . , fi−1, . . . ,
∂

∂et
f j , . . . , fd

)
− · · ·

− D
(

f0, . . . , , fd−1, h̄mG

(
et ,

∂

∂et
fd

))
,
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where f0, . . . , fd ∈
∏

i (S
ig⊗C∞(C)). Let us consider now (∗) applied to homo-

geneous P⊗ D∨Q⊗ D′, where P, Q ∈ Sg and D, D′ ∈ Dpoly(C)[[h̄]]. At first we
note that this is zero if both P ̸= 1 ̸= Q since the Gerstenhaber bracket can cancel
at most one term. Similarly, it is zero if both P = 1= Q. Thus we consider without
loss of generality D, Q⊗ D′ with Q ̸= 1 and D ∈ (Dd

poly(C))
G
[[h̄]], where the only

possible contributions are

pr ◦p◦Q1
2
(
((8̃◦ B)k D)∨(Q⊗D′)

)
= (−1)d+(dd ′) pr ◦p

(
((8̃◦ B)k D)◦(Q⊗D′)

)
for all k ≥ 1. Note that, up to a sign, this is ((8̃ ◦ B)k D) ◦ (Q ⊗ D′) applied
to invariant functions C∞(C)G[[h̄]] and then projected to S0g. But on invariant
functions the vertical vector fields and the differentials in the g∗-direction vanish,
and we have only one slot where they can give a nontrivial contribution, namely
Q⊗ D′. We fix the symmetric degree Q ∈ Sig and get

pr ◦p ◦ Q1
2
(
((8̃ ◦ B)k D)∨ (Q⊗ D′)

)
=
(−1)d+(dd ′)

i
pr ◦p

(
(8(B(8̃B)k−1 D)i ) ◦ (Q⊗ D′)

)
=
(−1)d+(dd ′)

i
pr ◦p

(
(8B(8̃B)k−1 D) ◦ (Q⊗ D′)

)
.

Here (B(8̃B)k−1 D)i denotes the component of B(8̃B)k−1 D with i differentiations
in the g∗-direction. The 1/ i comes from the degree of the homotopy (3-9) since we
have no Sg∗-degree and since the only term that can be nontrivial is the one with i
differentiations in the g∗-direction applied to Q. We compute with (∗∗)

pr ◦p◦Q1
2
(
((8̃ ◦ B)k D)∨ (Q⊗ D′)

)
=
(−1)d+(dd ′)

i
pr ◦p

(
(8B(8̃B)k−1 D) ◦ (Q⊗ D′)

)
=
(−1)d+(dd ′)

i
pr ◦p

((
−h̄L(et )C ◦ pr |S0g(8̃ ◦ B)k−1 D ◦ ∂

∂et

)
◦ (Q⊗ D′)

−

(
pr |S0g(8̃ ◦ B)k−1 D ◦

(
h̄mG

(
et ,

∂

∂et
·

)))
◦ (Q⊗ D′)

)
=
(−1)d+(dd ′)

i
pr ◦p

(
(−h̄L(et )C ◦ pr |S0g(8̃ ◦ B)k−1 D) ◦

(
∂

∂et
Q⊗ D′

)
− (pr |S0g(8̃ ◦ B)k−1 D) ◦

((
h̄mG

(
et ,

∂

∂et
·

))
◦ (Q⊗ D′)

))
.

But we know h̄mG(et , · )=−h̄L(et )C + h̄mg(et , · ), where h̄mg denotes the higher
components of the Gutt product on g∗. Moreover, we have by the invariance

−[L(et )C , pr |S0g(8̃ ◦ B)k−1 D]G =
[
− f j

tke j
∂

∂ek
, pr |S0g(8̃ ◦ B)k−1 D

]
G
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and thus

h̄ pr ◦p
((
−[L(et )C , pr |S0g(8̃ ◦ B)k−1 D]G

)
◦

(
∂

∂et
Q⊗ D′

))
= h̄ pr ◦p

((
pr |S0g(8̃ ◦ B)k−1 D ◦

(
f j
tke j

∂

∂ek

))
◦

(
∂

∂et
Q⊗ D′

))
= h̄ pr ◦p

(
(pr |S0g(8̃ ◦ B)k−1 D) ◦

(
f j
tke j

∂

∂ek

∂

∂et
Q⊗ D′

))
= 0.

The only remaining terms are

pr ◦p ◦ Q1
2
(
((8̃ ◦ B)k D)∨ (Q⊗ D′)

)
= (−1)d+(dd ′) pr ◦p

(
(pr |S0g(8̃ ◦ B)k D) ◦ (Q⊗ D′)

)
=−

(−1)d+(dd ′)

i
pr ◦p

(
(pr |S0g(8̃ ◦ B)k−1 D) ◦

(
h̄mg(et

∂

∂et
Q)⊗ D′

))
.

We know that h̄mg(et , (∂/∂et)Q) is either zero or in S>0g and the statement follows
by induction. □

In particular, we can compose this projection pr with the L∞-projection from
Proposition 3.9 that we constructed with the homotopy transfer theorem. Summa-
rizing, we have shown:

Theorem 3.12. There exists an L∞-morphism

Dred = pr◦P : (DTay(C×g∗)[[h̄]], [⋆G− J, · ], [ · , · ])−→ (Dpoly(Mred)[[h̄]],∂, [ · , · ]G).

Finally, as in the polyvector field case in [Esposito et al. 2022b], we can twist the
above morphism to obtain an L∞-morphism from the curved equivariant polydif-
ferential operators into the Cartan model and therefore also into the polydifferential
operators on Mred, see Proposition 2.2 for the basics of the twisting procedure.

Proposition 3.13. Twisting the reduction L∞-morphism Dred from Theorem 3.12
with −h̄mG yields an L∞-morphism

D−h̄mG
red : (DTay(C×g∗)[[h̄]], h̄λ, ∂+[−J, · ], [ · , · ])−→ (Dpoly(Mred)[[h̄]], ∂, [ · , · ]G),

where λ=
∑

i ei
⊗ (ei )M denotes the curvature.

Proof. At first we check that the curvature is indeed given by

(3-23) ei
⊗[−ei ,−h̄mG]G = ei

⊗−[ei , · ]⋆G = ei
⊗ (h̄L(ei )C − h̄ ad(ei ))= h̄λ;

see Lemma 3.6. The only thing left to show is that the DGLA structure on Mred is
not changed, which is equivalent to

(3-24)
∞∑

k=1

(−h̄)k

k!
(Dred)

1
k(mG ∨ · · · ∨mG)= 0.
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But using the explicit form of P from Proposition 3.9 we see inductively that P
vanishes if every argument has a differential in the g∗-direction and the statement
is shown. □

Remark 3.14. In the polyvector field case from [Esposito et al. 2022b, Proposi-
tion 4.29] we saw that the structure maps of the twisted morphism coincide with
the structure maps of the original one. In our case it is not clear, that is, one might
indeed have D−h̄mG

red ̸= Dred.

This reduction morphism can be used to obtain a reduction morphism of the
equivariant polydifferential operators D•g(M) of more general manifolds M ̸=C×g∗.
More explicitly, assuming that the action is proper around C and free on C , we can
restrict at first to Mnice ∼=Unice ⊂ C × g∗, that is, we have

· |Unice : (Dg(M)[[h̄]], h̄λ, ∂g− [J, · ]g, [ · , · ]g)
−→ (Dg(Unice)[[h̄]], h̄λ|Unice, ∂

g
− [J |Unice, · ]g, [ · , · ]g).

But on Unice we can perform the Taylor expansion that is a morphism of curved
DGLAs

Dg∗ : (Dg(Unice)[[h̄]], h̄λ|Unice, ∂
g
− [J |Unice, · ]g, [ · , · ]g)

−→
(
DTay(C × g∗)[[h̄]], h̄λ, ∂ − [J, · ], [ · , · ]

)
.

Finally, we can compose it with D−h̄mG
red and obtain the following statement:

Theorem 3.15. The composition of the above morphisms is an L∞-morphism

Dred : (Dg(M)[[h̄]], h̄λ, ∂g− [J, · ]g, [ · , · ]g)−→ (Dpoly(Mred)[[h̄]], 0, ∂, [ · , · ]G),

called the reduction L∞-morphism.

Remark 3.16 (choices). Note that the only noncanonical choice we made is an open
neighborhood of C in M which is diffeomorphic to a star shaped open neighborhood
of C in C×g∗. Recall that the choice of this neighborhood works as follows. Take
an arbitrary G-equivariant tubular neighborhood embedding ψ : ν(C)→U ⊆ M ,
where ν(C) denotes the normal bundle. Then define

(3-25) φ : ν(C) ∋ [vp] 7−→
(

p, J (ψ([vp]))
)
∈ C × g∗,

which is a diffeomorphism in a neighborhood of C . After some suitable restriction
we obtain the identification. Nevertheless, we had to choose a G-equivariant tubular
neighborhood and any two choices differ by a G-equivariant local diffeomorphism
around C

A : C × g∗ −→ C × g∗,
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which is the identity when restricted to C . One can show that in the Taylor expansion

Dg∗(A∗ f )= eX Dg∗( f )

for a vector field X ∈
∏

i≥1(S
ig⊗X(C))G ⊆ DTay(C × g∗). Since any vector field

is closed, X does not derive in the g∗-direction and λ is central, we obtain an inner
automorphism

e[X,· ] : (DTay(C × g∗)[[h̄]], h̄λ, ∂ − [J, · ], [ · , · ])
−→ (DTay(C × g∗)[[h̄]], h̄λ, ∂ − [J, · ], [ · , · ])

of curved Lie algebras which acts trivially on the level of equivalence classes of
Maurer–Cartan elements. We are certain that the two reduction L∞-morphisms are
homotopic in a suitable curved setting, which, to our knowledge, is not developed
yet.

As a last remark of this section, we want to mention a very interesting observation,
which is not directly connected to the rest of this paper. Nevertheless, we felt that
it can be interesting from many other perspectives.

Remark 3.17 (Cartan model). One can show that the DGLA structure QC from
Proposition 3.9 on

∏
∞

i=0(S
ig⊗Dpoly(C))G[[h̄]] restricts to (Sg⊗Dpoly(C))G[h̄] and

hence can be evaluated at h̄ = 1. We still have the DGLA map

pr : (Sg⊗ Dpoly(C))G −→ Dpoly(Mred).

We want to sketch the proof of the fact that this is a quasi-isomorphism, which
motivates us to interpret (Sg⊗ Dpoly(C))G as a Cartan model for equivariant polyd-
ifferential operators, generalizing the Cartan model for equivariant polyvector fields
from [Esposito et al. 2022b, Section 4.2].

Picking a G-invariant covariant derivative (not necessarily torsion-free) for which
the fundamental vector fields are flat in the fiber direction one can, using the PBW-
isomorphism for Lie algebroids (see [Laurent-Gengoux et al. 2021; Nistor et al.
1999]), prove that there is an equivariant cochain map K : Dpoly(C)→ Tpoly(C)
and an equivariant homotopy h : D•poly(C)→ D•−1

poly(C), such that

(3-26) Tpoly(C) (Dpoly(C), ∂)
hkr

h
K

is a special deformation retract. Additionally, one can show that

K (D1 ∪ D2)= K (D1)∧ K (D2) and K (LP)=

{
−PC for P ∈ g⊆ Sg,
0 else,
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for D1, D2 ∈ Dpoly(C) and P ∈ Sg. We extend now (3-26) to

((Sg⊗ Tpoly(C))G, 0) ((Sg⊗ Dpoly(C))G, ∂)
hkr

h
K

to obtain a special deformation retract. Now we include δ as in Proposition 3.7 and
see it as a perturbation of ∂ . One can show that the perturbation is small in the
sense of the homological perturbation lemma as in [Crainic 2004], and we obtain

((Sg⊗ Tpoly(C))G, δ) ((Sg⊗ Dpoly(C))G, ∂ + δ)
ĥkr

ĥ
K̂

where δ is the differential

δ(P ⊗ X)= i(ei )P ⊗ (ei )C ∧ X

obtained in [Esposito et al. 2022b, Definition 4.14] on (Sg⊗ Tpoly(C))G. Finally,
one can show that

((Sg⊗ Tpoly(C))G, δ) ((Sg⊗ Dpoly(C))G, ∂ + δ)

(Tpoly(Mred), 0) (Dpoly(Mred), ∂)

ĥkr

hkr

commutes and both the horizontal maps, as well as the left-vertical map, are quasi-
isomorphisms, which implies the claim.

4. Comparison of the reduction procedures

At the level of Maurer–Cartan elements, we know that the L∞-morphism Dred

from Theorem 3.15 induces a map from equivariant star products (⋆, H) with
quantum momentum map H = J +O(h̄) on M to star products ⋆red on the reduced
manifold Mred. We conclude with a comparison of this reduction procedure with
the reduction of formal Poisson structures via the quantized Koszul complex as in
[Bordemann et al. 2000; Gutt and Waldmann 2010]; see also our adapted version
in Appendix A.

We assume for simplicity M = C × g∗ and work in the Taylor expansion of
the equivariant polydifferential operators. We identify C∞(C) with prol C∞(C)⊂
C∞(C×g∗). Let us start with an equivariant star product (⋆, H= J+h̄ H ′) on C×g∗,
which means that h̄π⋆− h̄ H ′ = ⋆− ⋆G− (H − J ) is a Maurer–Cartan element in

(DTay(C × g∗)[[h̄]], [⋆G− J, · ], [ · , · ]).
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Proposition 4.1. Defining I 1
1 = ih̄ and I 1

k = h h̄ ◦ Q1
2 ◦ I 2

k+1 gives an L∞-morphism

I :
(( ∞∏

i=0

(Sig⊗Dpoly(C))
)G

[[h̄]], QC

)
−→ (DTay(C×g∗)[[h̄]], [⋆G− J, · ], [ · , · ]).

Moreover, one I is a quasi-inverse of the L∞-projection P from Proposition 3.9
and one has P ◦ I = id.

Proof. Note that we have in general h2
h̄ ̸= 0, but the only part of the homotopy that

appears in the above recursions is 8̃, where we know 8̃ ◦ 8̃ = 0. Therefore, the
statement follows from Proposition B.3. □

We get with Corollary B.5:

Corollary 4.2. The L∞-morphism I is compatible with the filtration induced by h̄
and

h̄π̃⋆ = (I ◦ P)1(exp(h̄π⋆− h̄ H ′)) ∈ (DTay(C × g∗)[[h̄]], [⋆G− J, · ], [ · , · ])

is a well-defined Maurer–Cartan element that is equivalent to h̄π⋆ − h̄ H ′. In
particular, (⋆̃ = ⋆G + h̄π̃⋆, J ) is a strongly invariant star product, that is, an
equivariant star product such that the quantum momentum map is just the classical
momentum map, and it is equivariantly equivalent to (⋆, H).

The reduction of (⋆̃, J ) via the reduction L∞-morphism Dred is now easy:

Lemma 4.3. The reduction L∞-morphism

Dred = pr ◦P : (DTay(C×g∗)[[h̄]], [⋆G− J, · ], [ · , · ])−→ (Dpoly(Mred)[[h̄]], ∂, [ · , · ]G)

from Theorem 3.12 maps h̄π̃⋆ to a Maurer–Cartan element h̄mred=pr ◦P1(exp h̄π̃⋆)
in the polydifferential operators on Mred. The corresponding star product ⋆̃red =

µ+ h̄mred is given by

(4-1) pr∗(u1⋆̃redu2)= ι
∗(prol(pr∗ u1)⋆̃ prol(pr∗ u2))

for all u1, u2 ∈ C∞(Mred)[[h̄]].

Proof. By definition of h̄π̃⋆ we know h h̄ h̄π̃⋆ = 8̃(h̄π̃⋆)= 0, and thus

h̄mred = pr ◦P1(exp h̄π̃⋆)= pr ◦p(h̄π̃⋆).

Equation (4-1) follows since h̄mG(prol(pr∗ u1), prol(pr∗ u2))= 0. □

Moreover, we know by Lemma A.5 that the BRST reduction of µ+ h̄mG+ h̄π̃⋆
coincides with (4-1), and we have shown:

Theorem 4.4. Let (⋆, H) be an equivariant star product on M. Then the reduced
star product induced by Dred from Theorem 3.12 and the reduced star product via
the formal Koszul complex (A-14) are equivalent.
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Proof. We know that both reduction procedures map equivalent equivariant star
products to equivalent reduced star products. Moreover, we saw above that both
reduction procedures coincide on (⋆̃=⋆G+h̄π̃⋆, J )which is equivariantly equivalent
to (⋆, H). □

Appendix A: BRST reduction of equivariant star products

We recall a slightly modified version of the reduction of equivariant star products as
introduced in [Bordemann et al. 2000; Gutt and Waldmann 2010]; see also [Esposito
et al. 2020] for a discussion of this reduction scheme in the context of Hermitian
star products. It relies on the quantized Koszul complex and the homological
perturbation lemma.

A1: Homological perturbation lemma. At first we recall from [Crainic 2004,
Theorem 2.4; Reichert 2017, Chapter 2.4] a version of the homological perturbation
lemma that is adapted to our setting. Let

(C, dC) (D, dD)
i

p
h

be a homotopy retract (also called homotopy equivalence data), i.e., let (C, dC) and
(D, dD) be two chain complexes together with two quasi-isomorphisms

(A-1) i : C −→ D and p : D −→ C

and a chain homotopy

(A-2) h : D −→ D with idD −i p = dDh+ hdD

between idD and i p. Then we say that a graded map B : D• −→ D•−1 with
(dD+ B)2 = 0 is a perturbation of the homotopy retract. The perturbation is called
small if idD +Bh is invertible, and the homological perturbation lemma states
that in this case the perturbed homotopy retract is a again a homotopy retract; see
[Crainic 2004, Theorem 2.4] for a proof.

Proposition A.1 (homological perturbation lemma). Let

(C, dC) (D, dD)
i

p
h

be a homotopy retract and let B be small perturbation of dD . Then the perturbed
data

(A-3) (C, d̂C) (D, d̂D)
I

P
H
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with

(A-4)
A = (idD +Bh)−1 B, d̂D = dD + B, d̂C = dC + p Ai,

I = i − h Ai, P = p− p Ah, H = h− h Ah,

is again a homotopy retract.

Remark A.2. In [Crainic 2004] it is shown that perturbations of special deformation
retracts are again special deformation retracts, which is in general not true for
deformation retracts; see Appendix B for the different notions.

We are interested in even simpler complexes of the form

(A-5)

0 D0 D1 · · ·

0 C0 0

p

h0

dD,1

h1

dD,2

i

In this case, the perturbed homotopy retract corresponding to a small perturbation B
according to (A-4) is given by

I = i, P = p− p(idD +B1h0)
−1 B1h0, H = h− h(idD +Bh)−1 Bh

and, using the geometric power series, this can be simplified to

(A-6) I = i, P = p(idD +B1h0)
−1, H = h(idD +Bh)−1.

Here we denote by B1 : D1 −→ D0 the degree one component of B, analogously
for h. By Remark A.2 we know that deformation retracts are in general not preserved
under perturbations. However, in this case we see that, starting with a deformation
retract, the additional condition h0i = 0 suffices to guarantee

PI = p(idD +B1h0)
−1i = pi = idC0 .

A2: Quantized Koszul complex. Let now (M, { · , · }) be a smooth Poisson man-
ifold with a left action of the Lie group G. Moreover, let J : M → g∗ be a
classical (equivariant) momentum map. As usual, we assume that 0 ∈ g∗ is a
value and a regular value of J and set C = J−1({0}). In addition, we require the
action to be proper on M (or at least around C) and free on C , which implies that
Mred = C/G is a smooth manifold. The reduction via the classical Koszul complex
3•g⊗C∞(M) is one way to show that Mred is even a Poisson manifold, but we
need the quantum version to show that we have an induced star product on Mred.
The Koszul differential ∂ is given by

(A-7) ∂ :3qg⊗C∞(M)−→3q−1g⊗C∞(M), a 7→ i(J )a = Ji ia(ei )a,
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where i denotes the left insertion and J = Ji ei the decomposition of J with respect
to a basis e1, . . . , en of g∗. Then ∂2

= 0 follows immediately with the commutativity
of the pointwise product in C∞(M). The differential ∂ is also a derivation with
respect to the associative and supercommutative product on the Koszul complex,
consisting of the ∧-product on 3•g tensored with the pointwise product on the
functions. Also, it is invariant with respect to the induced g-representation

(A-8) g ∋ ξ 7→ ρ(ξ)= ad(ξ)⊗ id− id⊗LξM ∈ End(3•g⊗C∞(M))

as we have

∂ρ(ea)(x ⊗ f )= f k
aj ek ∧ i(e j )∧ i(ei )x ⊗ J0,i f + f i

a j i(e j )x ⊗ J0,i f
+ i(ei )x ⊗ J0,i {J0,a, f }0

= ρ(ea)∂(x ⊗ f )

for all x ∈3•g and f ∈ C∞(M).
One can show that the Koszul complex is acyclic in positive degree with homology

C∞(C) in order zero, and that one has a G-equivariant homotopy

(A-9) h :3•g⊗C∞(M)−→3•+1g⊗C∞(M);

see [Bordemann et al. 2000, Lemma 6; Gutt and Waldmann 2010]. In other words,
this means that

prol : (C∞(C), 0)⇄ (3•g⊗C∞(M), ∂) : ι∗, h

is a HE data of the special type of (A-5), that is, we have the diagram

0 C∞(M) 31g⊗C∞(M) · · ·

0 C∞(C) 0

ι∗

h0

∂1

h1

∂2

prol

For the reduction of equivariant star products, we need to deform it to the
quantized Koszul complex. The quantized Koszul differential

∂ :3•g⊗C∞(Mnice)[[h̄]] −→3•−1g⊗C∞(Mnice)[[h̄]]

is defined by

(A-10) ∂(κ)(x ⊗ f )=
i(ea)x ⊗ Ha ⋆ f − h̄

2
f c
abec ∧ i(ea) i(eb)x ⊗ f + h̄κ f b

ab i(ea) (x ⊗ f )

for κ ∈C[[h̄]], x ∈3•g[[h̄]] and f ∈C∞(Mnice)[[h̄]], where1= f b
abea is the modular

one-form of g.
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Remark A.3. Note that in the literature [Bordemann et al. 2000; Gutt and Waldmann
2010] a different convention is used:

∂ ′(κ)(x ⊗ f )= i(ea)x ⊗ f ⋆ Ha +
h̄
2

f c
abec ∧ i(ea) i(eb)x ⊗ f + h̄κ i(1) (x ⊗ f )

for κ ∈ C[[h̄]]. In particular, ∂ ′(κ) is left ⋆-linear. However, in order to simplify
the comparison of the BRST reduction with the reduction via Dred in Section 4,
we want the quantized Koszul differential to be right ⋆-linear, which leads to our
convention in (A-10).

The reduction of the star product in our convention works analogously to [Bor-
demann et al. 2000; Gutt and Waldmann 2010] since ∂(κ) satisfies all the desired
properties:

Lemma A.4. Let (⋆, H) be an equivariant star product and κ ∈ C[[h̄]].

(i) One has ∂(0) ◦ i(1)+ i(1) ◦ ∂(0) = 0.

(ii) ∂(κ) is right ⋆-linear.

(iii) ∂(κ) = ∂ + O(h̄).

(iv) ∂(κ) is G-equivariant.

(v) One has ∂(κ) ◦ ∂(κ) = 0.

Proof. The proof is analogous to [Gutt and Waldmann 2010, Lemma 3.4]. □

Assume that we have chosen a value κ ∈ C[[h̄]] and write ∂ = ∂(κ). Then by the
homological perturbation lemma one gets a perturbed homotopy retract

0 C∞(Mnice)[[h̄]] 31g⊗C∞(Mnice)[[h̄]] · · ·

0 C∞(C)[[h̄]] 0,

ι∗

h0

∂1

h1

∂2

prol

where

(A-11) prol= prol, ι∗ = ι∗(id+B1h0)
−1, h = h(id+Bh)−1,

and where ∂−∂ = B; see (A-6). One can show that the deformed restriction map ι∗

is given by

(A-12) ι∗ = ι∗ ◦ S =
∑
r=0

h̄r ι∗r : C
∞(Mnice)[[h̄]] −→ C∞(C)[[h̄]]

with a G-equivariant formal series of differential operators S = id+
∑
∞

r=1 h̄r Sr on
C∞(Mnice) and with Sr vanishing on constants. Also, it is uniquely determined by
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the properties

ι∗0 = ι
∗, ι∗∂1 = 0 and ι∗ prol= idC∞(C)[[h̄]] .(A-13)

The reduced star product ⋆red on Mred = C/G is then given by

(A-14) pr∗(u1 ⋆red u2)= ι∗(prol(pr∗ u1) ⋆ prol(pr∗ u2))

for all u1, u2 ∈C∞(Mred)[[h̄]]; compare with [Bordemann et al. 2000, Theorem 32].
In [Reichert 2017, Lemma 4.3.1] it has been shown that equivariantly equivalent
star products reduce to equivalent star products on Mred.

For the comparison of the reduction procedures in Section 4 we need the following
observation:

Lemma A.5. Let (⋆ = µ + h̄π⋆ + h̄mG, J ) be an equivariant star product on
C × g∗, and choose κ = −1 for the quantized Koszul differential. If one has
8̃(h̄π⋆)= 0=8(h̄π⋆), then it follows for all u1, u2 ∈ C∞(Mred)[[h̄]]

pr∗(u1 ⋆red u2)= ι∗(prol(pr∗ u1) ⋆ prol(pr∗ u2))= ι
∗(prol(pr∗ u1) ⋆ prol(pr∗ u2)).

Proof. We have for a polynomial function f = P⊗φ ∈S jg⊗C∞(C)⊂C∞(C×g∗)

(∂−∂)h0(P⊗φ)=
1
j

(
h̄(π⋆+mG)(ei , i(ei )P⊗φ)+h̄κ f b

ib i(ei )P⊗φ
)

=
1
j
(8(h̄π⋆+h̄mG)(P⊗φ)+h̄κ f b

ib i(ei )P⊗φ)

=
1
j

(
h̄mG(ei , i(ei )P⊗φ)+h̄κ f b

ib i(ei )P⊗φ
)

=
1
j

(
h̄mg(ei , i(ei )P)⊗φ−i(ei )P⊗h̄L(ei )Cφ+h̄κ f b

ib i(ei )P⊗φ
)
,

where h̄mg denotes the nontrivial part of the Gutt product on g∗. We know that
im(h̄mg(ei , · )) ∈ S>0g[[h̄]], hence it follows

(∗) ι∗ ◦ (∂ − ∂)h0(P ⊗φ)=
1
j
ι∗(− i(ei )P ⊗ h̄L(ei )Cφ+ h̄κ f b

ib i(ei )P ⊗φ).

On an invariant polynomial P ⊗φ ∈ (S jg⊗C∞(C))G we have

− i(ei )P ⊗ h̄L(ei )Cφ =−h̄ i(ei ) ad(ei )P ⊗φ =−h̄ f i
i j i(e j )P ⊗φ,

hence (∗) vanishes for κ =−1. Thus we have in this case

pr∗(u1 ⋆red u2)= ι∗(prol(pr∗ u1) ⋆ prol(pr∗ u2))= ι
∗(prol(pr∗ u1) ⋆ prol(pr∗ u2))

and the statement is shown. □
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Appendix B: Explicit formulas for the homotopy transfer theorem

In is well-known that L∞-quasi-isomorphisms always admit L∞-quasi-inverses. It
is also well-known that given a homotopy retract one can transfer L∞-structures;
see, for instance, [Loday and Vallette 2012, Section 10.3]. Explicitly, a homotopy
retract (also called homotopy equivalence data) consists of two cochain complexes
(A, dA) and (B, dB) with chain maps i, p and homotopy h such that

(B-1) (A, dA) (B, dB)
i

p
h

with h ◦ dB + dB ◦ h = id−i ◦ p, and such that i and p are quasi-isomorphisms.
Then the homotopy transfer theorem states that if there exists a flat L∞-structure
on B, then one can transfer it to A in such a way that i extends to an L∞-quasi-
isomorphism. By the invertibility of L∞-quasi-isomorphisms there also exists an
L∞-quasi-isomorphism into A denoted by P ; see, for example, [Loday and Vallette
2012, Proposition 10.3.9].

In this section we state a version of this statement adapted to our applications.
For simplicity, we assume that we have a deformation retract satisfying

p ◦ i = idA .

By [Huebschmann 2011b, Remark 2.1] we can assume that we have even a special
deformation retract, also called contraction, where

h2
= 0, h ◦ i = 0 and p ◦ h = 0.

Assume now that (B, Q B) is an L∞-algebra with (Q B)
1
1 =−dB . In the following

we give a more explicit description of the transferred L∞-structure Q A on A
and of the L∞-projection P : (B, Q B) → (A, Q A) inspired by the symmetric
tensor trick [Berglund 2014; Huebschmann 2011a; 2011b; Manetti 2010]. The
map h extends to a homotopy Hn : Sn(B[1]) → Sn(B[1])[−1] with respect to
Qn

B,n :S
n(B[1])→Sn(B[1])[1]; see, for instance, [Loday and Vallette 2012, p. 383]

for the construction on the tensor algebra, which we adapt to our setting as follows.
We define the operator

Kn : Sn(B[1])−→ Sn(B[1])

by

Kn(x1 ∨ · · · ∨ xn)=
1
n!

n−1∑
i=0

∑
σ∈Sn

ϵ(σ )

n−i
i pXσ(1) ∨ · · · ∨ i pXσ(i) ∨ Xσ(i+1) ∨ Xσ(n).
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Note that here we sum over the whole symmetric group and not the shuffles, since
in this case the formulas are easier. We extend −h to a coderivation to S(B[1]), i.e.,

H̃n(x1 ∨ · · · ∨ xn) := −
∑

σ∈Sh(1,n−1)
ϵ(σ ) hxσ(1) ∨ xσ(2) ∨ · · · ∨ xσ(n)

and define

(B-2) Hn = Kn ◦ H̃n = H̃n ◦ Kn.

Since i and p are chain maps, we have Kn◦Qn
B,n= Qn

B,n◦Kn , where Qn
B,n is the ex-

tension of the differential Q1
B,1=−dB to Sn(B[1]) as a coderivation. Hence we have

Qn
B,n Hn + Hn Qn

B,n = (n · id−i p) ◦ Kn,

where i p is extended as a coderivation to S(B[1]). A combinatorial and not very
enlightening computation shows that finally

(B-3) Qn
B,n Hn + Hn Qn

B,n = id−(i p)∨n.

Now assume that we have a codifferential Q A and a morphism of coalgebras P
with structure maps P1

ℓ : S
ℓ(B[1])→ A[1] such that P is an L∞-morphism up to

order k, that is,
m∑
ℓ=1

P1
ℓ ◦ Qℓ

B,m =
m∑
ℓ=1

Q1
A,ℓ ◦ Pℓm

for all m ≤ k. Then we have the following statement, whose proof can be found
in [Esposito et al. 2022b].

Lemma B.1. Let P : S(B[1])→ S(A[1]) be an L∞-morphism up to order k ≥ 1.
Then

(B-4) L∞,k+1 =
k+1∑
ℓ=2

Q1
A,ℓ ◦ Pℓk+1−

k∑
ℓ=1

P1
ℓ ◦ Qℓ

B,k+1

satisfies

(B-5) L∞,k+1 ◦ Qk+1
B,k+1 =−Q1

A,1 ◦ L∞,k+1.

This allows us to prove one version of the homotopy transfer theorem.

Theorem B.2 (homotopy transfer theorem). Let (B, Q B) be a flat L∞-algebra with
differential (Q B)

1
1 =−dB and contraction

(B-6) (A, dA) (B, dB)
i

p
h
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Then

(Q A)
1
1 =−dA, (Q A)

1
k+1 =

k∑
i=1

P1
i ◦ (Q B)

i
k+1 ◦ i∨(k+1),

P1
1 = p, P1

k+1 = L∞,k+1 ◦ Hk+1 for k ≥ 1

turns (A, Q A) into an L∞-algebra with L∞-quasi-isomorphism P : (B, Q B)→

(A, Q A). In addition, one has P1
k ◦ i∨k

= 0 for k ̸= 1.

Proof. We observe P1
k+1(i x1 ∨ · · · ∨ i xk+1) = 0 for all k ≥ 1 and xi ∈ A, which

directly follows from h ◦ i = 0, and thus Hk+1 ◦ i∨(k+1)
= 0. Suppose that Q A is a

codifferential up to order k ≥ 1, i.e.,
∑m

ℓ=1(Q A)
1
ℓ(Q A)

ℓ
m = 0 for all m ≤ k, and that

P is an L∞-morphism up to order k≥ 1. We know that these conditions are satisfied
for k = 1 and we show that they hold for k+ 1. Starting with Q A we compute

(Q A Q A)
1
k+1 = (Q A Q A)

1
k+1 ◦ Pk+1

k+1 ◦ i∨(k+1)

=

k+1∑
ℓ=1
(Q A Q A)

1
ℓPℓk+1i∨(k+1)

= (Q A Q A P)1k+1i∨(k+1)

=

k+1∑
ℓ=2
(Q A)

1
ℓ(Q A P)ℓk+1i∨(k+1)

+ (Q A)
1
1(Q A P)1k+1i∨(k+1)

=

k+1∑
ℓ=2
(Q A)

1
ℓ(P Q B)

ℓ
k+1i∨(k+1)

+ (Q A)
1
1(Q A)

1
k+1

= (Q A P Q B)
1
k+1i∨(k+1)

− (Q A)
1
1(Q A)

1
k+1+ (Q A)

1
1(Q A)

1
k+1

=

k∑
ℓ=1
(Q A P)1ℓ(Q B)

ℓ
k+1i∨(k+1)

+ (Q A P)1k+1(Q B)
k+1
k+1i∨(k+1)

=

k∑
ℓ=1
(P Q B)

1
ℓ(Q B)

ℓ
k+1i∨(k+1)

+ (Q A P)1k+1i∨(k+1)(Q A)
k+1
k+1

=−(P Q B)
1
k+1i∨(k+1)(Q A)

k+1
k+1+ (Q A P)1k+1i∨(k+1)(Q A)

k+1
k+1

=−(Q A)
1
k+1(Q A)

k+1
k+1+ (Q A)

1
k+1(Q A)

k+1
k+1 = 0.

By the same computation as in Lemma B.1, where one in fact only needs that Q A

is a codifferential up to order k+ 1, it follows that

L∞,k+1 ◦ Qk+1
B,k+1 =−Q1

A,1 ◦ L∞,k+1.

It remains to show that P is an L∞-morphism up to order k+ 1. We have

P1
k+1 ◦ (Q B)

k+1
k+1 = L∞,k+1 ◦ Hk+1 ◦ (Q B)

k+1
k+1

= L∞,k+1− L∞,k+1 ◦ (Q B)
k+1
k+1 ◦ Hk+1− L∞,k+1 ◦ (i ◦ p)∨(k+1)

= L∞,k+1+ (Q A)
1
1 ◦ P1

k+1
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since

L∞,k+1 ◦ (i ◦ p)∨(k+1)
=

( k+1∑
ℓ=2

Q1
A,ℓ ◦ Pℓk+1−

k∑
ℓ=1

P1
ℓ ◦ Qℓ

B,k+1

)
◦ (i ◦ p)∨(k+1)

= (Q A)
1
k+1 ◦ p∨(k+1)

− (Q A)
1
k+1 ◦ p∨(k+1)

= 0.
Therefore

P1
k+1 ◦ (Q B)

k+1
k+1− (Q A)

1
1 ◦ P1

k+1 = L∞,k+1,

i.e., P is an L∞-morphism up to order k+1. The statement follows inductively. □

A special case of the above theorem, for i being a DGLA morphism, was proven
in [Esposito et al. 2022b, Proposition 3.2]. We also want to give an explicit formula
for a L∞-quasi-inverse of P , generalizing [Esposito et al. 2022b, Proposition 3.3].

Proposition B.3. The coalgebra map I : S•(A[1])→ S•(B[1]) recursively defined
by the maps I 1

1 = i and I 1
k+1 = h ◦ L∞,k+1 for k ≥ 1 is an L∞-quasi inverse of P.

Since h2
= 0= h ◦ i , one even has I 1

k+1 = h ◦
∑k+1

ℓ=2 Q1
B,ℓ ◦ I ℓk+1 and P ◦ I = idA.

Proof. We proceed by induction. Assume that I is an L∞-morphism up to order k;
then we have

I 1
k+1 Qk+1

A,k+1− Q1
B,1 I 1

k+1 =−Q1
B,1 ◦ h ◦ L∞,k+1+ h ◦ L∞,k+1 ◦ Qk+1

A,k+1

=−Q1
B,1 ◦ h ◦ L∞,k+1− h ◦ Q1

B,1 ◦ L∞,k+1

= (id−i ◦ p)L∞,k+1.

We used that Q1
B,1 =−dB and the homotopy equation of h. Moreover, we get with

p ◦ h = 0

p ◦ L∞,k+1 = p ◦
( k+1∑
ℓ=2

Q1
B,ℓ ◦ I ℓk+1−

k∑
ℓ=1

I 1
ℓ ◦ Qℓ

A,k+1

)
=

k+1∑
ℓ=2
(P ◦ Q B)

1
ℓ ◦ I ℓk+1−

k+1∑
ℓ=2

ℓ∑
i=2

P1
i ◦ Qi

B,ℓ ◦ I ℓk+1− Q1
A,k+1

=

k+1∑
ℓ=2
(Q A ◦ P)1ℓ ◦ I ℓk+1−

k+1∑
i=2

k+1∑
ℓ=i

P1
i ◦ Qi

B,ℓ ◦ I ℓk+1− Q1
A,k+1

= Q1
A,k+1−

k+1∑
i=2

k+1∑
ℓ=i

P1
i ◦ I i

ℓ ◦ Qℓ
A,k+1− Q1

A,k+1 = 0,

and therefore I is an L∞-morphism. □

Remark B.4. In the homotopy transfer theorem the property h2
= 0 is not needed,

and that one can also adapt the above construction of I to this more general case.

Note that there exists a homotopy equivalence relation∼ between L∞-morphisms,
see, for example, [Dolgushev 2007], such that equivalent L∞-morphisms map
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Maurer–Cartan elements to equivalent Maurer–Cartan elements; see, for instance,
[Bursztyn et al. 2012, Lemma B.5] for the case of DGLAs and [Kraft 2021, Propo-
sition 1.4.6] for the case of flat L∞-algebras.

Corollary B.5. In the above setting one has P ◦ I = idA and I ◦ P ∼ idB . In
particular, assume that one has complete descending filtrations on A, B such that
all the maps are compatible. Then every Maurer–Cartan element π ∈ F1 B is
equivalent to (I ◦ P)1(exp(π)).

Proof. By [Kraft and Schnitzer 2021, Proposition 3.8] P admits a quasi-inverse I ′

such that P ◦ I ′ ∼ idA and I ′ ◦ P ∼ idB , which implies

I ◦ P = idB ◦I ◦ P ∼ I ′ ◦ P ◦ I ◦ P = I ′ ◦ P ∼ idB .

The rest of the statement is then clear. □
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THE MAXIMAL SYSTOLE OF HYPERBOLIC SURFACES
WITH MAXIMAL S3-EXTENDABLE ABELIAN SYMMETRY

YUE GAO AND JIAJUN WANG

We study the maximal systole of hyperbolic surfaces with certain symmetries.
We give the formula for the maximal systole of the surfaces that admit the
largest S3-extendable abelian group symmetry. The result is obtained by
parametrizing such surfaces and enumerating all possible systoles.

1. Introduction

The systole is an important topic in the study of hyperbolic surfaces. The systole has
applications in various areas on surfaces, e.g, the Mumford’s classical compactness
criterion [Mumford 1971] and the Weil–Peterson metric [Wolpert 2017; Wu 2019]
in Teichmüller theory, and the spectrum of the Laplacian [Ballmann et al. 2016;
2018; Mondal 2014] and the optimal systolic ratio [Chen and Li 2015; Croke and
Katz 2003; Gromov 1983] in differential geometry. For a survey on the study of
the systole, see Parlier [2014].

We use the term “systole” to refer to either the minimal length of a closed geodesic
on a hyperbolic surface, or a closed geodesic realizing this length, by abuse of nota-
tion. The systole can also be regarded as a real-valued function on the moduli space
Mg of all closed hyperbolic surfaces of genus g or the Teichmüller space Tg. The
maximal value of the systole function on Mg is called the maximal systole in genus g.
The maximal systole can be realized by Mumford’s compactness criterion. It is quite
difficult to compute the exact value of the maximal systole. The only known case is
genus 2, for which the maximal systole is realized by the Bolza surface [Jenni 1984].

It is also interesting to study the maximal value of the systole function on certain
subspaces of Mg. Bavard [1992] obtained the maximal systole of genera 2 and 5
on hyperelliptic surfaces. Schmutz [1993] gave a necessary and sufficient condition
for the local maxima of the systole function and he gave some examples of local
maxima with polyhedral symmetry. Fortier Bourque and Rafi [2022] constructed
surfaces with locally maximal systoles and trivial symmetry.

Buser and Sarnak [1994] constructed surfaces with systoles larger than 4
3 log g

by arithmetic methods for infinitely many genera. Katz, Schaps, and Vishne [Katz
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et al. 2007] obtained more surfaces with this lower bound. Hurwitz surfaces are
among their examples. Petri and Walker [2018] and Petri [2018] gave concrete
examples with systoles larger than 4

7 log g − K .
Inspired by [Katz et al. 2007; Schmutz 1993], we are interested in the maximal

systole of hyperbolic surfaces with certain symmetries. We consider hyperbolic
surfaces with the largest S3-extendable abelian symmetry. The S3-extendable
symmetry on a topological surface was introduced in [Wang et al. 2013; 2015]. A
group action G on the genus-g topological surface 6g is S3-extendable if there
exist an embedding i : 6g → S3 and an injective homomorphism φ : G → SO(4)

such that for any g ∈ G, the following diagram commutes:

6g

i
��

g
// 6g

i
��

S3 φ(g)
// S3

When restricted to finite abelian groups, the maximal order of an S3-extendable
group action on 6g is 2g + 2 [Wang et al. 2013]. Such a group action can be
realized as an isometry group action on a hyperbolic surface, and we say such a
hyperbolic surface has the maximal S3-extendable abelian symmetry or call the
surface a hyperbolic 0(2, n) surface [Wang et al. 2013] where n = g + 1.

Hyperbolic surfaces that admit an isometric S3-extendable abelian group action
of maximal order form a 2-dimensional subset of Mg, and we consider the systole
function on this subspace. Our main result is the following:

Theorem 1. The maximal value of the systole function on hyperbolic 0(2, n)

surfaces is
2 arccosh K ,

where

K =
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 +

√
1

108 L(L2 + 18L + 27)

+
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 −

√
1

108 L(L2 + 18L + 27) +
1
6(L + 3),

and L = 4 cos2 π
n . The maximal value is obtained when

(c, t) =

(
arccosh K , 2 arccosh K +1

2 cos π
n

)
.

(The symbols c and t are defined in Section 2).

The maximal value of systoles of the 0(2, n)-surfaces for small genera are shown
in Table 1. We remark that the 0(2, 3) surface is exactly the Bolza surface that
realizes the maximal systole in genus 2.
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genus 0(2, n) maximal systole

2 3.0571
3 3.6478
4 3.9078
5 4.0464
6 4.1291

Table 1. Maximal systole of surface with largest S3-extendable
abelian symmetry.

Compared with the work [Bai et al. 2021] on the systole of surfaces with large
cyclic symmetry for which the surfaces with large cyclic symmetry have a unique
geometric structure, the surfaces studied in this paper form a two-dimensional
subspace of Mg, and the methods in the papers are quite different. We obtain our
result by classifying the family of curves that are potentially the shortest geodesics on
surfaces admitting this symmetry, and then determine when the systole is maximal.

The paper is organized as follows. In Section 2 we describe how to construct all
hyperbolic 0(2, n) surfaces and determine their symmetry. In Section 3, we give a
useful lemma (Lemma 3) on the intersection properties of systoles. In Section 4,
we prove that for any 0(2, n) surface, there are only four closed geodesics in the
quotient orbifold of the surface by its symmetric group that can lift to systoles of
the 0(2, n) surface (Proposition 7). In the last section, by calculating the length of
these four curves and the differentials of these lengths, we get a condition for when
the 0(2, n) surface has the maximal systole (Proposition 9) and calculate its length.

2. The symmetry of 0(2, n) surfaces

In this section, we construct the hyperbolic 0(2, n) surface and describe the geom-
etry and topology of its quotient by its symmetry group.

Let 60,n be the surface of genus 0 with n boundaries, endowed with a hyper-
bolic structure so that its boundaries are geodesics and 60,n admits an isometric
rotation of order n, as indicated in Figure 1. Each boundary circle is called a cuff
of 6. The shortest geodesic connecting two adjacent boundary circles or its image
under the isometric rotation is called a seam. A seam is perpendicular to the two
boundary circles it connects. The n seams cut 60,n into two isometric right-angled
hyperbolic 2n-gons with geodesic boundary edges. The hyperbolic structure of
60,n is parametrized by the length of its cuffs, called the cuff length. We denote the
cuff length by 2c, where c ∈ R+ is called the half cuff length.

Two copies of 60,n with the same cuff length can be glued together along the
cuffs to form a closed surface, so that the two rotations on each copy can be extended
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Figure 1. 60,n and the right-angled 2n-gon.

to the glued surface. We call the resulting surface a hyperbolic 0(2, n)-surface. Two
seams on the surface are paired if they connect the same two cuffs. Similar to the
Fenchel–Nielsen coordinates on the Teichmüller space, a hyperbolic 0(2, n)-surface
can be parametrized by (c, t), where c is the half cuff length and t is the “twist
parameter”. The twist parameter t equals 0 if (any) two paired seams form a closed
geodesic. The hyperbolic 0(2, n) surface with parameter (c, t) is obtained from the
hyperbolic 0(2, n) surface with parameter (c, 0) by performing a Fenchel–Nielsen
deformation of length t simultaneously along each cuff. Here the Fenchel–Nielsen
deformation on a hyperbolic surface X along a simple closed geodesic α ⊂ X
with length t is constructed by cutting X along α and then regluing the boundary
curves with a left twist of length t . We may assume 0 ≤ t ≤ c since the surface
with parameter (c, t) is isometric to the surface with parameter (c, t + 2c) while
the surface with parameter (c, t) is the reflection of the surface with parameter
(c, 2c − t) when 0 ≤ t ≤ 2c.

The symmetry group of a hyperbolic 0(2, n) surface is Dn ⊕ (Z/2Z), where Dn

is the order n dihedral group. This symmetric group is generated by three rotations
σ , τ , and ρ. As illustrated in Figure 2, σ is the order n rotation that maps each
n-holed sphere to itself, τ is the order 2 rotation of each n-holed sphere, and ρ is
the order 2 rotation exchanging the two n-holed spheres.

For a 0(2, n) surface X , the quotient X/⟨ρ⟩ is a spherical orbifold with 2n
singular points of order 2, denoted as S2(2, . . . , 2)X (Figure 3, top left). The quotient
X/⟨ρ, σ ⟩ is a spherical orbifold with four singular points of order 2, 2, n, n, respec-
tively, denoted as S2(2, 2, n, n)X (Figure 3, top right). The quotient X/⟨ρ, σ, τ ⟩ is a
spherical orbifold with four singular points of order 2, 2, 2, n, respectively, denoted
as S2(2, 2, 2, n)X (Figure 3, bottom). In Figure 3, top right, C and C ′ are the two
order 2 singular points and O and O ′ are the order n singular points. In Figure 3,
bottom, C, D, E are the order 2 singular points and O is the order n singular point.
We will abbreviate the subscript X when there is no confusion. Denote the quotient
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Figure 2. Generators for the isometry group of the hyperbolic
0(2, n) surface.

branched covering maps as

(2-1) X S2(2,2, . . . ,2)X S2(2,2,n,n)X S2(2,2,2,n)X
π

p

q

π ′ π ′′

For a cuff γi in X , let A and ρ(A) be the endpoints of two paired seams between
γi and γi−1 on the cuff γi . The Fenchel–Nielsen deformation gives a geodesic of
length t between A and ρ(A), and we let C be the midpoint. The other two paired

A

D
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C

C ′

O

O′

O′O

D
DD

A AC C ′

The orbifold S2(2, . . . , 2)X The orbifold S2(2, 2, n, n)X

DD

A A

O

C E

The orbifold S2(2, 2, n, n)X

Figure 3. Orbifolds for the hyperbolic 0(2, n) surface.
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seams give another midpoint C ′. Then C and C ′ are fixed points of the rotation
ρ on γi and |AC | is half the twist parameter t . It follows that in S2(2, 2, n, n)X

(Figure 3, top right), we have

|CC ′
| = c, |AC | =

1
2 t

and in S2(2, 2, 2, n)X (Figure 3, bottom) we have

|CE | =
1
2 c, |AC | =

1
2 t.

3. The intersection properties of the systoles

In this section, we rule out curves on 0(2, n) surface that cannot be the systole.
The following lemma is classical and well known.

Lemma 2. Any systole on a closed hyperbolic surface is simple and any two
systoles intersect at most once. On the orbifold S2(2, 2, . . . , 2), S2(2, 2, n, n) or
S2(2, 2, 2, n), any simple closed curve is separating, and any two simple closed
curves are either disjoint or intersect at least twice.

The following lemma is used to rule out curves on 0(2, n) that cannot be the
systole.

Lemma 3. Given a hyperbolic 0(2, n) surface X , let π, π ′, π ′′ denote the branched
covering maps

X S2(2, 2, . . . , 2)X S2(2, 2, n, n)X S2(2, 2, 2, n)X
π π ′ π ′′

Then under the maps π , π ′
◦ π and π ′′

◦ π ′
◦ π , the image of a systole on X has no

self-intersection at any regular point on the targeting orbifold, and the images of
two systoles do not intersect at any regular point on the targeting orbifold.

Proof. (1) If α is a simple closed curve in X , π(α) has a self-intersection point p.
Then π−1(p) consists of two points, both are the intersection points of π−1(π(α)).
By the definition of double branched cover, π−1(π(α)) consists of either one curve
or two curves with equal length. Since α is simple, π−1(π(α)) consists of two
curves. These two curves intersect at least twice, therefore cannot be systole.

We assume α and β are two simple closed curves with equal length on X , Hence
the shape of π(α) and π(β) has two possibilities: S1 or a segment whose endpoints

Figure 4. Case (a): π(α) ∪ π(β).
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Figure 5. Case (a): The double covers of π(α) ∪ π(β). The three
types are shown in the top, the bottom left, and the bottom right,
respectively.

are branched points of the branched cover π . We also assume p is the intersection
point of π(α) and π(β).

(a) If π(α) and π(β) are simple closed curves, then π(α) intersects π(β) at least
twice by Lemma 2. Recall that there are two types of double covers of S1, namely
S1 and S1 ∐

S1. Then there are three types of double covers of π(α)∪π(β), shown
in Figure 5.

In all the cases, α intersects β at least twice, which contradicts to Lemma 2.

(b) If π(α) is a segment while π(β) is a simple closed curve (Figure 6, left), then
there are two types of the double (branched) covers of π(α) ∪ π(β) shown in
Figure 6, middle and right.

If the double branched cover of π(α)∪π(β) is the case shown in Figure 6, middle,
then it is clear that the curve α and β have at least two intersections. Therefore, α

and β cannot be systoles.
If the double branched cover of π(α) ∪ π(β) is the case shown in Figure 6,

right, we assume p̃ is one of the branched point of π in Figure 6, right. Therefore
π∗([β̃]) = π∗([β̃ ′]) in π1(π(X), π( p̃)). Here [β̃] and [β̃ ′] are elements of π1(X, p̃)

represented by β̃ and β̃ ′. It contradicts the injectivity of π∗ (π is a covering map).

(c) If both π(α) and π(β) are segments (Figure 7), then |π−1(π(α))∩π−1(π(β))|≥

2 since the intersection point of π(α) and π(β) is a regular point. However, both
π−1(π(α)) and π−1(π(β)) are connected. Therefore |α ∩ β| ≥ 2, so that α and β

cannot be systole.

β̃

β̃′

p̃

Figure 6. Case (b): π(α) ∪ π(β) (left) and the double covers of
π(α) ∪ π(β) (middle and right).
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Figure 7. Case (c): π(α) ∪ π(β).

(2) Let α be a systole of X ; then by (1), π(α) has no self-intersection and won’t
intersect the image of another systole at regular points. Therefore, if π ′π(α) has
self-intersection at regular points, then it implies that either π(α) intersects itself or
it intersects another lift of π ′π(α). Therefore π ′

◦ π(α) has no self-intersections.
By exactly the same argument, we can prove that the images of two systoles of

X on S2(2, 2, n, n) do not intersect at any regular point of the orbifold.
The case for π ′′

◦ π ′
◦ π is similar to the case for π ′

◦ π . □

4. The image of systoles on S2(2, 2, 2, n)

For a 0(2, n) surface X , we find geodesics in S2(2, 2, 2, n)X that lift to the systoles
in X in this section.

Lemma 4. For a 0(2, n) surface X , a systole’s image in the orbifold S2(2, 2, 2, n)X

(Figure 3, bottom) has only two possibilities:

(1) A geodesic segment joining two order-two singular points (C and D, C and E
or D and E).

(2) A simple closed geodesic passing through C.

Proof. By Lemma 3, the image of a systole of X is a simple closed geodesic or a
geodesic segment joining two singular points.

(1) Image of a systole of X cannot be a simple closed curve not passing through any
singular point of the orbifold. Such a curve separates S2(2, 2, 2, n)X by Lemma 2.
On each side of the curve, there are two singular points; otherwise, the curve lifts to
null-homotopic curves in X . The order of both singular points on one side is two;
hence the geodesic homotopic to this curve is the geodesic joining these two points.

(2) No systole’s image passes through the order n singular point O . This point lifts
to a regular point in S2(2, 2, . . . , 2)X , and a segment through O lifts to n segments
intersecting at the preimage of O . Then by Lemma 3, this conclusion holds.

(3) The simple closed curve passing through D or E cannot lift to a systole of X ,
since D and E lift to regular points in S2(2, 2, n, n)X , and such curves lift to
nonsimple curves (Figure 8).

By (1), (2), (3), this lemma holds. □
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Figure 8. A simple closed curve passing through D in S2(2,2,2,n)

and its lift.

In order to obtain the systole of a 0(2, n) surface, the next step is to find the
geodesic in S2(2, 2, 2, n)X joining C and D (or C and E or D and E or the simple
closed geodesic through C), whose lift in X is the shortest one among all geodesics
joining C and D (or C and E or D and E or the simple closed geodesic through
C , respectively).

Lemma 5. For a 0(2, n) surface X , let l and l ′ be two geodesics in S2(2, 2, 2, n)X

joining C and D (or joining C and E or D and E or the simple closed geodesics
passing through C), and l̃ and l̃ ′ are their preimages in X , respectively. Then
the covering l̃ → l and l̃ ′ → l ′ are topologically equivalent. More precisely, a
homeomorphism f : l → l ′ can lift to f̃ : l̃ → l̃ ′, letting this diagram commute:

l̃

q
��

f̃
// l̃ ′

q
��

l
f
// l ′

Proof. We provide the proof for the geodesics joining C and D only, since the
proofs for other cases are exactly the same.

For any l ⊂ S2(2, 2, 2, n)X joining C and D, there is a curve l ′′ joining D and E ,
intersecting l only at D. The double branched cover π ′′

: S2(2, 2, n, n)X →

S2(2, 2, 2, n)X can be constructed by gluing two copies of S2(2, 2, 2, n)X\l ′′ along
their boundaries. Hence the preimage of l in S2(2, 2, n, n)X is a segment (denoted
as l̃1) joining C and C ′ for any l. Therefore the coverings of any two segments
joining C and D are equivalent (Figure 9).

Similarly, for any l̃1 ⊂ S2(2, 2, n, n)X joining C and C ′, there is a segment l ′′1 join-
ing O and O ′, intersecting l̃1 at exactly one point. Thus we can construct the n-fold
cyclic branched cover of S2(2, 2, n, n)X by gluing n-copies of S2(2, 2, n, n)X\l ′′1 .
Since for any l̃1, we always choose a curve l ′′1 intersecting l̃1 once, the covering
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Figure 9. l and its lifts.

of l̃1 by its preimage in S2(2, 2, . . . , 2)X (denoted by l̃2) is topologically unique
(Figure 9).

The multicurve l̃2 ⊂ S2(2, 2, . . . , 2)X consists of segments joining the singular
points. Therefore its preimage in the 0(2, n) surface X (a manifold with no singular
points) is topologically unique. □

Corollary 6. Let l, l ′ ⊂ S2(2, 2, 2, n)X be geodesic segments joining C and D, and
α, α′

⊂ X be simple closed geodesics lifted from l and l ′, respectively. If |l| < |l ′|,
then |α| < |α′

|.
This conclusion also holds for geodesics joining C and E , geodesics joining

D and E , or simple closed geodesics passing through C.

Proof. By Lemma 5,
|α|

|l|
=

|α′
|

|l ′|
. □

Proposition 7. For a 0(2, n) surface X , there are only four possible geodesics in
S2(2, 2, 2, n)X that lift to systoles in X. They are the shortest geodesics joining
C and D, joining C and E and joining D and E , and the shortest simple closed
geodesic passing through C , denoted as lCD , lCE , lDE and lC , respectively. Figure 10
describes the geometry of these four curves.
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O

C E

D1D

A A1

O

C E

D1D

A A1

O

C E

D1D

A A1

O

C E

Figure 10. The four geodesics that possibly lift to systoles of X .
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Figure 11. Looking for the shortest geodesic joining C and D
(top) and looking for the shortest simple closed geodesic passing
through C (bottom).

Proof. By Corollary 6, the goal of this proposition is to describe the shortest
geodesics in S2(2, 2, 2, n)X joining C and D, joining C and E , joining D and E
and the simple closed geodesic passing through C .

(1) The shortest geodesic joining C and D: Let’s consider the pentagon shown in
Figure 11, a fundamental domain of S2(2, 2, 2, n)X . If a geodesic l ⊂ S2(2, 2, 2, n)X

joining C and D consists of more than one segment in the pentagon (Figure 11,
top left), then by reflecting some of its segments, we obtain a bending geodesic
segment joining C and D or C and D1 with equal length to l and show that l is
longer than the segment CD or CD1.
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Figure 12. Looking for the shortest geodesic joining C and D (I)
(top) and looking for the shortest geodesic joining C and D (II)
(bottom).
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The segment CD is shorter than CD1, because

|AD| = |AD1| and |AC | <
c
2

< |A1C |,

and it follows by the hyperbolic cosine law [Buser 2010, p. 454, 2.2.2 (i)]. Therefore,
the shortest geodesic joining C and D is the segment lCD shown in Figure 10, top
left.

(2) The shortest geodesic joining D and E is the segment lDE shown in Figure 10,
top right, by the same argument.

(3) The shortest simple closed geodesic passing through C is the geodesic lC shown
in Figure 10, bottom right, by the same argument; see Figure 11.

(4) The shortest geodesic joining C and E : By reflecting some segments, we get
the shortest geodesic is either the geodesic in Figure 12, top right, (denoted by lCE )
or the geodesic in Figure 12, bottom right (denoted by l ′CE ). By the cut-and-paste
shown in Figure 13, we see that lCE is shorter than l ′CE , hence the shortest geodesic
joining C and E is lCE in Figure 10, bottom left. □

5. Calculations

In this section, we represent the length of the curves in Figure 10 by the parameters
c and t . Then by these formulae, we give a condition of the 0(2, n) surface having
the longest systole. For convenience, we call this surface a maximal surface. Finally,
we calculate the systole length of this surface.

Recall that in the pentagons in Figure 10, |CE | = c/2, |AC | = t/2, |A1 E | =

(c − t)/2 and ̸ DOD1 = 2π/n. We assume AD = A1 D1 = s/2. Then in one of
the two half pieces of the pentagon (Figure 14), by hyperbolic trigonometry [Buser
2010, p. 454, 2.3.1 (i)],

(5-1) sinh c
2

sinh s
2

= cos π

n
.

Therefore, directly, for the lengths of the geodesics in Figure 10, we have

(5-2) |lCE | =
c
2
,
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D1D
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Figure 14. The pentagon.

and by the hyperbolic cosine law in right-angled triangles [Buser 2010, p. 454,
2.2.2 (i)]

cosh|lCD| = cosh|CD| = cosh t
2

cosh s
2
;(5-3)

cosh|lDE | = cosh|D1 E | = cosh c−t
2

cosh s
2
.(5-4)

To calculate the length of lC (Figure 10, bottom right), we treat the pentagon as
a fundamental domain for the orbifold S2(2, 2, 2, n) in H2. Then in the joining of
two pentagons shown in Figure 15, left, lC is realized by the segment CC ′. Hence
its length is

(5-5) cosh|lC | = cosh|CC ′
|

= cosh|AA′

1| cosh|AC | cosh|A′

1C ′
| − sinh|AC | sinh|A′

1C ′
|

= cosh s cosh t
2

cosh
(

c −
t
2

)
− sinh t

2
sinh

(
c −

t
2

)
by a trigonometric formula [Buser 2010, p. 38, 2.3.2].

Now we are ready to prove the following:

Proposition 8. In the 0(2, n) surface X0 with maximal systole among all the
0(2, n) surfaces, lDE in S2(2, 2, 2, n)X0 cannot lift to a systole of this surface.

Proof. Recall that by Proposition 7, in S2(2, 2, 2, n)X0 , there are only four geodesics
that can lift to systoles of X0, namely lCD , lDE , lCE and lC in Figure 10.

If lDE lifts to a systole, then lCD and lCE cannot lift to systoles. This is because,
when lifting to S2(2, 2, n, n), lDE intersects lCD and lCE at regular points D and E
of the orbifold (Figure 15, right), therefore by Lemma 3, they cannot simultaneously
become systoles.

Then we calculate the differentials of |lDE | and |lC |, showing that there is vector
(A(c, t), B(c, t)) such that d|lC |(A, B) > 0 and d|lDE |(A, B) > 0 simultaneously.
Since only lDE and lC can lift to systoles, a surface with a systole lifted from lDE

cannot be a maximal surface.
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D1D

A A1

O

C E

C ′

E′

A′
1

E

D

CC ′

lDE

lCE

lCD

Figure 15. The geodesic lC (left) and the lift of lDE , lCD and lCE (right).

As a preparation, we differentiate both sides of (5-1) and get

(5-6)
ds
dc

= −
cosh c

2 sinh s
2

cosh s
2 sinh c

2
.

Then for lDE

∂|lDE |

∂t
=

∂

∂t

(
cosh s

2
cosh c−t

2

)
= −

1
2

cosh s
2

sinh c−t
2

,

∂|lDE |

∂c
=

∂

∂c

(
cosh s

2
cosh c−t

2

)
=

1
2

(
sinh s

2
ds
dc

cosh c−t
2

+ cosh s
2

sinh c−t
2

)
,

d|lDE | =
∂|lDE |

∂t
dt +

∂|lDE |

∂c
dc.

For lC

(5-7) ∂|lC |

∂t
=

∂

∂t

(
cosh s cosh t

2
cosh

(
c −

t
2

)
− sinh t

2
sinh

(
c −

t
2

))
=

1
2
(cosh s + 1) sinh(t − c),

and

∂|lC |

∂c
=

∂

∂c

(
cosh s cosh t

2
cosh

(
c −

t
2

)
− sinh t

2
sinh

(
c −

t
2

))
= −

cosh c
2 sinh s

2
cosh s

2 sinh c
2

sinh s cosh t
2

cosh
(

c −
t
2

)
+ cosh s cosh t

2
sinh

(
c −

t
2

)
− sinh t

2
cosh

(
c −

t
2

)
,

d|lC | =
∂|lC |

∂t
dt +

∂|lC |

∂c
dc.

The two tangent vectors d|lDE |, d|lC | are nonzero vectors. When c > 0, 0 ≤ t ≤ c,

∂|lDE |

∂t
< 0,

∂|lC |

∂t
< 0.

For any k ≤ 0, d|lDE | ̸= kd|lC |. Then there is a vector (A(c, t), B(c, t)) such that

d|lDE |(A(c, t), B(c, t)) > 0, d|lC |(A(c, t), B(c, t)) > 0.
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By the assumption that lDE lifts to a systole of X0, only lDE and lC can lift to a
systole of the surface. Then there is another surface with systole bigger than X0.
Therefore X0 is not maximal. □

From Propositions 7 and 8, we know that only lCE , lCD and lC in the orbifold
S2(2, 2, 2, n) can lift to a systole of the maximal surface.

By the symmetry of 0(2, n) surfaces and Lemma 3, the preimage of the geodesic
lCE ⊂ S2(2, 2, 2, n) (lCD , lC , respectively) on the 0(2, n) surface consists of pairwise
disjoint geodesics with equal length.

Proposition 9. On the maximal 0(2, n) surface X0, a simple closed geodesic is a
systole if and only if it is lifted from lCE , lCD or lC .

Proof. It is sufficient to prove that in X0, every geodesic lifted from lCE , lCD or lC

is a systole.
The proof is divided into two steps.

(1) If there is only one curve among lCE , lCD and lC that lifts to the systoles of X0,
then X0 is not maximal.

Without loss of generality, we assume that lCE lifts to the systole of X0, while
lCD and lC do not lift to systoles of X0. On the orbifold S2(2, 2, 2, n)X0 , there are
deformations increasing or decreasing the length of the curve lCE . A deformation
increasing the length of lCE increases the length of geodesics lifted from lCE in X0.
If the deformation is small enough, then we get a new 0(2, n) surface, whose
systoles are lifted from lCE and the length of these curves are longer than the
corresponding curves in X0. Hence X0 is not maximal.

(2) If there are exactly two curves among lCE , lCD and lC lifting to the systole of
the 0(2, n) surface, then the surface is not maximal.

(2a) We assume lCE and lCD lift to the systoles of X0, while lC does not lift to
systoles of X0. Then in the Fenchel–Nielsen coordinate (c, t), the length |lCD|(c, t)
is monotonely increasing with respect to t by (5-3), while lCE = c/2. We pick a
sufficiently small ε > 0 and deform the Fenchel–Nielsen coordinate from (c, t)
to (c, t + ε); then we get a new surface X ′. The systoles of X ′ are exactly the
geodesics lifted from lCE , and this surface has the same systole length to X0. Then
by (1), there exists a surface with longer systole than these two surfaces.

(2b) If lCE and lC lift to the systoles of X0, while lCD does not lift to systoles of X0,
the proof is similar. By (5-7), lC is decreasing with respect to t when t ≤ c. Thus
using the deformation (c, t) 7→ (c, t − ε), we get a surface whose systoles are all
lifted from lCE and whose systole length is equal to X0’s. Thus by (1), we know
X0 is not maximal.

(2c) The last case is that lCD and lC lift to the systoles of X0, while lCE does not
lift to systoles of X0. Similarly, some of the Fenchel–Nielsen deformations along
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Figure 16. Cutting off a subsurface with signature (1, 2).

lCD increase the length of lC and let lCD become the unique geodesic that can lift
to systoles of X0. Then by (1), this surface is not maximal.

By (1) and (2), all three curves lCD , lCE and lC lift to the systoles of the maximal
0(2, n) surface. □

We are now ready to calculate the maximal systole on hyperbolic 0(2, n) surfaces.

Proof of Theorem 1. First we describe the lift of lCE , lCD and lC in the 0(2, n)

surface, respectively.
In the 0(2, n) surface shown in Figure 16, Ci and C ′

i (i = 1, . . . , n) are the fixed
points of the order-two involution τ (recall its definition in Section 2) and are the
lifts of the singular point C in S2(2, 2, 2, n); Di and D′

i are the mid-points of the
seams, and the lifts of the point D in S2(2, 2, 2, n); Ei and E ′

i are the mid-points
of Ci C ′

i and the lifts of the point E in S2(2, 2, 2, n).
The curve lCE lifts to cuffs of the surface, denoted as γi (i = 1, . . . , 5 ); lCD

lifts to geodesics passing through Ci Di C ′

i+1 D′

i denoted as αi ; lC lifts to geodesics
passing through Ci Ci+1, denoted as βi .

To calculate the systole length, we cut off a subsurface with signature (1, 2) from
the 0(2, n) surface containing γ1, γ2 and α1 (Figures 16 and 17), the boundary
length of this surface is given by [Buser 2010, p. 454, 2.4.1 (i)]. We take common
perpendiculars between cuffs and boundary components as in Figure 17. Then in
the hexagon H1 H2 A1 A2 A3 A4, we have

(5-8) cosh|H1 H2| = sinh|A1 A2| sinh|A3 A4| cosh|A2 A3| − cosh|A1 A2| cosh|A3 A4|

= sinh2 c cosh s − cosh2 c.

In this subsurface, C1, C ′

1, C2, C ′

2 are branched points of the hyperelliptic involution
and α1, β1, γ1, γ2 are the systoles of the 0(2, n) surface (Figure 18). To calculate
the systole length, we redraw the (1, 2)-subsurface as Figure 19. When the systole
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A1A′
1

A2

A3

A4 A′
4

H1 H ′
1

H2 H ′
2

Figure 17. The red curves are cuffs. The blue curves are seams.

is maximal, the lengths of γ1 and β1 are the same, namely |C1C ′

1| = |C1C2|. In this
case, the subsurface is shown in Figure 20.

When the surface is maximal, |H5 H6| =
1
2 |α1| = c, |C1C ′

1| =
1
2γ1 = c. We

assume |H3 H4| = l and |H5C ′

1| = h. Then in the hexagon H4 H3C ′

2 H6 H5C1, by
the symmetry of this hexagon, |H6C ′

2| = |H5C ′

1| = h, and by [Buser 2010, p. 454,
2.4.1(i)] we have

cosh|H3 H4| = sinh|C1 H5| sinh|C ′

2 H6| cosh|H5 H6| − cosh|C1 H5| cosh|C ′

2 H6|

and

(5-9) cosh l = sinh2 h cosh c − cosh2 h.

In the triangle △C1 H5C ′

1, by [Buser 2010, p. 454, 2.2.2 (i)], we have

(5-10) cosh|C1C ′

1| = cosh|C1 H5| cosh|C ′

1 H5| cosh c = cosh h cosh c
2
.

H4

H3

C1

γ1

α1

β1

γ2

C ′

1
C2

C ′

2

H ′

3

H ′

4

Figure 18. Systoles of X in the (1, 2)-subsurface.
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Figure 19. Redrawing the (1, 2)-subsurface.

For convenience, we denote cosh c by K . Then combining (5-9) and (5-10), we
eliminate h and get

(5-11) 2K 2

K +1
=

K +cosh l
K −1

.

Recall that l = |H3 H4|. Then combining (5-11), (5-8) and (5-1), we eliminate l
and s, and get

2K 3
− 3K 2

+ 1 − 4 cos2 π

n
(K + 1)2

= 0.

The unique real solution of this equation is

K =
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 +

√
1

108 L(L2 + 18L + 27)

+
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 −

√
1

108 L(L2 + 18L + 27) +
1
6(L + 3),

where L = 4 cos2 π
n .

At last, we calculate the twist parameter t of the maximal surface, using (5-1)
and (5-3):

cosh t
2

=
cosh c

2
cosh s

2

=
cosh2 c

2
cos π

n

=
cosh c+1
2 cos π

n

=
K +1

2 cos π
n

.

Theorem 1 follows. □
H4 H3 H ′

3 H ′

4

C1 C ′

2 C1

H5

C ′

1 H6 C2 C ′

1 H6

C1 C ′

2 C1

H4 H3 H ′

3 H ′

4

Figure 20. When |C1C ′

1| = |C1C2|.
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STABLE SYSTOLES OF HIGHER RANK
IN RIEMANNIAN MANIFOLDS

JAMES J. HEBDA

This paper introduces the stable systoles of higher rank of a Riemannian
manifold as a generalization of the usual stable systoles. Several inequalities
involving these higher rank systoles are proved.

1. Introduction

Let M be a smooth compact orientable manifold of dimension n. A Riemannian met-
ric g on M induces an associated stable mass norm ∥ · ∥ on the real homology groups
Hp(M,R). Because the image of the p-th integral homology group Hp(M,Z) in
Hp(M,R) is a lattice, denoted Hp(M,Z)R, in Hp(M,R), we thereby obtain for
each p a lattice in a normed vector space. Such structures are the central objects of
study in the geometry of numbers [6], and their various numerical invariants thus
give rise to a host of invariants of the Riemannian manifold (M, g).

For example, the p-dimensional stable systole stsysp(M, g) is the minimum
norm of the nonzero elements in the lattice Hp(M,Z)R. These have been studied
extensively [8; 9; 12]. One can also consider the successive minimums of the
lattice or its whole length spectrum [10]. The volume of the Jacobian variety
Jp = Hp(M,R)/Hp(M,Z)R with the (Finsler) metric induced from the stable
norm gives an additional invariant. There are various natural ways to define the
volume of the quotient tori [15]. In [8], the mass and mass* measures were used to
define the volume of Jp. In this paper we will use the Busemann–Hausdorff measure
to define the volume of Jp as well as the higher rank systoles of a Riemannian
manifold.

Given a positive integer k less than or equal to the p-th Betti number bp of M ,
we define stsysp,k(M, g) to be the minimum Hausdorff–Busemann volume of the
fundamental region of sublattices of Hp(M,Z)R of rank k. This can be interpreted
as the k-th systole of Jp. In particular stsysp,1(M, g) is the ordinary stable p-th
systole, and stsysp,bp

(M, g) is the Hausdorff–Busemann volume of Jp.
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Among the results of this paper are sharp stable systolic inequalities. The first of
these generalizes an inequality due to Bangert and Katz [1].

Theorem 5.1. Let (M, g) be a compact oriented manifold of dimension n whose
first Betti number is b. Then

stsys1,b(M, g) stsysn−1,b(M, g)≤ Vol(M, g).

Equality holds if and only if there exists a Riemannian submersion of M onto a flat
torus of dimension b with connected minimal fibers.

A further generalization is Theorem 5.2 which is stated and proved in Section 5.
In addition, we prove a sharp inequality for conformally flat metrics on the 4-
dimensional torus for the 2-dimensional stable systole of rank 6.

Theorem 6.7. Let (M, g) be a conformally flat 4-dimensional torus. Then

stsys2,6(M, g)2 ≤

(
3π
4

)1
3

Vol(M, g).

Equality holds if and only if (M, g) is flat.

This paper is organized as follows. In Section 2, we discuss lattices in normed
vector spaces and their invariants, as well as the behavior of Hausdorff–Busemann
volume under linear transformations. Section 3 reviews some properties of the mass,
comass and L2 norms on the (co)homology of a compact oriented manifold. The
formal definition of the stable systoles of higher rank is given in Section 4. This
section provides a number of inequalities involving them related to the properties of
the cap product. In Section 5, we prove a sharp (1, n−1)-inequality that generalizes
that of Bangert and Katz [1]. In Section 6, we calculate the 2-dimensional systole
of rank 6 in flat 4-dimensional tori, and prove a sharp inequality for conformally
flat metrics on the 4-dimensional torus. Finally, in the Appendix, we prove a result
needed in Section 5 that the dual k-extreme lattices are dual k-perfect.

2. Normed vector spaces

Hausdorff measure. Let (V, ∥ · ∥) be an n-dimensional normed vector space over
the real numbers. Let K ⊂ V be the unit ball in (V, ∥ · ∥). According to a theorem
of Busemann [5, (2.3)], the Hausdorff n-dimensional measure Voln( · , ∥ · ∥) is the
unique translation invariant (Haar) measure on V normalized such that

Voln(K , ∥ · ∥)= ωn =
π

n
2

0
(
1 +

n
2

) .
Here ωn denotes the Euclidean volume of the Euclidean unit ball, and 0 is the
gamma function.
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Proposition 2.1 (cf. [15]). Suppose that T : V → W is a linear isomorphism
between the n-dimensional normed spaces (V, ∥ · ∥) and (W, ∥ · ∥

′) such that

∥T (x)∥′
≤ C ∥x∥

for all x ∈ V for some constant C. Then

(2-1) Voln(T (E), ∥ · ∥
′)≤ Cn Voln(E, ∥ · ∥)

for all Borel sets E ⊂ V . Moreover, if equality holds in (2-1) for some E with
nonzero volume, then equality holds in (2-1) for all E and

∥T (x)∥′
= C ∥x∥

for all x ∈ V .

Proof. Let K and K ′ denote the unit balls of V and W , respectively. By assumption
T (K )⊂ C K ′

={Cx : x ∈ K ′
}. We may choose inner products on V and W so that T

is an isometry. Let Ln denote the n-dimensional Lebesgue measure on V and W for
the Euclidean metrics induced from the inner products. Thus Ln(T (E))= Ln(E)
for all Borel sets E in V . Hence Ln(K ) = Ln(T (K )) ≤ Ln(C K ′) = CnLn(K ′).
Therefore

(2-2) Voln(T (E), ∥ · ∥
′)=

ωn

Ln(K ′)
Ln(T (E))

≤ Cn ωn

Ln(K )
Ln(E)= Cn Voln(E, ∥ · ∥)

proving (2-1). If equality holds for some E with Ln(E) ̸= 0, then, by the proof of
(2-2), Ln(T K )= Ln(C K ′). Now T K ⊂ C K ′ are both closed bounded convex sets
of W . Thus, if T K ̸= C K ′, there would exist an open set contained in C K ′

\T K
which would imply the contradiction Ln(C K ′

\T K ) > 0. Hence T K = C K ′, and
therefore ∥T (x)∥′

= C ∥x∥ for all x ∈ V . □

Lattices. Suppose that Λ is a lattice in (V, ∥ · ∥). The Hausdorff measure in V
passes down to the Hausdorff–Busemann measure on the n-dimensional torus V/Λ.
Its volume is equal to the measure of a fundamental domain for Λ and will be
denoted Voln(V/Λ, ∥ · ∥). The Hausdorff–Busemann volume has the following
asymptotic interpretation. Let N (R) equal the number of lattice points x ∈ Λ with
∥x∥ ≤ R. Then

lim
R→∞

N (R)
Rn =

ωn

Voln(V/Λ, ∥ · ∥)
.

Thus Voln(V/Λ, ∥ · ∥) depends only on the length spectrum of Λ. By the second
Minkowski inequality [6, p. 218], the Hausdorff–Busemann volume also satisfies
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the inequality

2n

n!
Voln(V/Λ, ∥ · ∥)≤ λ1 · · · λnωn ≤ 2n Voln(V/Λ, ∥ · ∥),

where the λi are the successive minimums of the lattice Λ.
Let V ∗ be the dual space of V with dual norm ∥ · ∥

∗. The polar set K ◦
⊂ V ∗ is

defined to be the unit ball in (V ∗, ∥ · ∥
∗). Let Λ∗

⊂ V ∗ denote the dual lattice of Λ.

Lemma 2.2. Let Λ and Λ∗ be dual lattices in the respective dual normed spaces
(V, ∥ · ∥) and (V ∗, ∥ · ∥

∗). There exists a universal constant c > 0 such that

1 ≤ Voln(V/Λ, ∥ · ∥)Voln(V ∗/Λ∗, ∥ · ∥
∗)≤

1
cn
.

Proof. Let K ◦ be the polar of K . Fix an inner product on V with its dual inner
product, and let Ln denote the corresponding n-dimensional Lebesgue measures.
Thus

Voln(V/Λ, ∥ · ∥)Voln(V ∗/Λ∗, ∥ · ∥
∗)= ω2

n
Ln(V/Λ)
Ln(K )

Ln(V ∗/Λ∗)

Ln(K ◦)
.

But by the Santalo and the Bourgain–Milman [4] inequalities,

ω2
n ≥ Ln(K )Ln(K ◦)≥ cnω2

n

for some universal constant c, and by Lemma 5 of [6, p. 24],

Ln(V/Λ)Ln(V ∗/Λ∗)= 1.

The proof is completed by combining these three formulas. □

Remark 2.3. It is conjectured that c =
2
π

. Kuperberg [13] has shown c ≥
1
2 .

Sublattices. Let k be an integer with 1 ≤ k ≤ n. By definition, a sublattice of
Λ of rank k is a lattice Λ′ in a k-dimensional vector subspace V ′ of V such that
Λ′

=Λ∩V ′. Let ∥ · ∥
′ be the restriction of ∥ · ∥ to V ′. Then the Hausdorff–Busemann

volume of Λ′ is Volk(V ′/Λ′, ∥ · ∥
′). Define

1k(Λ, ∥ · ∥)= inf
Λ′

Volk(V ′/Λ′, ∥ · ∥
′),

where Λ′ runs over all sublattices of rank k in Λ. In particular 11(Λ, ∥ · ∥) is just
the length of the shortest nonzero element of Λ.

In the special case when | · | is a Euclidean norm obtained from an inner product
on V ,

Voln(V/Λ, | · |)= det(Λ)≡ |e1 ∧ · · · ∧ en|,

where e1, . . . , en is a basis for Λ. Thus if k is an integer with 1 ≤ k ≤ n, the
numbers 1k(Λ, | · |) are exactly the carcans of flat tori defined by Berger in [3, §7].
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Following [2], define the Hermite–Rankin constants

γn,k = sup
Λ

1k(Λ, | · |)
2

det(Λ)2k/n

and the Bergé–Martinet constants

γ ′

n,k = sup
Λ
1k(Λ, | · |)1k(Λ

∗, | · |∗),

where Λ runs over all lattices in the n-dimensional Euclidean space (V, | · |).

Proposition 2.4. Let (V, ∥ · ∥) be a normed vector space of dimension n. Then

(2-3)
1k(Λ, ∥ · ∥)2

Voln(V/Λ, ∥ · ∥)2k/n ≤ nkγn,k,

and

(2-4) 1k(Λ, ∥ · ∥)1k(Λ
∗, ∥ · ∥

∗)≤ n
k
2 γ ′

n,k .

Proof. Let E be the John ellipsoid for the unit ball in V [11]. Then E determines a
Euclidean norm | · |E on V that satisfies

(2-5) ∥ · ∥ ≤ | · |E ≤
√

n ∥ · ∥.

Thus by Proposition 2.1

Voln(V/Λ, | · |E)≤ n
n
2 Voln(V/Λ, ∥ · ∥),

and, for any sublattice Λ′ of rank k in a k-dimensional subspace V ′,

Volk(V ′/Λ′, ∥ · ∥)≤ Volk(V ′/Λ′, | · |E).

Hence,
1k(Λ, ∥ · ∥)≤1k(Λ, | · |E),

and therefore
1k(Λ, ∥ · ∥)2

Voln(V/Λ, ∥ · ∥)2k/n ≤ nkγn,k .

Passing to the dual norms, inequality (2-5) implies

(2-6) ∥ · ∥
∗
≥ | · |

∗

E ≥
1

√
n

∥ · ∥
∗.

Thus
1k(Λ

∗, ∥ · ∥
∗)≤ n

k
21k(Λ

∗, | · |∗E),

and therefore
1k(Λ, ∥ · ∥)1k(Λ

∗, ∥ · ∥
∗)≤ n

k
2 γ ′

n,k . □
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Linear maps. If T : V → W is a linear isomorphism such that T (Λ)⊂ Γ where Λ

and Γ are lattices in V and W , respectively, then T induces a covering map

T : V/Λ → W/Γ

between two n-dimensional tori. The degree of T is clearly equal to the index of
T (Λ) in Γ as free abelian groups. Let deg(T ) denote this degree.

Proposition 2.5. Suppose that T : V → W is a linear isomorphism between the
n-dimensional normed spaces (V, ∥ · ∥) and (W, ∥ · ∥

′) such that

∥T (x)∥′
≤ C ∥x∥

for all x ∈ V . Suppose also that T (Λ)⊂ Γ where Λ and Γ are lattices in V and W ,
respectively. Then

(2-7) deg(T )Voln(W/Γ, ∥ · ∥
′)≤ Cn Voln(V/Λ, ∥ · ∥).

Equality holds if and only if

∥T (x)∥′
= C ∥x∥

for all x ∈ V .

Proof. Let E ⊂ V be the fundamental domain for the cover V over V/Λ and F ⊂ W
the fundamental domain for the cover W over W/Γ. Then T (E) can be expressed
as a union of the translates of deg(T ) copies of F . By Proposition 2.1 and the
translation invariance of the Hausdorff measure,

deg(T )Voln(F, ∥ · ∥
′)= Voln(T (E), ∥ · ∥

′)≤ Cn Voln(E, ∥ · ∥).

The case of equality follows from Proposition 2.1 as well. □

Suppose now that dim(V )= n, dim(W )= m, and T : V → W is a linear transfor-
mation of rank k such that T (Λ)⊂ Γ. Let V = V/ ker(T ) be the cokernel of T , and
Ŵ = T (V )⊂ W be the image of V under T . Also, let Λ̄⊂ V be the quotient lattice
of Λ, and Γ̂= Γ∩Ŵ the rank-k sublattice of Γ. Then T induces a linear isomorphism

T : V → Ŵ

such that T (Λ̄)⊂ Γ̂. Let ∥ · ∥q denote the quotient norm on V , and let ∥ · ∥
′
r denote

the restriction of ∥ · ∥
′ to Ŵ .

Corollary 2.6. With this notation, if ∥T (x)∥′
≤ C ∥x∥ for all x ∈ V , then

(2-8) deg(T )Volk(Ŵ/Γ̂, ∥ · ∥
′

r)≤ Ck Volk(V /Λ̄, ∥ · ∥q).

Equality holds if and only if

∥T (x)∥′

r = C ∥x∥q

for all x ∈ V where ∥ · ∥
′
r denotes the restriction of ∥ · ∥

′ to Ŵ .
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Proof. By hypothesis and the definition of the quotient norm, ∥T (x)∥′
≤ C ∥x∥q

for all x ∈ V . The result follows immediately from Proposition 2.5. □

The next lemma identifies the dual norm of a quotient norm.

Lemma 2.7. Let (V, ∥ · ∥) be a normed vector space. Let (V , ∥ · ∥q) be a quotient
space of V with quotient norm. Let (V ∗, ∥ · ∥

∗) be the dual space of V with the dual
norm. Then the dual space V ∗ of V can be identified with a subspace of V ∗ and the
dual norm ∥ · ∥

∗
q is equal to the restriction of ∥ · ∥

∗ to V ∗.

Proof. Let V0 be the kernel of the quotient map q : V → V . Clearly

V ∗
= {λ ∈ V ∗

: λ(V0)= 0}.

By definition ∥v̄∥q = inf{∥v∥ : v ∈ V, q(v)= v̄} for every v̄ ∈ V . Let λ ∈ V ∗. Then

∥λ∥∗

q = sup{λ(v̄) : v̄ ∈ V , ∥v̄∥q ≤ 1}

and
∥λ∥∗

= sup{λ(v) : v ∈ V, ∥v∥ ≤ 1}.

Now, there exists v0 ∈ V such that ∥v0∥ ≤ 1 and λ(v0)= ∥λ∥∗. Thus ∥q(v0)∥q ≤

∥v0∥ ≤ 1 and λ(q(v0))= λ(v0)= ∥λ∥∗ which implies ∥λq∥
∗
≥ ∥λ∥∗. But there also

exists v̄0 ∈ V such that ∥v̄0∥q ≤ 1 and λ(v̄o)= ∥λ∥∗
q. Thus there exists v0 ∈ V with

q(v0)= v̄0 and ∥v0∥ = ∥v̄0∥q ≤ 1. Hence λ(v0)= λ(q(v0))= λ(v̄0)= ∥λ∥∗
q which

implies ∥λ∥∗
≥ ∥λ∥∗

q. Therefore ∥λ∥∗
= ∥λ∥∗

q. □

3. Norms on homology and cohomology

Throughout this section (M, g) is a compact oriented Riemannian manifold of
dimension n.

Mass and comass. Recall that the comass norm ∥ · ∥
∗ of a cohomology class

α ∈ H p(M,R) is defined by

∥α∥
∗
= inf{comass(ω) : ω a closed p-form representing α},

where comass(ω)= max{ωx(e1, . . . , ep) : x ∈ M, ei ∈ Tx M, |ei | = 1}, and that the
stable mass norm ∥ · ∥ of a homology class h ∈ Hp(M,R) is defined by

∥h∥ = inf
{∑

i

|ri |volp(σi ) :

∑
i

riσi is a Lipschitz cycle representing h
}
.

It is well known that comass and mass are dual norms relative to the Kronecker
pairing

⟨ · , · ⟩ : Hp(M,R)× H p(M,R)→ R.
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Thus for all h ∈ Hp(M,R) and α ∈ H p(M,R)

(3-1) ⟨h, α⟩ ≤ ∥h∥∥α∥
∗.

Moreover, for all α ∈ H p(M,R) and β ∈ Hq(M,R),

(3-2) ∥α ⌣ β∥
∗
≤ C(n; p, q)∥α∥

∗
∥β∥

∗,

where ⌣ denotes the cup product; see [7, 1.8.1]. (Note that C(n; p, q)≤
(p+q

p

)
and

C(n; p, q)= 1 if p ∈ {0, 1, n −1, n}. We will see in Section 6 that C(4; 2, 2)= 2.)

Lemma 3.1. If h ∈ Hp+q(M,R) and α ∈ H p(M,R), then

∥h ⌢α∥ ≤ C(n; p, q)∥h∥∥α∥
∗,

where ⌢ denotes the cap product.

Proof. If β ∈ Hq(M,R), then using (3-1),

⟨h ⌢α, β⟩ = ⟨h, α ⌣ β⟩ ≤ ∥h∥∥α ⌣ β∥
∗.

Applying inequality (3-2) gives

⟨h ⌢α, β⟩ ≤ ∥h∥C(n; p, q)∥α∥
∗
∥β∥

∗,

and taking the supremum for all β with ∥β∥
∗
≤ 1 gives the result since ∥ · ∥ is dual

to ∥ · ∥
∗. □

The L2 norm. According to Hodge theory the cohomology classes in H p(M,R)

can be represented by the harmonic p-forms on (M, g). Moreover H p(M,R) is
endowed with an inner product which for two harmonic p-forms ϕ and ψ is given by

⟨⟨ϕ,ψ⟩⟩ =

∫
M
ϕ ∧ ⋆ψ,

where ⋆ denotes the Hodge star operator. We will denote the corresponding Eu-
clidean norm as | · |

∗

2.
We have need of the following proposition proved in [9, Corollary 3].

Proposition 3.2. Let h ∈ Hp(M,R) be the Poincaré dual of the cohomology class
α ∈ H n−p(M,R). Then

(3-3) ∥h∥ ≤ Vol(M, g)
1
2 C(n, p)|α|

∗

2,

where C(n, p) is a constant depending only on n and p. Moreover, if equality holds
then α can be represented by a harmonic p-form of constant norm.

Remark 3.3. Conversely, the proof of [9, Corollary 3] also shows that equality
holds in (3-3) for p ∈ {1, n − 1} when α is represented by a harmonic p-form of
constant norm. Note that if p equals 0, 1, n − 1, or n, then C(n, p)= 1, and that in
any case C(n, p)≤

(n
p

) 1
2 always.
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4. Higher rank systoles

Let (M, g) be a compact oriented Riemannian manifold of dimension n, and let ∥ · ∥

denote the stable mass norm on Hp(M,R) induced from g. The image of the p-th
integral homology group Hp(M,Z) in Hp(M,R) is a lattice in Hp(M,R) which
will be denoted Hp(M,Z)R. The following definition generalizes the well-known
p-dimensional stable systole stsysp(M, g).

Definition 4.1. For any integer k between 1 and the p-th Betti number bp of M ,
the p-dimensional stable systole of rank k is defined to be

stsysp,k(M, g)=1k(Hp(M,Z)R, ∥ · ∥)
1
k .

Clearly stsysp,1(M, g)= stsysp(M, g)= inf{∥x∥ : 0 ̸= x ∈ Hp(M,Z)R}.
The dual lattice H p(M,Z)R in H p(M,R) can be identified with the set of

cohomology classes of degree p with integral periods [12, Lemma 15.4.2]. Thus

H p(M,Z)R = {α ∈ H p(M,R) : ⟨x, α⟩ ∈ Z ∀x ∈ Hp(M,Z)R}.

As is Section 3, ∥ · ∥
∗ is the comass norm and | · |

∗

2 is the L2 norm on H p(M,R).
In general, the existence of nonzero cap products give rise to inequalities involving

higher rank stable systoles. The results that follow give examples of such inequalities
under various hypotheses. Proposition 4.2 is used in the proofs of Corollaries 4.3
and 4.4 and Theorems 4.5 and 4.6.

Proposition 4.2. Suppose h ∈ Hp+q(M,Z)R, and h ⌢: H p(M,R)→ Hq(M,R)

has rank k. Then

deg(h ⌢)
1
k stsysq,k(M, g) stsysp,k(M, g)≤

C(n; p, q)
c

∥h∥,

where C(n; p, q) is the constant in (3-2) and c is the constant in Lemma 2.2

Proof. Using Lemma 3.1, apply Corollary 2.6 to obtain

(4-1) deg(h ⌢)Volk(Ŵ/Γ̂, ∥ · ∥
′

r)≤ C(n; p, q)k∥h∥
k Volk(V̄ /Λ̄, ∥ · ∥q),

where Ŵ ⊂ Hq(M,R) is the image of H p(M,R) under h ⌢, Γ̂= Hq(M,Z)R ∩ Ŵ ,
and V̄ and Λ̄ are the quotients of H p(M,R) and H p(M,Z)R by the kernel of h ⌢.
Multiply both sides of (4-1) by Volk(V̄ ∗/Λ̄∗, ∥ · ∥

∗
q) and use Lemma 2.2 to obtain

(4-2) deg(h ⌢)Volk(Ŵ/Γ̂, ∥ · ∥
′

r)Volk(V̄ ∗/Λ̄∗, ∥ · ∥
∗

q)≤ C(n; p, q)k∥h∥
k 1

ck
.

But V ∗ is a k-dimensional subspace of Hp(M,R) and Λ̄∗
= Hp(M,Z)R ∩ V ∗. On

taking k-th roots and using the Definition 4.1 we obtain the stated inequality. □
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Here is a simple application. Let T 4 be the 4-dimensional torus. It is easily
checked that h ⌢: H 1(T 4,R) → H2(T 4,R) has rank 3 for every nonzero h ∈

H3(T 4,R). Thus for nonzero h ∈ H3(T 4,Z)R and any Riemannian metric g on T 4

we have by Proposition 4.2,

stsys1,3(T
4, g) stsys2,3(T

4, g)≤ 2 ∥h∥

because C(4; 1, 2) = 1, c ≥
1
2 and deg(h ⌢) ≥ 1. This leads to the following

intersystolic inequality.

Corollary 4.3. For every Riemannian metric g on T 4,

stsys1,3(T
4, g) stsys2,3(T

4, g)≤ 2 stsys3,1(T
4, g).

By taking h = [M] ∈ Hn(M,Z), the fundamental class of M , in Proposition 4.2
we obtain:

Corollary 4.4. Let 0< p < n, and let bp the p-th Betti number of M. Then

stsysp,bp
(M, g) stsysn−p,bp

(M, g)≤
C(n; p, n− p)

c
Vol(M, g).

Proof. Capping by [M] is the Poincaré duality map which is a linear isomorphism
of rank bp from H p(M,R) to Hn−p(M,R) with degree 1. Also observe that
∥[M]∥ = Vol(M, g). □

Theorem 4.5. Suppose for every nonzero h ∈ Hp+q(M,R) there exists an α ∈

H p(M,R) such that h ⌢α ̸= 0. Then

min
1≤k≤b

stsysq,k(M, g) stsysp,k(M, g)≤
C(n; p, q)

c
stsysp+q,1(M, g),

where b = min(bp, bq).

Proof. Take h ∈ Hp+q(M,Z)R with ∥h∥ = stsysp+q,1(M, g). By assumption,

h ⌢: H p(M,R)→ Hq(M,R)

has rank k for some 1 ≤ k ≤ b = min(bp, bq), and deg(h ⌢) ≥ 1. We apply
Proposition 4.2 to obtain the stated inequality. □

The next result shows that the existence of just one nonzero cap product places a
bound on the stable systoles in appropriate dimensions.

Theorem 4.6. Suppose there exist h ∈ Hp+q(M,R) and α ∈ H p(M,R) such that
h ⌢α ̸= 0. Then

min
1≤k≤b

stsysq,k(M, g) stsysp,k(M, g)≤
C(n; p, q)

c
λbp+q ,

where b = min(bp, bq) and λbp+q is the bp+q-th successive minimum of the lattice
(Hp+q(M,Z)R, ∥ · ∥).
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Proof. There is a basis h1, . . . , hbp+q of Hp+q(M,R) consisting of the successive
minimums of (Hp+q(M,Z)R, ∥ · ∥). Write h = t1h1 + · · · + tβhβ . Since

h ⌢α = t1h1 ⌢α+ · · · + tβhβ ⌢α ̸= 0,

there is at least one successive minimum hi ∈ Hp+q(M,Z)R with hi ⌢α ̸= 0. Thus
capping by hi has rank k for some 1 ≤ k ≤ b and deg(hi ⌢) ≥ 1. By definition
∥hi∥ = λi ≤ λbp+q . The result now follows by applying Proposition 4.2 □

Proposition 4.7. Let α ∈ H p(M,Z)R. Suppose that ⌢ α : Hp+q(M,R) →

Hq(M,R) is injective. Then

(4-3) deg(⌢ α)
1

bp+q stsysq,bp+q
(M, g)≤ C(n; p, q) stsysp+q,bp+q

(M, g)∥α∥
∗,

where bp+q is the (p+q)-th Betti number.

Proof. By hypothesis the rank of T =⌢ α is bp+q . Using Lemma 3.1 and the
injectivity of T =⌢α, apply Corollary 2.6 to obtain

(4-4) deg(⌢ α)Volbp+q (Ŵ/Γ̂, ∥ · ∥
′)≤ (C(n; p, q)∥α∥

∗)bp+q Volbp+q (V/Λ, ∥ · ∥),

where Ŵ ⊂ Hq(M,R) is the image of Hp+q(M,R) under⌢α, Γ̂= Hq(M,Z)R∩Ŵ ,
V = Hp+q(M,R), and Λ = Hp+q(M,Z)R. Since Ŵ has dimension bp+q we have

(4-5) deg(⌢ α)1bp+q (Hq(M,Z)R, ∥ · ∥)

≤ (C(n; p, q)∥α∥
∗)bp+q1bp+q (Hp+q(M,Z)R, ∥ · ∥).

Finally (4-3) follows from (4-5) by taking bp+q -th roots. □

The following lemma is needed to show, in Proposition 4.9, that the product of
two stable systoles of the same rank in complementary dimensions is bounded from
above in terms of the volume of the manifold.

Lemma 4.8. Let 0< p< n, let bp be the p-th Betti number of M , and let 1 ≤ k ≤ bp.
Then

stsysp,k(M, g)≤ C(n, p)Vol(M, g)
1
21k(H n−p(M,Z)R, | · |

∗

2)
1
k ,

where C(n, p) is the constant in Proposition 3.2.

Proof. Let Λ be a sublattice of H n−p(M,Z)R of rank k in a k-dimensional subspace
V ⊂ H n−p(M,R). Then Poincaré duality maps Λ onto a sublattice Γ of Hp(M,Z)R

of rank k in a k-dimensional subspace W ⊂ Hp(M,R) (because Poincaré duality
is an isomorphism). Thus Poincaré duality is of rank k and degree 1. Applying
Propositions 2.5 and 3.2, we obtain

(4-6) Volk(W/Γ, ∥ · ∥)≤ (Vol(M, g))
k
2 C(n, p)k Volk(V/Λ, | · |∗2).

The result follows by taking the infima over all rank-k sublattices and k-th roots. □
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Proposition 4.9. Let 0 < p < n, and let bp be the p-th Betti number of M and
1 ≤ k ≤ bp. Then

stsysp,k(M, g) stsysn−p,k(M, g)≤ C(n, p)2 Vol(M, g)(γ ′

bp,k)
1
k .

Proof. Multiply the inequalities of Lemma 4.8 with p equal to p and to n − p. Ob-
serve that C(n, p)= C(n, n− p), and that, because H p(M,Z)R and H n−p(M,Z)R

are dual lattices,

1k(H p(M,Z)R, | · |
∗

2)1k(H n−p(M,Z)R, | · |
∗

2)≤ γ ′

bp,k . □

5. A sharp inequality in dimensions 1 and n−1

The two theorems in this section are analogs of the main theorem in [1].

Theorem 5.1. Let (M, g) be a compact oriented manifold of dimension n whose
first Betti number is b. Then

(5-1) stsys1,b(M, g) stsysn−1,b(M, g)≤ Vol(M, g).

Equality holds in (5-1) if and only if there exists a Riemannian submersion of M
onto a flat torus of dimension b with connected minimal fibers.

Proof. The inequality (5-1) follows from Proposition 4.9 because C(n, 1)= 1 and
γ ′

b,b = 1.
Suppose now that equality holds in (5-1). Then by the proof of Proposition 4.9,

equality holds in Lemma 4.8. Thus inequality (4-6) is an equality for p ∈ {1, n −1}

and k = b, that is,

Volb(Hp(M,R)/Hp(M,Z)R, ∥ · ∥)

= Vol(M, g)
b
2 Volb(H n−p(M,R)/H n−p(M,Z)R, | · |

∗

2)

for p ∈ {1, n − 1}. Consequently, by Propositions 2.5 and 3.2,

∥[M]⌢α∥ = Vol(M, g)
1
2 |α|

∗

2

for all α ∈ H p(M,R) with p ∈ {1, n − 1}. Hence by Proposition 3.2, the first
(and (n−1)-st) degree cohomology classes of M with integral periods are repre-
sented by harmonic 1-forms (and (n−1)-forms) of constant norm. Applying [12,
Proposition 16.7.3], there exists a Riemannian submersion of M onto a flat torus of
dimension b with minimal fibers. In fact the submersion is the Abel–Jacobi map
using a basis of harmonic 1-forms from H 1(M,Z)R which induces an epimorphism
on the fundamental groups. Thus the fibers are connected.

Conversely, if there exists a Riemannian submersion of M onto a flat torus of
dimension b with connected minimal fibers, then each step in this argument is
reversible with equality holding at every step. Therefore equality holds in (5-1). □
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This result can be generalized to stable systoles of rank k, 1 ≤ k ≤ b.

Theorem 5.2. Let (M, g) be a compact oriented manifold of dimension n whose
first Betti number is b. Then, for each 1 ≤ k ≤ b,

(5-2) stsys1,k(M, g) stsysn−1,k(M, g)≤ (γ ′

b,k)
1
k Vol(M, g).

Equality holds if and only if there exists a Riemannian submersion with connected
minimal fibers from M onto a flat b-dimensional torus Rb/Λ such that Λ is dual
k-critical.

Proof. The inequality (5-2) follows from Proposition 4.9 because C(n, 1)= 1.
Suppose that equality holds in (5-2). Since p = 1, the proof of Proposition 4.9

implies
1k(H 1(M,Z)R, | · |

∗

2)1k(H n−1(M,Z)R, | · |
∗

2)= γ ′

b,k .

This means that the lattice Λ = H 1(M,Z)R is dual k-critical (Definition A.1), and
thus, by Lemma A.4, it is dual k-perfect (Definition A.3). Observe that the dual
lattice H n−1(M,Z)R can be identified under the Hodge star operator with the lattice

Λ∗
= {ϕ ∈ H 1(M,R) : ⟨⟨ϕ,ψ⟩⟩ ∈ Z,∀ψ ∈ Λ}.

Let Q denote the vector space of quadratic forms on H 1(M,R). That Λ is dual k-
perfect implies that Q∗ is generated by the linear functionals of the form q 7→ q(α)
where, in the notation of the Appendix, α ∈ W ∈ S(Λ)∪ S(Λ∗). We next need to
prove that every α ∈ W ∈ S(Λ)∪ S(Λ∗) can be represented by a harmonic 1-form
of constant norm. For then arguing as in [12, Remark 16.11.6], dual k-perfection
implies that every harmonic 1-form on M has constant norm. This reduces us to the
situation in Theorem 5.1, so that by [12, Proposition 16.7.3], the Abel–Jacobi map
defines a Riemannian submersion with connected minimal fibers of M onto Rb/Λ.

Let V ∈ S(Λ) and set Λ′
= V ∩Λ. Thus Volk(V/Λ′, | · |∗2)=1k(Λ). The Poincaré

duality map
T = [M]⌢: V → Hn−1(M,R)

restricted to V has rank k and degree 1. Set W = T (V ) and Γ= W ∩ Hn−1(M,Z)R.
Since we are assuming equality in (5-2), equality holds in Proposition 4.9 which
implies that equality holds in Lemma 4.8. Thus equality holds in (4-6) with p = 1,
that is,

Volk(W/Γ, ∥ · ∥)≤ (Vol(M, g))
k
2 Volk(V/Λ′, | · |∗2).

Hence by Propositions 2.5 and 3.2,

∥T (α)∥ = Vol(M, g)
1
2 |α|

∗

2
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for all α ∈ V , and thus by Proposition 3.2, every such α is represented by a harmonic
1-form of constant norm. A similar argument shows that if V ∈ S(Λ∗), then every
α ∈ V also can be represented by a harmonic (n−1)-form of constant norm, so that
its Hodge star ⋆α ∈ Λ∗ is represented by a harmonic 1-form of constant norm.

Conversely, if there exists a Riemannian submersion with connected minimal
fibers from M onto a flat b-dimensional torus Rb/Λ such that Λ is dual k-critical,
the steps of the above argument are reversible with equality holding at each step so
that equality holds in (5-2). □

6. Example

Unless the manifold is nice enough, computing a stable systole of higher rank for
a general Riemannian manifold is a difficult task. The purpose of this section is
to illustrate the computation of a stable systole of higher rank in a case where the
manifold is simple and nice enough to effect such a computation. In particular we
compute the two dimensional stable systole of rank 6 in flat 4-dimensional tori.
As a consequence we obtain a sharp stable systolic inequality for conformally flat
4-dimensional tori (Theorem 6.7).

Here we will consider a 4-dimensional flat torus M = R4/Λ where Λ is a lattice
in R4. According to [14] there are natural isomorphisms in cohomology

(6-1) H∗(M,R)∼=3∗(R4)

and

(6-2) H∗(M,Z)R ∼=3∗

Z(Λ
∗),

as well as in homology

(6-3) H∗(M,R)∼=3∗(R4)

and

(6-4) H∗(M,Z)R ∼=3∗

Z(Λ).

Lemma 6.1. The mass norm for ξ ∈32(R4) is given by

(6-5) ∥ξ∥ = (|ξ |2 + |ξ ∧ ξ |)
1
2 ,

where | · | is the norm on the exterior algebra 3∗(R4) induced from the Euclidean
norm of R4.

Proof. Under an orthogonal change of coordinates in R4 any given ξ can be put in
the form

ξ = Ae1 ∧ e2 + Be3 ∧ e4.
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Whitney [17, equation (13), p. 54] has proved that for such ξ , ∥ξ∥ = |A|+|B|. Thus

∥ξ∥2
= |A|

2
+ |B|

2
+ 2|A||B| = |ξ |2 + |ξ ∧ ξ |.

This completes the proof because the expression (6-5) is invariant under orthogonal
changes of coordinates. □

Lemma 6.2. The comass norm for φ ∈32(R4) is given by

(6-6) ∥φ∥
∗
=

(
|φ|

2
+

√
|φ|4 − |φ ∧φ|2

2

)1
2

.

Thus

(6-7) ∥φ∥
∗
≤ |φ| ≤

√
2 ∥φ∥

∗.

In particular the constant C(4, 2)=
√

2.

Proof. By the invariance of the expression (6-6) under orthogonal changes of
coordinates in R4, it suffices to consider the case φ = Ae1 ∧ e2 + Be3 ∧ e4. In
this case the left-hand side of (6-6) is ∥φ∥

∗
= max(|A|, |B|) according to [17,

equation (12), p. 54]. The right-hand side of (6-6) becomes(
A2

+ B2
+

√
(A2 + B2)2 − (2AB)2

2

)1
2

=

(
A2

+ B2
+ |A2

− B2
|

2

)1
2

,

which is equal to max(|A|, |B|). The inequality (6-7) follows easily from (6-6). □

Lemma 6.3. Let K be the unit mass ball of 32(R4). Then

Vol6(K , | · |)=
2π2

9
.

Proof. Setting

ξ = x1e2 ∧ e3 − x2e1 ∧ e3 + x3e1 ∧ e2 + y1e1 ∧ e4 + y2e2 ∧ e4 + y3e3 ∧ e4

gives an isomorphism between32(R4) and R3
×R3

= R6 with the Euclidean norms.
If dVR6 and dVS5 are the volume elements in R6 and S5, respectively, we have, on
switching to spherical coordinates,

Vol6(K , | · |)=

∫
∥ξ∥≤1

dVR6 =

∫
ξ∈S5

∫ 1
∥ξ∥

0
r5 dr dVS5 =

1
6

∫
ξ∈S5

1
∥ξ∥6 dVS5 .

The mapping S2
×

[
0, π2

]
×S2

→ S5 given by sending the ordered triplet (X, t, Y ) to
ξ = (cos(t)X, sin(t)Y ) ∈ R3

× R3 reparameterizes S5 except on a set of measure 0.
Making this change of variables in the integral gives us

Vol6(K , | · |)=
1
6

∫
Y∈S2

∫ π
2

0

∫
X∈S2

cos2(t) sin2(t)
(1 + 2 cos(t) sin(t)|X · Y |)3

dVS2 dt dVS2 .
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By the invariance of the inner product under isometries of S2, the value of the inner
double integral is independent of Y ∈ S2. Because the area of S2 is 4π , integrating
over Y gives the value

Vol6(K , | · |)=
4π
6

∫ π
2

0

∫
X∈S2

cos2(t) sin2(t)
(1 + 2 cos(t) sin(t)|X · N |)3

dVS2 dt,

where

N =

0
0
1


is the north pole of S2. Now change to spherical coordinates (φ, θ) with 0 ≤ θ ≤ 2π ,
0 ≤ φ ≤ π , on S2. Since X · N = cos(φ) we obtain

Vol6(K , | · |)=
4π
6

∫ π
2

0

∫ 2π

0

∫ π

0

cos2(t) sin2(t)
(1 + 2 cos(t) sin(t)| cos(φ)|)3

sin(φ) dφ dθ dt.

Using the double angle formula for sin(2t), the symmetry of the integrand in φ
about π2 , and the independence of the integrand in θ we obtain

Vol6(K , | · |)=
4π2

6

∫ π
2

0

∫ π
2

0

sin2(2t)
(1 + sin(2t) cos(φ))3

sin(φ) dφ dt.

This can be easily evaluated by iterated integration to obtain

Vol6(K , | · |)=
π2

3

∫ π
2

0
sin(2t)−

sin(2t)
(1 + sin(2t))2

dt =
2π2

9
.

□

Corollary 6.4. The Hausdorff–Busemann measure in 32(R4) is given by

Vol6(−, ∥ · ∥)=
3π
4

Vol6(−, | · |).

Proof. Let K be the unit mass ball in 32(R4). By definition of the Hausdorff-
Busemann measure and Lemma 6.3,

Vol6(−, ∥ · ∥)=
ω6

Vol6(K , ∥ · ∥)
Vol6(−, | · |)=

π3/3!

2π2/9
Vol6(−, | · |). □

Lemma 6.5.
Vol6(32(R4)/32

Z(Λ), | · |)= Vol4(R4/Λ, | · |)3.

Proof. Let v1, v2, v3, v4 ∈ R4 be a set of generators for Λ over Z. Then

Vol4(R4/Λ, | · |)= |det(v1, v2, v3, v4)|,

and
v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4



STABLE SYSTOLES OF HIGHER RANK IN RIEMANNIAN MANIFOLDS 121

is a set of generators for 32(Λ) over Z. Recall that det(v1, v2, v3, v4) may be
computed by keeping track of the sequence of elementary row operations that convert
v1, v2, v3, v4 to the standard basis e1, e2, e3, e4. An elementary row operation either
(i) adds one of the vectors to another, (ii) interchanges two vectors, or (iii) factors
out a constant multiple c from one of the vectors. If v′

1, v
′

2, v
′

3, v
′

4 is the result of
applying an elementary row operation to v1, v2, v3, v4 we have det(v′

1, v
′

2, v
′

3, v
′

4)=

det(v1, v2, v3, v4) in case (i), −det(v′

1, v
′

2, v
′

3, v
′

4) = det(v1, v2, v3, v4) in case (ii),
and c det(v′

1,v
′

2,v
′

3,v
′

4)=det(v1,v2,v3,v4) in case (iii). Since det(e1,e2,e3,e4)=1,
we see that det(v1, v2, v3, v4) is equal to the product of the constants c that we
factored out in operations of type (ii) times ±1 depending on whether there were
an even or odd number of operations of type (ii). Now consider what happens to
the generators of 32(Λ) under this sequence of operations. The operation that takes
v1, v2, v3, v4 to v′

1, v
′

2, v
′

3, v
′

4 will correspondingly take

v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4

to
v′

1 ∧ v′

2, v′

1 ∧ v′

3, v′

1 ∧ v′

4, v′

2 ∧ v′

3, v′

2 ∧ v′

4, v′

3 ∧ v′

4.

If the operation is of type (i), the corresponding operation has the same effect
as two operations of type (i). If the operation is of type (ii), the corresponding
operation has the same effect as two operations of type (ii) and multiplying one
vector by −1. If the operation is of type (iii), then the corresponding operation has
the same effect as factoring out the same constant c from three of the vectors. As
the result of the sequence of corresponding operations is the orthonormal basis

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4,

the result follows because the sequence of elementary row operations gives a power
of 3 times those computing the determinant of v1, v2, v3, v4. □

Theorem 6.6. Let (M, g) be a 4-dimensional flat torus R4/Λ. Then

stsys2,6(M, g)2 =

(3π
4

)1
3

Vol(M, g)

Proof. By Corollary 6.4 and Lemma 6.5,

Vol6(32(R4)/32
Z(Λ), ∥ · ∥)

=
3π
4

Vol6(32(R4)/32
Z(Λ), | · |)=

3π
4

Vol4(R4/Λ, | · |)3. □

The paper [16] proved systolic inequalities for metrics on real projective spaces
which are conformal to the constant curvature metric. Similar ideas combined
with Theorem 6.6 lead to the following result about conformally flat metrics on
4-dimensional tori.
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Theorem 6.7. Let (M, g) be a conformally flat 4-dimensional torus. Then

stsys2,6(M, g)2 ≤

(3π
4

)1
3

Vol(M, g).

Equality holds if and only if (M, g) is flat.

Proof. Since (M, g) is conformally flat, we may assume that there exists a lattice Λ in
R4 such that M = R4/Λ and that g = f 2g0 for some positive real-valued function f
on M where g0 is the flat metric on M . Let G be the group of isometries of the
flat metric g0 with Haar measure da normalized so that

∫
a∈G da = 1. Set f̄ (x)=(∫

a∈G f (ax)2 da
) 1

2 . Since G acts transitively on M , f̄ would be a constant function.
Set ḡ = f̄ 2g0. Then (M, ḡ) is flat. Thus if dx is the volume form for (M, g0),

(6-8) Vol(M, ḡ)=

∫
x∈M

f̄ (x)4 dx =

∫
x∈M

(∫
a∈G

f (ax)2 da
)2

dx

≤

∫
x∈M

∫
a∈G

f (ax)4 da dx

=

∫
a∈G

∫
x∈M

f (ax)4 dx da =

∫
a∈G

∫
x∈M

f (ax)4 dx da

=

∫
a∈G

Vol(M, g) da = Vol(M, g),

where we have used successively Jensen’s inequality, Fubini’s theorem, the change
of variables formula, that a is an isometry of g0, and that G has unit measure. Note
on account of Jensen’s inequality, if equality holds then f is a constant function,
and thus (M, g) would be flat.

On the other hand, given a homology class h ∈ H2(M, R) taking a 2-chain S in M
representing h that gives the least mass (area) ∥h∥ḡ in the homology class, one has

∥h∥ḡ = Area(S, ḡ)=

∫
a∈G

Area(aS, g)≥ ∥h∥g.

As an explanation, suppose that S is a surface and j : S → M is the inclusion
mapping. Then j∗g0 induces an area form ds on S. Thus j∗g induces the area
form ( f ◦ j)2ds and j∗ḡ induces ( f̄ ◦ j)2ds. Thus

(6-9) Area(S, ḡ)=

∫
s∈S
( f̄ ◦ j)2 ds =

∫
s∈S

∫
a∈G

f (aj (s))2 da ds

=

∫
a∈G

∫
s∈S

f (aj (s))2 ds da =

∫
a∈G

Area(aS, g) da.

Therefore by Proposition 2.1

(6-10) Vol6(H2(M,R)/H2(M,Z), ∥ · ∥g)≤ Vol6(H2(M,R)/H2(M,Z), ∥ · ∥ḡ).

Thus, since (M, ḡ) is flat,

stsys2,6(M, g)≤ stsys2,6(M, ḡ)=

(3π
4

)1
3

Vol(M, ḡ)≤

(3π
4

)1
3

Vol(M, g).
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If equality holds, then f must be constant and thus (M, g) would be flat. □

It is an open question whether this inequality also holds for metrics on 4-
dimensional tori which are not conformally flat.

Theorem 6.6 gives information about the conformal volume norm of flat 4-
dimensional tori. The conformal volume norm is an invariant of a conformal
class of Riemannian metrics; see [8, 7.4; 12, 15.8]. When M is a 4-dimensional
manifold, h ∈ H2(M,R), and G is a conformal class of Riemannian metrics on M ,
the conformal volume norm satisfies

∥h∥L2 = sup
{

∥h∥g
√

Vol(M, g)
: g ∈ G

}
,

where ∥h∥g is the stable mass norm for the Riemannian metric g. Thus for any
g ∈ G and h ∈ H2(M,R), one has

∥h∥g ≤
√

Vol(M, g) ∥h∥L2 .

Corollary 6.8. Let (M, g) be a 4-dimensional flat torus R4/Λ. Then(3π
4

)1
6
≤ confsys2,6(M, g).

Proof. Applying Proposition 2.5, the Hausdorff–Busemann volumes satisfy

Vol6(32(R4)/32
Z(Λ), ∥ · ∥)≤ Vol(R4/Λ, g)3 Vol6(32(R4)/32

Z(Λ), ∥ · ∥L2).

Dividing by Vol(R4/Λ, g)3, extracting 6-th roots, and using Theorem 6.6 gives(3π
4

)1
6
=

stsys2,6(M, g)

Vol(M, g)
1
2

≤ Vol6(32(R4)/32
Z(Λ), ∥ · ∥L2)

1
6 ,

where the right side of the inequality is by the definition of confsys2,6(M, g). □

Appendix

The following proof that a dual k-extreme lattice is dual k-perfect is a modification
of the argument in [2] that a dual extreme lattice is dual perfect.

Let V be a Euclidean space of dimension n with Euclidean norm | · |, and let Λ be
a lattice in V . Define Sk(Λ) to be the collection of all k-dimensional subspaces W of
V for which Γ=Λ∩W is a rank-k sublattice of Λ such that Volk(W/Γ, | · |)=1k(Λ).

Definition A.1. A lattice Λ of rank k is dual k-extreme if it is a local maximum of
the function

Λ 7→1k(Λ)1k(Λ
∗)

and is dual k-critical if it is an absolute maximum, that is, if

1k(Λ)1k(Λ
∗)= γ ′

n,k .
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Lemma A.2. Suppose there exists a hyperspace H of V such that W ⊂ H for
all W ∈ Sk(Λ). Then there exists a lattice M near Λ such that 1k(Λ)1k(Λ

∗) <

1k(M)1k(M
∗). In other words, Λ is not dual k-extreme.

Proof. Let 0< r < 1, and consider the linear transformation τ : V → V such that
τ is the identity on H and contracts by a factor of r on H⊥. As W ⊂ H for all
W ∈ S(Λ), by continuity, if r is chosen close enough to 1, then Sk(τ (Λ))= Sk(Λ)

and 1k(Λ)=1k(τ (Λ)). Note that the adjoint map (τ †)−1 is the identity on H and
expands by a factor of 1

r > 1 on H⊥ and that (τΛ)∗ = (τ †)−1Λ∗. Thus if W is a
k-dimensional subspace such that Γ∗

= Λ∗
∩ W is a rank-k sublattice of Λ∗ which is

not contained in H , then

(A-1) Volk((τ †)−1(W )/(τ †)−1(Γ∗), | · |) > Volk(W/Γ∗, | · |).

Thus if no W ∈ Sk(Λ
∗) is contained in H , we have 1k((τΛ)

∗) > 1k(Λ
∗) and we

may take M = τ(Λ). However if W ⊂ H for some W ∈ Sk(Λ
∗), then on account of

our hypothesis and (A-1), W ⊂ H for all W ∈ Sk(τΛ)∪ Sk((τΛ)
∗) and

1k(τ (Λ))1k((τΛ)
∗)=1k(Λ)1k(Λ

∗).

Now proceed by taking a hyperplane F in H which contains no W ∈ Sk((τΛ)
∗).

We have the orthogonal decomposition

V = H⊥
⊕ H = H⊥

⊕ F⊥
⊕ F,

where F⊥ is the orthogonal complement to F in H . Consider a linear transformation
σ : V → V whose matrix, relative to an orthonormal basis which respects this
orthogonal decomposition, can be written in the block form

σ =

q 0 0
a 1 0
0 0 Id

 ,

where q > 1 and a ̸= 0. Then

(σ †)−1
=

 1
q −

a
q 0

0 1 0
0 0 Id

 .

Observe that σ is the identity on H , so that if q is sufficiently close to 1 and a to 0,
Sk(στΛ)= Sk(τΛ) and1k(στΛ)=1k(τΛ)=1k(Λ). However, σ increases lengths
of vectors in H which are not in F . Thus 1k((στΛ)

∗) > 1k((τΛ)
∗) = 1k(Λ

∗).
Therefore 1k(Λ)1k(Λ

∗) < 1k(M)1k(M
∗) where M = στΛ. □

Definition A.3. Let Q be the vector space of quadratic forms on V . We say
that a lattice Λ is dual k-perfect if the linear functionals q 7→ q(x) for x ∈ W ∈

Sk(Λ)∪ Sk(Λ
∗) generate Q∗.
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Clearly Λ is k-perfect if q(x)= 0 for all x ∈ W ∈ Sk(Λ)∪ Sk(Λ
∗) implies q = 0.

Note that the elements q of Q correspond to symmetric endomorphisms υ of V
such that q(x)= υ(x) · x for x ∈ V where · denotes the inner product on V .

Lemma A.4. If Λ is dual k-extreme, then Λ is dual k-perfect.

Proof. If Λ is not dual k-perfect, then there exists a nonzero symmetric endomor-
phism υ of V such that υ(x) · x = 0 for all x ∈ W ∈ Sk(Λ)∪ Sk(Λ

∗). Consider the
linear isomorphism τ = id +ϵυ. Since υ is symmetric, τ †

= τ . If ϵ >0 is sufficiently
small, Sk(τΛ) ⊂ Sk(Λ) and Sk((τ

†)−1Λ∗) ⊂ Sk(Λ
∗). Thus if x ∈ W ∈ Sk(Λ), then

τ(x)= x + ϵυ(x) and thus, using υ(x) · x = 0,

|τ(x)|2 = |x |
2
+ ϵ2

|υ(x)|2.

Hence τ increases lengths of vectors x ∈ W for W ∈ Sk(Λ). Therefore 1k(Λ
∗) ≥

1k(Λ), with equality if and only if υ(x)= 0 for all x ∈ W ∈ Sk(τΛ).
Choosing ϵ > 0 sufficiently small so that ϵ |υ| < 1, where |υ| is the operator

norm, one has the series expansion

(τ †)−1
= τ−1

= id −ϵυ + ϵ2υ2
− ϵ3υ3

+ · · · .

Thus if y ∈ W ∈ Sk(Λ
∗), then

(τ †)−1(y)= y − ϵυ(y)+ ϵ2υ2(y)− ϵ3υ3(y)+ · · · .

Using the symmetry of υ, it follows that

|(τ †)−1(y)|2 = |y|
2
− 2ϵυ(y) · y + 3ϵ2υ(y) · υ(y)− 4ϵ3υ2(y) · υ(y)+ · · · .

But by assumption, υ(y) · y = 0. Hence, using the symmetry of υ,

(A-2) |(t†)−1(y)|2 = |y|
2
+ 3ϵ2υ(y) · υ(y)− 4ϵ3υ2(y) · υ(y)+ 5ϵ4υ3(y) · υ(y)− · · ·

= |y|
2
+ 3ϵ2

|υ(y)|2 − 4ϵ3υ2(y) · υ(y)+ 5ϵ4
|υ2(y)|2 − · · ·

≥ |y|
2
+ ϵ2

|υ(y)|2(3 − 4ϵ|υ| − 6ϵ3
|υ|

3
− · · · ),

since the terms with odd coefficients are nonnegative. If ϵ is sufficiently small,
inequality (A-2) shows that (τ †)−1 increases lengths of vectors y ∈W ∈ Sk(Λ

∗). Thus
1k((τΛ)

∗)≥1k(Λ
∗) with equality if and only if υ(y)= 0 for all y ∈ W ∈ Sk((τΛ)

∗).
Since Λ is assumed to be dual k-extreme, these inequalities show

1k(τΛ)1k((τΛ)
∗)≤1k(Λ)1k(Λ

∗)≤1k(τΛ)1k((τΛ)
∗).

Thus 1k((τΛ))=1k(Λ) and 1k((τΛ)
∗)=1k(Λ

∗). Consequently, as υ is nonzero,
every W ∈ Sk(Λ)∪ Sk(Λ

∗) is contained in the hyperplane υ(x)= 0 contradicting
the dual k-extremality of Λ by Lemma A.2. Therefore Λ is dual k-perfect. □
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SPIN KOSTKA POLYNOMIALS AND VERTEX OPERATORS

NAIHUAN JING AND NING LIU

An algebraic iterative formula for the spin Kostka–Foulkes polynomial
K−

ξµ
(t) is given using vertex operator realizations of Hall–Littlewood sym-

metric functions and Schur Q-functions. Based on the operational formula,
more favorable properties are obtained parallel to the Kostka polynomial. In
particular, we obtain some formulae for the number of (unshifted) marked
tableaux. As an application, we confirmed a conjecture of Aokage on the
expansion of the Schur P-function in terms of Schur functions. Tables of
K−

ξµ
(t) for |ξ | ≤ 6 are listed.

1. Introduction

The Hall–Littlewood symmetric functions Pµ(x; t) and the Kostka–Foulkes poly-
nomials Kλµ(t) both have played an active role in algebraic combinatorics and rep-
resentation theory. On one hand, the Hall–Littlewood symmetric functions Pµ(x; t)
are certain deformations of the Schur functions sλ(x), and the Kostka–Foulkes poly-
nomials Kλµ(t) are the transition coefficients between the two bases. On the other
hand, Kλµ(t) have the following representation theoretic interpretation. Let Bµ be
the variety of flags preserved by a nilpotent matrix with Jordan block of shape µ.
The cohomology group H•(Bµ) affords a graded Sn-module structure. Set

Cλµ(t) =

∑
i≥0

t i (dim HomSn (Sλ, H 2i (Bµ)),

where Sλ denotes the Specht module of Sn associated with λ. Garsia and Procesi
[1992] proved that

(1-1) Kλµ(t) = Cλµ(t−1)tn(µ),

which confirms geometrically the positivity of the Kostka–Foulkes polynomials
[Lascoux and Schützenberger 1978].

Recently, Wan and Wang [2013] have introduced the spin Kostka–Foulkes poly-
nomials K −

ξµ(t) as the transition coefficients between the Hall–Littlewood functions

MSC2020: primary 05E05, 17B69; secondary 20C25, 20C30.
Keywords: spin Kostka polynomials, vertex operators.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2023.325-1
https://doi.org/10.2140/pjm.2023.325.127
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


128 NAIHUAN JING AND NING LIU

Pµ(x; t) and Schur Q-functions Qξ with interesting representation theoretic inter-
pretations. As is well-known, the Schur Q-functions are indexed by strict partitions
and were used by Schur [Stembridge 1989] in generalizing the Frobenius character
formula for projective irreducible characters of the symmetric group Sn . Schur Q-
functions form a distinguished basis in the subring of symmetric functions generated
by p1, p3, . . . . Yamaguchi [1999] has shown that the category of irreducible Sn-
supermodules is equivalent to that of supermodules of the Hecke–Clifford algebra
Hn = Cn ⋊CSn and the irreducible objects Dξ are parametrized by strict partitions
ξ ∈ SPn . Wan and Wang [2013] have shown that the spin Kostka polynomials
admit the interpretation

(1-2) K −

λµ(t) = 2[l(ξ)/2]Cξµ(t−1)tn(µ),

and
C−

ξµ(t) =

∑
i≥0

t i (dim HomHn (Dξ , Cn ⊗ H 2i (Bµ)).

Let q(n) be the queer Lie superalgebra containing the general linear Lie algebra
gl(n) as its even subalgebra. Sergeev [1984] has shown that the irreducible q(n)-
modules V (ξ) are also parametrized by strict partitions ξ ∈SPn . It turns out that the
q-weight multiplicity γ −

ξµ(t) associated with the weight space V (ξ)µ also appears
as the spin Kostka polynomial [Wan and Wang 2013]:

K −

λµ(t) = 2[l(ξ)/2]γ −

ξµ(t).(1-3)

The purpose of this paper is to give an operational algebraic formula for the
spin Kostka–Foulkes polynomials K −

ξµ(t). The method we adopt is similar to that
of [Bryan and Jing 2021], in which the vertex operator realizations of the Hall–
Littlewood polynomials and Schur functions were employed. However, there is
some subtlety in the spin situation.

In the usual vertex realization of Schur Q-functions [Jing 1991b], only the modes
of odd indices (of the twisted Heisenberg algebra) were used in the definition. Should
this vertex operator be employed, the commutation relations of its components with
those of the vertex operator for the Hall–Littlewood symmetric functions would
have infinitely many terms in the quadratic relations. To salvage the situation, we
introduce a new vertex operator realization of Schur Q-functions using a larger
Heisenberg algebra graded by all integers (see (2-8) and (2-9)). The new vertex
operator realization enables us to get a finite quadratic relation between the operators
realizing both the Hall–Littlewood and Schur Q-functions and then the matrix
coefficients express the spin Kostka polynomials.

As matrix coefficients, the spin Kostka–Foulkes polynomials can be computed in
general, and exact formulas are given in some special cases. We also prove a stability
formula for the spin Kostka polynomials. We have clarified some questions regarding
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them (in Example 3.11, we disproved the symmetric property) and obtained counting
formulas for the Stembridge coefficients [Stembridge 1989] between the Schur
P-functions and Schur functions. As applications, we answer a recent conjecture
of Aokage and are able to derive a tensor decomposition in the general situation.

The paper is organized as follows. In Section 2 we recall the vertex operator
realization of the Hall–Littlewood functions and give a new vertex operator con-
struction of the Schur Q-functions, which is specifically tailored for taming the
commutation relation between the two vertex operators. In Section 3 we express
the spin Hall–Littlewood polynomials as matrix coefficients of vertex operators
and derive an iterative formula (see Theorem 3.5). Finally in Section 4 we use the
iterative formulas to verify Aokage’s conjecture on multiplicities of tensor products
of spin modules, and a formula is also obtained for the general case.

2. Vertex operator realization of Hall–Littlewood and Schur Q-functions

A partition (resp. strict partition) λ = (λ1, λ2, . . .), denoted λ ⊢ n, is a weakly (resp.
strictly) decreasing sequence of positive integers such that

∑
i λi = n. The sum

|λ| =
∑

i λi is called the weight and the number l(λ) of nonzero parts is called the
length. We also define λ |H n if λ is a composition of n when the past λi are not
necessarily ordered. The set of partitions (resp. strict partitions) of weight n will
be denoted by Pn (resp. SPn). The dominance order λ ≥ µ is defined by |λ| = |µ|

and λ1 + · · · + λi ≥ µ1 + · · · +µi for each i .
Let mi be the multiplicity of i in λ and set zλ =

∏
i≥1 imi (λ)mi (λ)!; we define

the parity ελ = (−1)|λ|−l(λ) and

(2-1) zλ(t) =
zλ∏

i≥1(1 − tλi )
, n(λ) =

∑
i≥1

(i − 1)λi .

A partition λ can be visualized by its Young diagram when λ is identified with
{(i, j) ∈ Z2

| 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi }. To each cell (i, j) ∈ λ, we define its
content ci j = j − i and hook length hi j = λi + λ′

j − i − j + 1, where the partition
λ′

= (λ′

1, . . . , λ
′

λ1
) is the dual partition of λ obtained by reflecting the Young diagram

of λ along the diagonal.
In this paper, we use the t-integer [n] = tn−1

+ tn−2
+ · · · + t + 1. Similarly

[n]! = [n] · · · [1], and the Gauss t-binomial symbol
[ n

k

]
=

[n]!

[k]![n−k]!
.

Let 3F be the ring of symmetric functions over F = Q(t), the field of rational
functions in t . We also consider 3 over the ring of integers. The space 3F is
graded and decomposes into a direct sum:

(2-2) 3F =

∞⊕
n=0

3n
F ,
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where 3n
F is the subspace of degree n, spanned by the elements pλ = pλ1 pλ2 · · · pλl

with |λ| = n. Here pr is the degree r power sum symmetric function.
Let 0Q be the subring of 3Q generated by the p2r−1, r ∈ N. Then

(2-3) 0Q = Q[pr : r odd].

The Schur Q-functions Qξ , ξ strict, form a Q-basis of 0Q [Macdonald 1979]. Also,
0 is a graded ring 0 = ⊕n≥00

n , where 0n
= 0 ∩ 3n .

The space 3F is equipped with the bilinear form ⟨ · , · ⟩ defined by

⟨pλ, pµ⟩ = δλµzλ(t).(2-4)

As {zλ(t)−1 pλ} is the dual basis of the power sum basis, the adjoint operator of the
multiplication operator pn is the differential operator p∗

n = (n/(1 − tn)) ∂/∂pn of
degree −n.

We recall the vertex operator realization of the Hall–Littlewood symmetric
functions [Jing 1991a] and construct a variant vertex operator for the Schur Q-
function on the space 3F . The vertex operators H(z) and its adjoint H∗(z) are
t-parametrized linear maps, 3F −→ 3F [[z, z−1

]] = 3F ⊗ F[z, z−1
], defined by

(2-5) H(z) = exp
(∑

n≥1

1 − tn

n
pnzn

)
exp

(
−

∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

Hnzn,

and

(2-6) H∗(z) = exp
(

−

∑
n≥1

1 − tn

n
pnzn

)
exp

(∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

H∗

n z−n.

Note that * is Q(t)-linear and anti-involutive satisfying

(2-7) ⟨Hnu, v⟩ = ⟨u, H∗

n v⟩

for u, v ∈ 3F .
We now introduce the vertex operators Q(z) and its adjoint Q∗(z) as the linear

maps, 3F −→ 3F [[z, z−1
]], defined by

(2-8) Q(z) = exp
( ∑

n≥1,odd

2
n

pnzn
)

exp
(

−

∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

Qnzn,

and

(2-9) Q∗(z) = exp
(

−

∑
n≥1

1−tn

n
pnzn

)
exp

( ∑
n≥1,odd

2
1−tn

∂

∂pn
z−n

)
=

∑
n∈Z

Q∗

nz−n.

The components Hn, H∗
−n ∈ EndF (3) are of degree n, and so are the annihilation

operators for n > 0. Similarly Qn, Q∗
−n ∈ EndQ(3). We remark that the second

exponential factor of Q(z) is different from the usual construction in [Jing 1991b],
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and this will be crucial for our later discussion. In particular, note that Q(−z) ̸=

Q∗(z) in the current situation due to different inner product.
We collect the relations of the vertex operators as follows.

Proposition 2.1 [Jing 1991a; 1991b]. (1) The operators Hn and H∗
n satisfy the

relations

Hm Hn − t Hn Hm = t Hm+1 Hn−1 − Hn−1 Hm+1,(2-10)

H∗

m H∗

n − t H∗

n H∗

m = t H∗

m−1 H∗

n+1 − H∗

n+1 H∗

m−1,(2-11)

Hm H∗

n − t H∗

n Hm = t Hm−1 H∗

n−1 − H∗

n−1 Hm−1 + (1 − t)2δm,n,(2-12)

H−n.1 = Q−n.1 = δn,0, H∗

n .1 = Q∗

n.1 = δn,0,(2-13)

where δm,n is the Kronecker delta function.

(2) The operators Qn satisfy the Clifford algebra relations

(2-14) {Qm, Qn} = (−1)n2δm,−n,

where {A, B} = AB + B A.

Proof. Commutation relations (2-10)–(2-13) were from [Jing 1991a]. We focus
on (2). Define the normal ordering product by

:Q(z)Q(w): = exp
( ∑

n≥1,odd

2
n

pn(zn
+ wn)

)
exp

(
−

∑
n≥1

∂

∂pn
(z−n

+ w−n)

)
.

Then we have for |z| < |w|

Q(z)Q(w) = :Q(z)Q(w): exp
(

−

∑
n≥1,odd

2
n

(
w

z

)n)
= :Q(z)Q(w):

z − w

z + w
.

The rest of the argument is similar to Proposition 4.15 in [Jing 1991b]. □

Note that the vacuum vector 1 is annihilated by p∗
n , so

(2-15) H(z).1 = exp
( ∞∑

n=1

1 − tn

n
pnzn

)
=

∞∑
n=0

qnzn
= q(z),

where qn is the Hall–Littlewood polynomial of one-row partition (n), and clearly

(2-16) qn = Hn.1 =

∑
λ⊢n

1
zλ(t)

pλ.

We also introduce a spin analogue h(z) by

(2-17) h̃(z) = exp
( ∞∑

n=1

tn
− (−1)n

n
pnzn

)
=

∑
n≥0

h̃nzn
;
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then

(2-18) h̃n =

∑
λ⊢n

ελ

zλ(−t)
pλ.

Moreover,

(2-19) h̃n(−t) =

∑
λ⊢n

ελuλqλ,

where ελ = (−1)|λ|−l(λ) and uλ = l(λ)!/
∏

i≥1 mi (λ)!.
As consequences of the proposition, one also has that

Hn Hn+1 = t Hn+1 Hn,(2-20)

H∗

n H∗

n−1 = t H∗

n−1 H∗

n ,(2-21)

⟨Hn.1, Hn.1⟩ =

∑
λ⊢n

1
zλ(t)

= 1 − t, n > 0,(2-22)

⟨Hn.1, H∗

−n.1⟩ =

∑
λ⊢n

(−1)l(λ)

zλ(t)
= tn

− tn−1, n > 0,(2-23)

where the last two identities follow from (2-12) and (2-10) by induction.
In general, expressing Hµ for any composition µ in terms of the basis ele-

ments Hλ, λ ∈ P , can be formulated as follows. Let Si,a be the transformation
(λ1, . . . , λi , λi+1, . . .) 7→ (λ1, . . . , λi+1 − a, λi + a, . . .), where λi+1 > λi . Define

(2-24) C(Si,a) =


t, a = 0,

ta+1
− ta−1, 1 ≤ a <

[
λi+1−λi

2

]
,

ta+ϵ
− ta−1, 1 ≤ a =

[
λi+1−λi

2

]
,

where ϵ ≡ λi+1 − λi (mod 2). For i = (i1, . . . , ir ) and a = (a1, . . . , ar ) let

(2-25) C(Si,a) = C(Si1,a1)C(Si2,a2) · · · C(Sir ,ar ),

where the product order follows that of Si1,a1 Si2,a2 · · · Sir ,ar λ, i.e., from the right
to the left. In particular, when t = 0, C(Si,a) = 0 unless all ai = 1; in that case,
C(Si,1) = (−1)r which is possible only when λi+1 − λi ≥ 2. When t = −1,
C(Si,a) = 0 unless all ai = 0 and C(Si,0) = (−1)r .

Let µ be a composition and λ be a partition. Define

B(λ, µ) ≜
∑
i,a

C(Si,a)(2-26)

summed over i = (i1, i2, . . . , ir ), a = (a1, a2, . . . , ar ) such that Si,aµ = λ.
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Proposition 2.2 [Jing and Liu 2022]. Suppose µ is a composition. Then

(2-27) Hµ =

∑
λ⊢|µ|

B(λ, µ)Hλ.

We remark that λ appears only when λ ≥ µ in (2-27). Let µ be a composition
and λ be a partition. If there exists i = (i1, i2, . . . , ir ), a = (a1, a2, . . . , ar ) such
that Si,aµ = λ, then

∑k
i=1 λi ≥

∑k
i=1 µi , k = 1, 2, . . . .

Proposition 2.3 [Jing 1991a; 1991b]. (1) Let λ = (λ1, . . . , λl) be a partition. The
vertex operator products Hλ1 · · · Hλl .1 is the Hall–Littlewood function Qλ(t):

(2-28) Hλ1 · · · Hλl .1 = Qλ(t) =

∏
i< j

1 − Ri j

1 − t Ri j
qλ1 · · · qλl ,

where the raising operator is given by Ri j qλ = q(λ1,...,λi +1,...,λ j −1,...,λl ).

(2) Let ξ = (ξ1, ξ2, . . . , ξl) be a strict partition. Then

(2-29) Qξ = Qξ1 Qξ2 · · · Qξl .1

is the Schur Q-function indexed by ξ . Moreover, Qξ .1, where ξ ranges over
strict partitions, form an orthogonal Z-base of 0 under the specialized inner
product ⟨ · , · ⟩t=−1, explicitly

(2-30) ⟨Qλ.1, Qξ .1⟩|t=−1 = 2l(λ)δλξ , λ, ξ ∈ SP.

Proof. Part (1) is from [Jing 1991a]. Since our vertex operator Q(z) is different
from that of [Jing 1991b], we explain why the new vertex operator also realizes
the Schur Q-functions. From the argument in proving (2-14) in Proposition 2.1 it
follows that

Q(z1)Q(z2) · · · Q(zl).1 =

∏
i< j

zi − z j

zi + z j
:Q(z1)Q(z2) · · · Q(zl): .1

=

∏
i< j

zi − z j

zi + z j
exp

( ∑
n≥1,odd

2pn

n
(zn

1 + · · · + zn
l )

)
.

Taking coefficients of zξ1
1 · · · zξl

l , we obtain that Qξ is exactly the Schur Q-function
indexed by ξ (cf. [Jing 1991b]). □

3. Spin Hall–Littlewood polynomials and vertex operators

Wan and Wang [2013] have introduced an extremely interesting spin analogue of
Kostka(–Foulkes) polynomials and shown that these polynomials enjoy favorable
properties parallel to those of the Kostka polynomials.
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Definition 3.1 [Wan and Wang 2013]. The spin Kostka polynomials K −

ξµ(t) for
ξ ∈ SP and µ ∈ P are defined by

(3-1) Qξ (x) =

∑
µ

K −

ξµ(t)Pµ(x; t),

where Qξ (x) (resp. Pµ(x; t)) are Schur Q-functions (resp. Hall–Littlewood func-
tions).

From the above discussion and Proposition 2.3, it is clear that the spin Kostka
polynomials can be expressed as matrix coefficients:

K −

ξµ(t) = ⟨Qµ(x; t), Qξ (x)⟩

= ⟨Hµ1 Hµ2 · · · Hµl .1, Qξ1 Qξ2 · · · Qξk .1⟩.

To compute the matrix coefficients, we first get the commutation relations by
usual techniques of vertex operators:

H∗(z)Q(w)(w − t z) + Q(w)H∗(z)(z + w) = 2(1 − t)zδ
(
w

z

)
h̃(z),(3-2)

h̃∗(z)H(w) = H(w)h̃∗(z) w+z
w−t z

,(3-3)

Q(z)h̃(w) = h̃(w)Q(z) z−tw
z+w

.(3-4)

We remark that if the old vertex operator Q̃(w) from [Jing 1991b] were used,
then the commutation relations between H∗(z) and Q̃(w) would have been an
infinite quadratic relation.

Taking coefficients we obtain the following commutation relations.

Proposition 3.2. The commutation relations between the Hall–Littlewood vertex
operators and Schur Q-function operators are

H∗

n Qm = t−1 H∗

n−1 Qm−1+t−1 Qm H∗

n +t−1 Qm−1 H∗

n−1+2(1−t−1)h̃m−n,(3-5)

h̃∗

m Hn = Hn h̃∗

m +(1+t)
m−1∑
k=0

tm−k−1 Hn−m+k h̃∗

k ,(3-6)

Qn h̃m = h̃m Qn +(1+t)
m−1∑
k=0

(−1)m−k h̃k Qn−k+m .(3-7)

Now we can state our formulas to compute the spin Kostka polynomials. To
this end, we prepare some necessary notation. Let λ = (λ1, λ2, . . . , λl) and
µ = (µ1, µ2, . . . , µm) be (strict) partitions. We define λ[i]

= (λi+1, . . . , λl),
λî

= (λ1, . . . , λi−1, λi+1, . . . , λl), and λ − µ = (λ1 − µ1, λ2 − µ2, . . .).



SPIN KOSTKA POLYNOMIALS AND VERTEX OPERATORS 135

Theorem 3.3. For an integer k, strict partition ξ = (ξ1, ξ2, . . . , ξl) and partition
µ = (µ1, µ2, . . . , µm),

H∗

k Qξ =

l∑
i=1

(−1)i−12h̃ξi −k Q
ξ î ,(3-8)

h̃∗

k Hµ =

∑
τ |Hk

tk−l(τ )(1 + t)l(τ )Hµ−τ .(3-9)

Proof. We show the first relation by induction on k +|ξ |. The case of k +|ξ | = 1 is
clear. Assume that (3-8) holds for k + |ξ | = n − 1. Using the induction hypothesis
and (3-5) we have that

H∗

k Qξ1 Qξ2 · · · Qξl

= t−1 H∗

k−1 Qξ1−1 Qξ2 · · · Qξl + t−1 Qξ1 H∗

k Qξ2 · · · Qξl + t−1 Qξ1−1 H∗

k−1 Qξ2 · · · Qξl

+ 2(1 − t−1)h̃ξ1−k Qξ2 · · · Qξl

= t−1(2h̃ξ1−k Qξ2 · · · Qξl − 2h̃ξ2−k+1 Qξ1−1 Qξ3 · · · Qξl

+ 2h̃ξ3−k+1 Qξ1−1 Qξ2 Qξ4 · · · Qξl + · · · + (−1)l+12h̃ξl−k+1 Qξ1−1 Qξ2 · · · Qξl−1

)
+ t−1 Qξ1

(
2h̃ξ2−k Qξ3 · · · Qξl − 2h̃ξ3−k Qξ2 Qξ4 · · · Qξl

+ 2h̃ξ4−k Qξ2 Qξ3 Qξ5 · · · Qξl + · · · + (−1)l2h̃ξl−k Qξ2 Qξ3 · · · Qξl−1

)
+ t−1 Qξ1−1

(
2h̃ξ2−k+1 Qξ3 · · · Qξl − 2h̃ξ3−k+1 Qξ2 Qξ4 · · · Qξl

+ 2h̃ξ4−k+1 Qξ2 Qξ3 Qξ5 · · · Qξl

+ · · · + (−1)l2h̃ξl−k+1 Qξ2 Qξ3 · · · Qξl−1

)
+ 2(1 − t−1)h̃ξ1−k Qξ2 Qξ3 · · · Qξl .

Simplifying the expression, we see the above is

t−1(2h̃ξ1−k Qξ2 · · · Qξl − 2h̃ξ2−k+1 Qξ1−1 Qξ3 · · · Qξl

+ 2h̃ξ3−k+1 Qξ1−1 Qξ2 Qξ4 · · · Qξl

+ · · · + (−1)l+12h̃ξl−k+1 Qξ1−1 Qξ2 · · · Qξl−1

)
+ 2t−1(h̃ξ2−k+1 Qξ1−1 Qξ3 · · · Qξl − h̃ξ3−k+1 Qξ1−1 Qξ2 Qξ4 · · · Qξl

+ h̃ξ4−k+1 Qξ1−1 · · · Qξl

+ · · · + (−1)l h̃ξl−k+1 Qξ1−1 Qξ2 Qξ3 · · · Qξl−1

)
− 2

(
h̃ξ2−k Qξ1 Qξ3 · · · Qξl − h̃ξ3−k Qξ1 Qξ2 Qξ4 · · · Qξl

+ h̃ξ4−k Qξ1 Qξ2 Qξ3 Qξ5 · · · Qξl

+ · · · + (−1)l h̃ξl−k Qξ1 Qξ2 Qξ3 · · · Qξl−1

)
+ 2(1 − t−1)h̃ξ1−k Qξ2 Qξ3 · · · Qξl (by (3-7))

= 2h̃ξ1−k Qξ2 · · · Qξl − 2h̃ξ2−k Qξ1 Qξ3 · · · Qξl + · · · + 2(−1)l−1h̃ξl−k Qξ1 · · · Qξl−1,
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which has proved (3-8). The second relation is similarly shown by (3-6) and
induction on l(µ). □

Example 3.4. Let µ = (2, 2) and ξ = (3, 1). Then by Theorem 3.3

K −

ξµ(t) = ⟨H2 H2.1, Q3 Q1.1⟩

= ⟨H2.1, 2h1 Q1.1⟩

= 2⟨t (1 + t−1)H1.1, Q1.1⟩

= 4t + 4.

By Theorem 3.3, we now obtain an algebraic formula for K −

ξµ(t).

Theorem 3.5. For ξ = (ξ1, . . . , ξl) ∈ SPn and µ = (µ1, . . . , µm) ∈ Pn , K −

ξµ(t) is
given by the iterative formula

(3-10) K −

ξµ(t) =

l∑
i=1

∑
τ |Hξi −µ1

∑
λ⊢n−ξi

(−1)i−12tξi −µ1(1+t−1)l(τ )B(λ, µ[1]
−τ)K −

ξ î λ
(t).

Proof. It follows readily from (3-8), (3-9) and (2-27). □

Equation (3-10) shows that all spin Kostka polynomials are integral polynomials,
and it also gives an effective recurrence of K −

ξµ(t) as shown by the following
example.

Example 3.6. Let ξ = (4, 3, 1) and µ = (3, 3, 2). Then

K −

ξµ(t) = ⟨H3 H3 H2.1, Q4 Q3 Q1.1⟩

= ⟨H3 H2.1, 2h̃1 Q3 Q1.1⟩ − ⟨H3 H2.1, 2h̃0 Q4 Q1.1⟩

= 2⟨t (1 + t−1)(H2 H2.1 + H3 H1.1), Q3 Q1.1⟩ − 2⟨H3 H2.1, Q4 Q1.1⟩

= 2(t + 1)(K −

(3,1)(2,2)(t) + K −

(3,1)(3,1)(t)) − 2K −

(4,1)(3,2)(t).

The spin Kostka polynomials have quite a few remarkable properties resembling
those of the Kostka–Foulkes polynomials. As a consequence of the recurrence we
have the following.

Corollary 3.7. Let ξ be a strict partition and µ be a partition. We have:

(1) If there exists k ∈ N, such that ξi = µi , i = 1, 2, . . . , k, then

K −

ξµ(t) = 2k K −

ξ [k]µ[k](t).(3-11)

In particular, K −

ξξ (t) = 2l(ξ).

(2) 2l(ξ)
| K −

ξµ(t).

(3) K −

ξµ(−1) = 2l(ξ)δξµ.

Proof. They are immediate consequences of Theorem 3.5. □
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Some special cases of Theorem 3.5 are listed as follows.

Example 3.8. Suppose ξ ∈ SPn , µ ∈ Pn . We have

K −

ξ(n)(t) = 2δξ,(n),(3-12)

K −

(n)µ(t) = 2tn−µ1
∑

τ |Hn−µ1

(1 + t−1)l(τ )B(∅, µ(1)
− τ),(3-13)

K −

ξ(µ1,µ2)
(t) =


22−δ0,ξ2 tξ1−µ1(1 + t−1) if ξ > (µ1, µ2),

4 if ξ = (µ1, µ2),

0 otherwise.
(3-14)

There is a compact formula of K −

(n)µ(t) [Wan and Wang 2013] by using a result
of [Macdonald 1979]. We will come back to the Wan–Wang formula using the
iteration in the next section.

The following result was first proved in [Wan and Wang 2013] using the similar
property of the Kostka–Foulkes polynomials. Using our iterative formula, one can
give an independent proof from that of the Kostka–Foulkes polynomials. We remark
that the method can also be used to show this property for the Kostka–Foulkes
polynomial by the iterative formula in [Bryan and Jing 2021].

Corollary 3.9. Let ξ = (ξ1, ξ2, . . .)∈SPn , µ= (µ1, µ2, . . .)∈Pn . Then K −

ξµ(t)=0,
unless ξ ≥ µ.

Proof. It is equivalent to prove K −

ξµ(t) = 0, if ξ ≱µ. We argue it by induction on n.
The initial step is obvious. Suppose it holds for weight < n. There exists a smallest
k ≥ 1, such that ξ1 + ξ2 + · · · + ξk < µ1 + µ2 + · · · +µk .

If k = 1, then it’s evident that K −

ξµ(t) = 0 by the iterative formula (3-10).

If k > 1, then there exists k > j ≥ 1, such that ξ j+1 < µ1 ≤ ξ j . We have

K −

ξµ(t) =

j∑
i=1

(−1)i−1
⟨Hµ2 Hµ3 · · · , 2h̃ξi −µ1 Qξ1 · · · Q̂ξi · · · ⟩

=

j∑
i=1

(−1)i−1
∑

τ |Hξi −µ1

2tξi −µ1(1 + t−1)l(τ )
⟨Hµ[1]−τ , Q

ξ î ⟩

=

j∑
i=1

(−1)i−1
∑

τ |Hξi −µ1

2tξi −µ1(1 + t−1)l(τ )
∑

ν⊢n−ξi

B(ν, µ[1]
− τ)⟨Hν, Q

ξ î ⟩

=

j∑
i=1

(−1)i−1
∑

τ |Hξi −µ1

2tξi −µ1(1 + t−1)l(τ )
∑

ν⊢n−ξi

B(ν, µ[1]
− τ)K −

ξ î ν
(t).
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By the remark below Proposition 2.2, for each 1 ≤ i ≤ j , we have ν1 +· · ·+νk−1 ≥

µ2+· · ·+µk−τ1−· · ·−τk−1 ≥µ2+· · ·+µk+µ1−ξi >ξ1+· · ·+ξi−1+ξi+1+· · · ξk .
By induction, we have K −

ξµ(t) = 0. □

The Kostka–Foulkes polynomials have the stability property [Bryan and Jing
2021], which says that if µ1 ≥ λ2, then Kλ+(r),µ+(r)(t) = Kλµ(t) for all r ≥ 1. Here,
λ+(r)= (λ1+r, λ2, . . .). The spin Kostka polynomials also enjoy the same stability.

Proposition 3.10. Let ξ = (ξ1, . . . , ξl) ∈ SP , µ = (µ1, . . . , µm) ∈ P , and µ1 > ξ2.
Then for any r ≥ 1, we have

K −

ξ+(r)µ+(r)(t) = K −

ξµ(t).(3-15)

Proof. By Theorem 3.3, it follows that

K −

ξ+(r)µ+(r)(t) = ⟨Hµ2 Hµ3 · · · Hµm .1, 2h̃ξ1−µ1 Qξ2 · · · Qξl .1⟩ = K −

ξµ(t). □

The spin Kostka–Foulkes polynomials Kλµ(t) were conjecturally symmetric
[Wan and Wang 2013, Question 4.10] in the sense that

K −

λµ(t) = tmλµ K −

λµ(t−1)

for some mλµ ∈ Z. However, the following is a counterexample.

Example 3.11. Given ξ = (3, 2) and µ = (2, 13), we have

K −

ξµ(t) = ⟨H2 H1 H1 H1.1, Q3 Q2.1⟩

= ⟨H1 H1 H1.1, 2h̃1 Q2.1⟩ − ⟨H1 H1 H1.1, 2h̃0 Q3.1⟩

= 2⟨t (1 + t−1)[3]H1 H1.1, Q2.1⟩ − 2K −

(3)(13)
(t)

= 4t (t3
+ 2t2

+ 3t + 2).

4. Marked tableaux

To study projective representations of the symmetric group, Stembridge [1989]
introduced the number gξλ as follows:

Qξ (x) =

∑
λ

bξλsλ(x), gξλ = 2−l(ξ)bξλ.(4-1)

Note that bξλ = K −

ξλ(0), but we will see that gξλ can be extended to any partition ξ ,
so we reserve this notation in this section.

Let ξ, λ be partitions with ξ strict. The coefficient gξλ of sλ in the expansion of
the Schur Q-function 2−l(ξ)Qξ counts the number of (unshifted) marked tableaux T
of shape λ and weight ξ such that

(a) w(T ) has the lattice property;
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(b) for each k ≥ 1, the last occurrence of k ′ in w(T ) precedes the last occurrence
of k.

Here w(T ) is the word of T by reading the symbols in T from right to left in
successive rows, starting with the top row.

The combinatorial interpretation and the representation-theoretic interpretation
of gξλ are known [Sagan 1987; Stembridge 1989; Wan and Wang 2013; Worley
1984]. However, no effective formula for gξµ is available. As an application of the
preceding section, we give an algebraic formula for gξλ.

The ring 3Q of symmetric functions has the canonical bilinear form ⟨ · , · ⟩0 =

⟨ · , · ⟩t=0 under which Schur functions are orthonormal:

(4-2) ⟨pλ, pµ⟩0 = δλ,µzλ.

Thus the adjoint operator of the multiplication operator pn is the differential operator
p−

n = n(∂/(∂pn)).
With respect to ⟨ · , · ⟩0, the vertex operators and their adjoint operators for Schur

functions and Schur Q-functions are given by [Jing 1991b; 2000]

S±(z) = exp
(

±

∑
n≥1

1
n

pnzn
)

exp
(

∓

∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

S±

n z±n,(4-3)

Q+(z) = Q(z) =

∑
n∈Z

Q+

n zn,(4-4)

Q−(z) = exp
(

−

∑
n≥1

1
n

pnzn
)

exp
( ∑

n≥1,odd

2
∂

∂pn
z−n

)
=

∑
n∈Z

Q−

n z−n.(4-5)

Note that Q−(z) is the specialized vertex operator Q∗(z)|t=0. Here we denote the
adjoint operators by S+

n and Q+
n , respectively, to distinguish from the preceding

section.
Therefore gξλ can be expressed in terms of this inner product:

(4-6) gξλ = 2−l(ξ)bξλ = 2−l(ξ)
⟨sλ, Qξ ⟩0 = 2−l(ξ)

⟨Sλ.1, Qξ .1⟩0.

Recall that the involution ω : 3 → 3 defined by ω(pλ) = ελ pλ [Macdonald
1979] is an isometry with respect to the canonical inner product ⟨ · , · ⟩0 such that

ω(sλ) = sλ′, ω(Qξ ) = Qξ .

Proposition 4.1. If λ ∈ Pn , ξ ∈ SPn , then gξλ or bξλ has the property

(4-7) gξλ = gξλ′ .
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We introduce the operators for the elementary symmetric functions en

(4-8) e±(z) = exp
( ∑

n≥1

(−1)n+1

n
p±

n z±n
)

=

∑
n≥0

e±

n z±n,

where p+
n = pn , p−

n = n(∂/(∂pn)), and e+(z) = h(z)|t=0.
Then by Theorem 3.3 we have:

Proposition 4.2. For any strict partition ξ = (ξ1, ξ2, . . . , ξl), any partition λ =

(λ1, λ2, . . .) and integer k,

S−

k Qξ =

l∑
i=1

(−1)i−12eξi −k Qξ1 Qξ2 · · · Q̂ξi · · · Qξl ,(4-9)

e−

k Sλ =

∑
ρ

Sρ,(4-10)

where ρ runs through the partitions such that λ/ρ are vertical k-strips.

The algebraic iterative formula for bξλ is then natural:

Theorem 4.3. Let ξ ∈ SPn , λ ∈ Pn . Then

bξλ =

l(ξ)∑
i=1

2(−1)i−1
∑
ρi

bξ (i)ρi ,(4-11)

where ρi runs through the partitions such that λ[1]/ρi are vertical ξi−λ1-strips.

Example 4.4. Let λ ∈ Pn . We have

b(n)λ =

{
2 if λ is a hook,

0 if λ is not a hook.
(4-12)

Combining (3-1) and (4-1), we have

(4-13) K −

ξµ(t) =

∑
λ

bξλKλµ(t),

where Kλµ(t) are the Kostka–Foulkes polynomials.
By (4-12), we have

(4-14) K −

(n)µ(t) =

∑
λ hook

2Kλµ(t).

Recall that a compact formula for the Kostka–Foulkes polynomials Kλµ(t) is
known for λ being hook-shaped [Kirillov 2001; Bryan and Jing 2021]:

(4-15) K(n−k,1k)µ(t) = tn(µ)+
k(k+1−2l)

2

[
l−1

k

]
,
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where n = |µ|, l = l(µ). Therefore, we have that for any partition µ ⊢ n

K −

(n)µ(t) =

l(µ)−1∑
k=0

2tn(µ)+
k(k+1−2l(µ))

2

[
l(µ)−1

k

]
,(4-16)

= tn(µ)

l(µ)∏
i=1

(1 + t1−i ).(4-17)

Here the second equation follows from the t-binomial expansion [Andrews 1986,
(2.9)] or an easy induction on l(µ) from (4-16). We remark that (4-17) was first
given by Wan and Wang [2013] using identities of Hall–Littlewood polynomials.

For a given partition λ, we define

{λ}s
.
= {ρ ⊂ λ[1]

| ρ is a hook and λ[1]/ρ is a vertical s-strip}.

Set N (s)(λ) = Card{λ}s . It is clear that N (s)(λ) = 0 when s < 0 or s > |λ[1]
|. Now

we can give a two-row formula by the iterative formula for bξλ.

Theorem 4.5. Let 1 ≤ m < n
2 , λ ∈ Pn . We have

(4-18) b(n−m,m)λ = 4(N (n−m−λ1)(λ) − N (m−λ1)(λ)).

To compute N (s)(λ), we denote all hook (resp. double hook) partitions of n by
HP(n) (resp. DHP(n)). That is, HP(n)

.
= {(λ1, 1m1) | λ1 + m1 = n}, DHP(n)

.
=

{(λ1, λ2, 2m2, 1m1) |λ1+λ2+2m2+m1 =n}. Clearly, HP(n)⊂DHP(n). We remark
that N (s)(λ) = 0 unless λ ∈ DHP(n). Now let’s consider N (s)(λ), for 0 ≤ s ≤ |λ[1]

|

and λ ∈ DHP(n), case by case.

Case 1: If λ ∈ HP(n), then N (s)(λ) = 1.
Before considering the case λ∈ DHP(n)\ HP(n), we look at the following special

case.

Case 2: If λ = (λ1, λ2, 1m1) and λ /∈ HP(n), then we have

N (s)(λ) =


0 if s ≥ m1 + 2,
1 if s = 0 or s = m1 + 1,
2 if 1 ≤ s ≤ m1.

(4-19)

Case 3: If λ= (λ1, λ2, 2m2, 1m1)∈DHP(n)\ HP(n), then it follows from case 2 that

(4-20) N (s)(λ) = N (s−m2)((λ1, λ2, 1m1))

=


0 if 0 ≤ s ≤ m2 − 1 or s ≥ m1 + m2 + 2,

1 if s = m2 or s = m1 + m2 + 1,

2 if 1 + m2 ≤ s ≤ m1 + m2.
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Example 4.6. Given ξ = (4, 3), λ = (2, 2, 2, 1), we have λ1 = λ2 = 2, m1 = m2 = 1,
and

b(4,3)(2,2,2,1) = 4(N (2)(λ) − N (1)(λ)) = 4 × (2 − 1) = 4.

The symmetric group Sn has a two-valued representation, known as the spin
representation studied by Schur, and this is actually a representation of the double
covering group S̃n of Sn [Schur 1911]. It is known that the irreducible spin
representations of Sn are parametrized by strict partitions of n. Let ζ λ be the
irreducible spin character of the Schur double covering group S̃n afforded by the
module V λ, λ ∈ SPn . Stembridge [1989] obtained the irreducible decomposition
for the twisted tensor product of S̃n [Kleshchev 2005]

ch(ζ (n)
⊗ ζ λ) = Pλ(x; −1),

where ch is the characteristic map (cf. [Jing 1991b]).

Corollary 4.7. Let Sλ be the Specht module corresponding to partition λ ⊢ n and
1 ≤ m < n

2 . Then we have the irreducible decomposition as Sn-modules

V (n)
⊗ V (n−m,m)

≃

⊕
λ∈DHP(n)

(N (n−m−λ1)(λ) − N (m−λ1)(λ))Sλ.(4-21)

Aokage [2021b] obtained the explicit irreducible decomposition of (V (n))⊗2

when n is even, so (4-21) offers the formula for a general tensor product. Recall
that the symmetric functions Pµ(x; −1) are well defined for all partitions µ, so gµλ

are defined similarly as (4-1) for any partitions λ, µ:

Pµ(x; −1) =

∑
λ

gµλsλ(x).(4-22)

Note that the following identities between the Schur P-functions and the Schur
functions hold by using the tensor product of the spin representations of the sym-
metric group [Aokage 2021a]:

(4-23)

∑
λ∈HP(n)\ HOP(n)

sλ(x) =

∑
l(µ)≤2

(−1)µ2 Pµ(x; −1),

∑
λ∈HOP(n)

sλ(x) =

∑
l(µ)=2

(−1)µ2+1 Pµ(x; −1),

where HOP(n)
.
= {λ ∈ HP(n) | λ1 is odd} and n = 2r is even.

Aokage [2021a] has this conjecture at the end of his paper:

Theorem 4.8. For λ = (n − j, 1 j ) ∈ HP(n),

(4-24) g(r2)λ =

{
0 if j < r ,

(−1)r+ j if j ≥ r .
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As an application of our two-row formula for bξλ, we will present a proof of
Aokage’s conjecture.

Combining with the above two identities in (4-23), we have

Pn(x; −1) + 2
r∑

i≥1

(−1)i P(n−i,i)(x; −1) =

n∑
j=0

(−1) j s(n− j,1 j )(x).

Thus,

P(r2)(x; −1) =
1
4

r−1∑
i≥0

(−1)i+r+1 Q(n−i,i)(x; −1) +
1
2

n∑
j=0

(−1)r+ j s(n− j,1 j )(x).

By the orthonormality of sλ,

g(r2)λ =
1
4

r−1∑
i≥0

(−1)i+r+1b(n−i,i)λ +
1
2
(−1)r+ jδ(n− j,1 j )λ.

It follows from the remark below Theorem 4.5, we have g(r2)λ =0 unless λ∈DHP(n).
Now let’s show Theorem 4.8.

Proof. Let λ = (n − j, 1 j ) ∈ HP(n). We have

g(r2)λ =
1
2
(−1)r+1

+

r−1∑
i=1

(−1)i+r+1(N ( j−i)(λ) − N (i+ j−n)(λ)) +
1
2
(−1)r+ j

=
1
2
(−1)r+1

+ (−1)r+1
( min{r−1, j}∑

i=1

(−1)i
−

r−1∑
i=n− j

(−1)i
)

+
1
2
(−1)r+ j .

Then the result follows immediately by a careful analysis of j and direct computa-
tion. □

We remark that there exists a quadratic expression of the P-function in terms of
Schur functions [Lascoux et al. 1993]. Explicit and direct linear expansion (4-22)
in general is thus needed. Indeed, we can give a compact formula of g(r2)λ for any
partition λ.

Theorem 4.9. For λ = (λ1, λ2, 2m2, 1m1) ∈ DHP(n)\ HP(n), we have that

(4-25) g(r2)λ =

r−1∑
i=1

(−1)i+r+1(N (n−i−λ1)(λ) − N (i−λ1)(λ)).

By considering λ case by case, we have that

g(r2)λ =

{
1 if λ2 + m1 − 1 ≤ λ1 ≤ λ2 + m1 + 1,
0 otherwise.
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Tables for K−

ξµ
(t), 2 ≤ n ≤ 6

Here

[n] = tn−1
+ · · · + t + 1, [n]!! = [n][n − 2] · · · .

For completeness, we include n = 2, 3, 4 from [Wan and Wang 2013].

µ ξ = (2)

(2) 2
(12) 2[2]

Table 1. n = 2.

µ ξ = (3) (2, 1)

(3) 2 0
(2, 1) 2[2] 4
(13) 2[4] 4t[2]

Table 2. n = 3.

µ ξ = (4) (3, 1)

(4) 2 0
(3, 1) 2[2] 4
(22) 2t[2] 4[2]

(2, 12) 2[4] 4[2]
2

(14) 2[6]!!/[3]! 4t[4]!!

Table 3. n = 4.

µ ξ = (5) (4, 1) (3, 2)

(5) 2 0 0
(4, 1) 2[2] 4 0
(3, 2) 2t[2] 4[2] 4
(3, 12) 2[4] 4[2]

2 4[2]

(22, 1) 2t[4] 4[2][3] 4[2]
2

(2, 13) 2[6]!!/[3]! 4[4][3] 4t[2]([3] + 1)

(15) 2[8]!!/[4]! 4t[6]!!/[2] 4t2
[4]

2

Table 4. n = 5.
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µ ξ = (6) (5, 1) (4, 2) (3, 2, 1)

(6) 2 0 0 0
(5, 1) 2[2] 4 0 0
(4, 2) 2t[2] 4[2] 4 0
(4, 12) 2[4] 4[2]

2 4[2] 0
(3, 3) 2t2

[2] 4t[2] 4[2] 0
(3, 2, 1) 2t[4] 4[2][3] 4[2](t + 2) 8
(3, 13) 2[6]!!/[3]! 4[4][3] 4[2]

2
[3] 8t[2]

(23) 2t3
[4] 4t[4]!! 4[2]([4] + t2) 8t[2]

(22, 12) 2t[6]!!/[3]! 4[4]
2 4[2]

2([4] + t) 8t[2]
2

(2, 14) 2[8]!!/[4]! 4[4][6]!! 4t[4]!!([4] + 1) 8t2
[4]!!

(16) 2[10]!!/[5]! 4t[8]!!/[3]! 4t2
[5][6]!!/[3] 8t4

[6]!!/[3]

Table 5. n = 6.
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THE STRUCTURE OF GROUPS WITH
ALL PROPER QUOTIENTS VIRTUALLY NILPOTENT

BENJAMIN KLOPSCH AND MARTYN QUICK

Just infinite groups play a significant role in profinite group theory. For each
c ⩾ 0, we consider more generally JNNcF profinite (or, in places, discrete)
groups that are Fitting-free; these are the groups G such that every proper
quotient of G is virtually class-c nilpotent whereas G itself is not, and ad-
ditionally G does not have any nontrivial abelian normal subgroup. When
c = 1, we obtain the just non-(virtually abelian) groups without nontrivial
abelian normal subgroups.

Our first result is that a finitely generated profinite group is virtually class-
c nilpotent if and only if there are only finitely many subgroups arising as the
lower central series terms γc+1(K ) of open normal subgroups K of G. Based
on this we prove several structure theorems. For instance, we characterize
the JNNcF profinite groups in terms of subgroups of the above form γc+1(K ).
We also give a description of JNNcF profinite groups as suitable inverse limits
of virtually nilpotent profinite groups. Analogous results are established for
the family of hereditarily JNNcF groups and, for instance, we show that a
Fitting-free JNNcF profinite (or discrete) group is hereditarily JNNcF if and
only if every maximal subgroup of finite index is JNNcF. Finally, we give a
construction of hereditarily JNNcF groups, which uses as an input known
families of hereditarily just infinite groups.

1. Introduction and main results

If P is a property of groups, a group G is said to be just non-P when G does
not have property P but all proper quotients of G do satisfy P. In the case
when G is a profinite group, we require instead that every quotient of G by a
nontrivial closed normal subgroup has P. The property P considered most often
has been that of being finite and the more common term just infinite is then used.
Just infinite groups are particularly important within the context of profinite — or
more generally residually finite — groups, since infinite residually finite groups are
never simple but instead just infinite groups can be viewed as those with all proper
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quotients essentially trivial from a ‘residually finite’ viewpoint (see, for example,
the discussion in [Leedham-Green and McKay 2002, §12.1]). Important examples
of just infinite groups include the Grigorchuk group [1984] and the Nottingham
group [Klopsch 2000; Hegedűs 2001], but also families arising as quotients of
arithmetic groups by their centers [Bass et al. 1967].

There is a dichotomy in the study of just non-P groups. One thread within the
literature is concerned with the study of just non-P groups possessing a nontrivial
normal abelian subgroup. In this context, a key idea is to exploit the structure of a
maximal abelian normal subgroup when viewed as a module in the appropriate way.
Studies of this type include [McCarthy 1968; 1970; De Falco 2002; Quick 2007]
and we also refer to the monograph [Kurdachenko et al. 2002] for more examples.
On the other hand, Wilson [1971; 2000] addresses the case of just infinite groups
with no nontrivial abelian normal subgroup. He shows that such groups fall into
two classes: (i) branch groups and (ii) certain subgroups of wreath products of a
hereditarily just infinite group by a symmetric group of finite degree. The class of
branch groups has been studied considerably (see, for example, [Grigorchuk 2000;
Bartholdi et al. 2003], though many more articles on these groups have appeared
since these surveys were written). It is known that every proper quotient of a branch
group is virtually abelian (see the proof of [Grigorchuk 2000, Theorem 4]) and
there are examples of branch groups that are not just infinite (see [Fink 2014], for
example). It is interesting therefore to note that Wilson’s methods extend to the
class of groups with all proper quotients virtually abelian, as observed by Hardy in
his PhD thesis [2002]. We shall use the abbreviation JNAF groups for these just
non-(abelian-by-finite) groups.

More recently, Reid [2010a; 2010b; 2012; 2018] established various fundamental
results concerning the structure and properties of just infinite groups. One might
wonder to what extent JNAF groups have a similar structure to just infinite groups.
In this article, we demonstrate how, for fixed c ⩾ 0, Reid’s results may in fact be
extended to the even larger class of groups with all proper quotients being virtually
nilpotent of class at most c; that is, the just non-(class-c-nilpotent-by-finite) groups.
We shall abbreviate this term to JNNcF group in what follows. The case c = 0
essentially returns Reid’s results, while the case c = 1 covers all JNAF groups and
so, in particular, would apply to all branch groups.

We do require some additional, though rather mild, hypotheses to those appearing
in Reid’s work. First, the JNNcF groups that we consider will be assumed to be
Fitting-free; that is, to have no nontrivial abelian normal subgroup. This is consistent
with Wilson’s and Hardy’s studies and with the viewpoint that says that the case
with a nontrivial abelian normal subgroup should be studied through a module-
theoretic lens. (As an aside, we emphasize that JNNcF groups with some nontrivial
abelian normal subgroup are, in particular, abelian-by-nilpotent-by-finite). Infinite
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Fitting-free groups cannot be virtually nilpotent, so part of the definition of JNNcF
group comes immediately. In addition, we shall frequently assume that the groups
under consideration are finitely generated. This latter condition will enable us to
control the structure of the quotients that arise.

It is interesting to note which parts of Reid’s ideas adapt readily to the JNNcF
setting and where differences occur. One example is that he implicitly uses the fact
that a proper quotient of a just infinite group, being finite, has only finitely many
subgroups. In contrast, any infinite (virtually nilpotent) quotient of a profinite group
will necessarily have infinitely many open normal subgroups. We shall depend
upon the following result as a key tool in our work. It means that, while a finitely
generated virtually nilpotent profinite group typically has infinitely many closed
normal subgroups, it only has finitely many that occur as corresponding lower
central series subgroups of open normal subgroups.

Theorem A. Let G be a finitely generated profinite group. Then G is virtually
nilpotent of class at most c if and only if the set {γc+1(K ) | K Po G} is finite.

Theorem A is established as Theorem 2.10 in Section 2. In that section, we also
give precise definitions and recall properties needed during the course of our work.

In Section 3, we fix an integer c ⩾ 0 and investigate the structure of JNNcF
profinite groups G that are Fitting-free. We shall establish various descriptions that
generalize those of just infinite groups in [Reid 2010a; 2012; 2018]. One point
that can be noted is that the subgroups of the form γc+1(K ), for K an open normal
subgroup of G, play a role in JNNcF groups analogous to that of open normal
subgroups in just infinite groups. For example, we show that a directed graph 0
can be constructed from a suitable subcollection of {γc+1(K ) | K Pc G} that is
locally finite. This enables us to establish our first characterization of JNNcF groups
(established as Theorem 3.3 below), which is the following analogue of Reid’s
“generalized obliquity theorem” [Reid 2010a, Theorem A]. Specifying c= 0 results
in a mild weakening of Reid’s theorem.

Theorem B. Let G be a finitely generated infinite profinite group that has no
nontrivial abelian closed normal subgroup. Then G is JNNcF if and only if the set
AH = {γc+1(K ) | K Po G with γc+1(K )⩽̸ H} is finite for every open subgroup H
of G.

This result is used to characterize, in Theorem 3.5, when a finitely generated
Fitting-free profinite group is JNNcF. The characterization is expressed in terms of
properties of a descending chain of open normal subgroups Hi and the (c+1)-th
term of their lower central series. In Theorem 3.7, we establish a further char-
acterization of such a group as an inverse limit in a manner analogous to [Reid
2012, Theorem 4.1]. One important tool (see Lemma 3.1) that is used throughout
Section 3 is that, if G is a Fitting-free JNNcF profinite group and N is a nontrivial
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closed normal subgroup, then the Melnikov subgroup M(N ) of N is nontrivial and
so, via the Fitting-free assumption, γi (M(N )) ̸= 1 for all i ⩾ 1.

Section 4 is concerned with the structure of profinite groups that are hereditarily
JNNcF. We establish there a similar suite of results, though the description of
a finitely generated, Fitting-free hereditarily JNNcF group as an inverse limit is
more technical (see Theorem 4.7). It shares this level of technicality with Reid’s
characterization of hereditarily just infinite groups.

In Section 5, we establish the following (as Corollary 5.5) which is the analogue
of the main result of [Reid 2010a]. The material in this section does not depend
upon Theorem A and so is more directly developed from Reid’s arguments.

Theorem C. Let G be a JNNcF profinite or discrete group that has no nontrivial
abelian normal subgroup. Then G is hereditarily JNNcF if and only if every maximal
(open) subgroup of finite index is JNNcF.

One reasonable conclusion from the results described so far is that there is a
similarity in the structure of JNNcF groups when compared to just infinite groups.
One might ask: just how closely are these classes linked? As JNNcF groups have
not yet been studied systematically, there are presently rather few examples to
examine when considering these links. In the final section of the paper, Section 6,
we take a first step and present one way to construct hereditarily JNNcF groups from
hereditarily just infinite groups as semidirect products and discuss some explicit
examples. We give examples of hereditarily JNAF groups of the form G ⋊ A
where G can be a hereditarily just infinite group suitably built as an iterated wreath
product or using Wilson’s Construction B [2010] and A can be selected from a
rather broad range of abelian groups (see Examples 6.10 and 6.16). By exploiting
the fact that every countable pro-p group can be embedded in the Nottingham group,
we construct a hereditarily JNNcF group of the form SL1

n(Fp[[T ]])⋊ A where A
can be any virtually nilpotent pro-p group (see Example 6.17). This last family of
examples demonstrates that, for every possible choice of c ⩾ 1, there is a JNNcF
pro-p group that is not just non-(virtually nilpotent of smaller class).

Since the examples constructed are built using hereditarily just infinite groups,
one is drawn back to the above question concerning the link between JNNcF groups
and just infinite groups. The results of Sections 3–5 suggest such a link and it is an
open challenge to produce examples of hereditarily JNNcF groups of a compellingly
different flavor to those built in Section 6.

2. Preliminaries

In this section, we first give the precise definitions of the groups under consideration.
We then recall some useful tools from [Reid 2012] and make a number of basic
observations about JNNcF groups. In the last part of the section we consider the
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behavior of finitely generated virtually nilpotent groups and establish Theorem A
which is crucial for the sections that follow.

We shall write maps on the right throughout, so Hφ denotes the image of a group
H under a homomorphism φ and x y is the conjugate y−1xy. If G is a profinite
group, we use the usual notation H Po G and K Pc G for an open normal subgroup
and a closed normal subgroup, respectively. If K and L are closed subgroups
of G, then [K , L] will denote the closed subgroup generated by all commutators
[x, y] = x−1 y−1xy where x ∈ K and y ∈ L . The lower central series of G is then
defined by γ1(G)= G and γi+1(G)= [γi (G),G] for each i ⩾ 1. As usual, we also
use G ′ for the derived subgroup γ2(G) of G. These concepts will, in particular, be
relevant for the instances of the following definition that concern us.

Definition 2.1. Let P be a property of groups. A profinite (or discrete) group G is
said to be just non-P if G does not have property P but G/N does have P for
every nontrivial closed normal subgroup N of G. It is hereditarily just non-P if
every closed subgroup of finite index in G is just non-P.

(When G is discrete, the word “closed” can and should be ignored. Note that a
closed subgroup of finite index is necessarily open, but the definition is phrased to
enable that for discrete groups to be readily extracted).

In this paper we consider three options for the property P:

(1) When P is the property of being finite, we use the more common term just
infinite for an infinite group with every proper quotient finite.

(2) We use the abbreviation JNAF for just non-P when P is the property of being
virtually abelian, which is the same as being abelian-by-finite. A profinite
group has an abelian subgroup of finite index if and only if it has an abelian
open subgroup (as the topological closure of any abelian subgroup is again
abelian), so we use the term virtually abelian in this situation also.

(3) If c is an integer with c ⩾ 0, we use the abbreviation JNNcF for just non-P
when P is the property that there is a subgroup H of finite index such that
γc+1(H)= 1. A profinite group has a class-c nilpotent subgroup of finite index
if and only if it has an open class-c nilpotent subgroup (as the topological
closure of any class-c nilpotent subgroup is again class-c nilpotent).

The case c=1 for a JNNcF group is then identical to it being JNAF. We shall speak of
a group G being virtually class-c nilpotent when it has a subgroup H of finite index
satisfying γc+1(H)= 1. More precisely such a group is “virtually (nilpotent of class
at most c)”. The JNNcF groups G considered will usually be assumed to not have
a nontrivial abelian closed normal subgroup. Consequently, such G will itself not
be virtually nilpotent (of any class) and so we are studying groups that are just non-
(virtually nilpotent) with an additional bound upon the nilpotency class occurring
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in the proper quotients. In particular, when c = 1 we are considering groups that
are not virtually metabelian but where every proper quotient is virtually abelian.

Let G be a profinite group. In line with [Reid 2012, Definition 2.1], a chief factor
of G is a quotient K/L where K and L are closed normal subgroups of G such that
there is no closed normal subgroup M of G with L < M < K . Accordingly, we do
not require that K be open in G in this definition, though necessarily L is open in
K and hence K/L is isomorphic (under an isomorphism that commutes with the
action of G) to a chief factor K0/L0 with K0 an open normal subgroup of G.

The Melnikov subgroup M(G) of G is the intersection of all maximal open normal
subgroups of G. Provided G is nontrivial, this is a topologically characteristic
proper closed subgroup of G. As usual, to say a subgroup of G is topologically
characteristic means that it is invariant under all automorphisms of G that are also
homeomorphisms. We follow [Reid 2012, Definition 3.1] and, for a nontrivial
closed normal subgroup A of G, define MG(A) to be the intersection of all maximal
G-invariant open subgroups of A. This satisfies M(A)⩽ MG(A) < A. We call A a
narrow subgroup of G if A has a unique maximal G-invariant open subgroup (that
is, when MG(A) is this unique subgroup). The first part of the following lemma is
a consequence of the correspondence theorem, while the other two are, respectively,
Lemmas 3.2 and 3.3 in Reid’s paper [2012].

Lemma 2.2. Let G be a profinite group.

(i) Let K and L be closed normal subgroups of G such that L ⩽ MG(K ). Then
MG/L(K/L)= MG(K )/L.

(ii) Let K and L be closed normal subgroups of G. Then K ⩽ L MG(K ) if and
only if K ⩽ L.

(iii) If K/L is a chief factor of G, there is a closed normal subgroup A which is
narrow in G and is contained in K but not in L. This narrow subgroup satisfies
A∩ L = MG(A).

It is well-known that a finitely generated finite-by-abelian discrete group is
center-by-finite. This is established by ideas related to FC-groups (see [Robinson
1996, Section 14.5], in particular, the proof of (14.5.11)). In the case of profinite
groups, however, the hypothesis of finite generation is unnecessary, as observed by
Detomi, Morigi and Shumyatsky (see [Detomi et al. 2020, Lemma 2.7]). In fact,
a similar argument establishes the following result needed in our context and that
only needs residual finiteness as a hypothesis:

Lemma 2.3. Let G be a residually finite group with a finite normal subgroup N. If
G/N is virtually class-c nilpotent, for some c ⩾ 0, then G is also virtually class-c
nilpotent.
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Proof. For each nonidentity element x of N , there exists a normal subgroup of finite
index in G that does not contain x . By intersecting these, we produce a normal
subgroup K of finite index in G such that N ∩K = 1. Then G embeds in the direct
product G/N ×G/K of G/N and a finite group, so the result follows. □

Corollary 2.4. Let G be a profinite group that is JNNcF. Then G has no nontrivial
finite normal subgroup.

Sections 3 and 4 are concerned with profinite JNNcF groups, whereas the last
two sections consider both profinite and abstract JNNcF groups. To state efficiently
the results in Section 5, we shall adopt there the convention that “subgroup” for a
profinite group means “closed subgroup” so that it remains in the same category.
For the results in the current section that will be used in the discrete case, we simply
bracket the word “closed” to indicate it is unnecessary in such a situation. The
following lemma illustrates this convention. It is a standard elementary fact about
just non-P groups when P is a property that is inherited by both finite direct
products and subgroups.

Lemma 2.5. Let G be a profinite group or discrete group that is JNNcF. If K and
L are nontrivial (closed) normal subgroups of G, then K ∩ L ̸= 1.

Just as Reid [2010b] does, we use Wilson’s concept [2000] of a basal subgroup:

Definition 2.6. A subgroup B of a group G is called basal if B is nontrivial, has
finitely many conjugates B1, B2, . . . , Bn in G and the normal closure of B in G is
the direct product of these conjugates: BG

= B1× B2× · · ·× Bn .

Lemma 2.8 below is based on [Reid 2010b, Lemma 5]. The hypothesis that
K has only finitely many conjugates is sufficient to adapt the proof of Reid’s
lemma to our needs. In its statement, and in many that follow, we shall say that
a (profinite or discrete) group G is Fitting-free when it has no nontrivial abelian
(closed) normal subgroup. This is immediately equivalent to the requirement that
the Fitting subgroup F(G) be trivial. Furthermore, if G is a JNNcF group, one
observes that G is Fitting-free if and only if G is not virtually soluble. If K is a
normal subgroup of G, then Z(K ) = K ∩ CG(K ) and we deduce the following
characterization of the Fitting-free condition in JNNcF groups using Lemma 2.5.

Lemma 2.7. Let G be a profinite or discrete group that is JNNcF. Then G is Fitting-
free if and only if CG(K ) = 1 for every nontrivial normal (closed) subgroup K
of G.

Lemma 2.8. Let G be a profinite or discrete group that is Fitting-free. Let K be a
nontrivial (closed) subgroup of G whose conjugates {Ki | i ∈ I } are parametrized
by the finite set I and which satisfies K P K G . Then there exists some J ⊆ I such
that

⋂
j∈J K j is basal.
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Proof. For J ⊆ I , define K J =
⋂

j∈J K j . Let I be the set of subsets J of I such
that K J ̸= 1. Certainly I is nonempty since it contains all singletons as K ̸= 1.
Choose J ∈ I of largest size and define B = K J . Then B also has finitely many
conjugates in G and we denote these by B1, B2, . . . , Bn . Two distinct conjugates
intersect trivially, Bi ∩B j = 1 when i ̸= j , since this is the intersection of more than
|J | conjugates of K . Since each Ki is normal in K G , it follows that each B j P K G

and therefore [Bi , B j ] ⩽ Bi ∩ B j = 1 when i ̸= j . Set L = BG
= B1 B2 · · · Bn .

Then the center of L is the product of the centers of the B j . Our hypothesis that
G has no nontrivial abelian (closed) subgroup then forces Z(B j ) = 1 for each j .
Now if j ∈ {1, 2, . . . , n}, set Pj = B1 · · · B j−1 B j+1 · · · Bn . Then [B j , Pj ] = 1
and so Pj ∩ B j ⩽ Z(B j ) = 1. Since this holds for each j , we conclude that
L = B1× B2× · · ·× Bn; that is, B is basal. □

Properties of virtually nilpotent profinite groups. If N is a closed normal subgroup
of a profinite group G, we define the commutator subgroup [N ,i G]Pc G recursively
by [N ,0 G] = N and [N ,i G] = [[N ,i−1 G],G] for i ⩾ 1. Thus, using left-normed
commutator notation,

[N ,c G] = [N ,G,G, . . . ,G︸ ︷︷ ︸
c times

].

We also write Zi (G) for the i-th term of the upper central series of a group G.

Lemma 2.9. Let G be a finitely generated profinite group and N be an open normal
subgroup of G such that γc+1(N ) = 1 for some c ⩾ 0. Then [N ,i G] is an open
subgroup of γc+1(G) for all i ⩾ c.

Proof. Define k = |G/N |. It follows from the definitions that [N ,c G] is a closed
normal subgroup of G with N/[N ,c G]⩽ Zc(G/[N ,c G]). Hence, this term of the
upper central series is open in G/[N ,c G] and a theorem of Baer — see [Robinson
1996, (14.5.1)] — shows that γc+1(G/[N ,c G]) is finite. Hence [N ,c G] is an open
subgroup of γc+1(G).

Now suppose that we have shown [N ,i G] is open in γc+1(G) for some i ⩾ c.
This subgroup is generated, modulo [N ,i+1 G], by all left-normed commutators
[x, y1, y2, . . . , yi ] where x is selected from some finite generating set for N and
y1, y2, . . . , yi from a finite generating set for G. In particular, [N ,i G]/[N ,i+1 G]
is a finitely generated abelian profinite group. Furthermore, standard commutator
calculus shows that, modulo [N ,i+1 G],

[x, y1, y2, . . . , yi ]
ki
≡ [x, y k

1 , y k
2 , . . . , y k

i ] ∈ γi+1(N )= 1.

Hence, every generator of [N ,i G]/[N ,i+1 G] has finite order and so this abelian
group is finite. It follows that [N ,i+1 G] is an open subgroup of [N ,i G]. The
lemma then follows by induction on i ⩾ c. □
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The next result establishes, in particular, Theorem A, stated in the introduction.

Theorem 2.10. (i) Let G be a finitely generated virtually class-c nilpotent profi-
nite group, for some c ⩾ 0. Then the set {γc+1(K ) | K Pc G} is finite.

(ii) Conversely, if G is a profinite group such that {γc+1(K ) | K Po G} is finite, for
some c ⩾ 0, then G is virtually class-c nilpotent.

Proof. (i) Let N be an open normal subgroup of G such that γc+1(N )= 1. Let K
be any closed normal subgroup of G and set L = K N . By standard commutator
calculus, any element of [N ,2c K N ] can be expressed as a product of commutators
[x, y1, y2, . . . , y2c] where x ∈ N and each yi belongs either to K or to N . Since
such a commutator involves either at least c+ 1 entries from K or at least c+ 1
entries from N , we deduce

[N ,2c L] = [N ,2c K N ]⩽ γc+1(N ) [N ,c+1 K ]⩽ γc+1(K )⩽ γc+1(L).

Furthermore, upon applying Lemma 2.9 to the profinite group L , we conclude
that [N ,2c L] is an open subgroup of γc+1(L). Therefore, for each open normal
subgroup L of G that contains N , there are at most finitely many possibilities
for γc+1(K ) as K ranges over all closed normal subgroups of G with K N = L .
Finally, since there are only finitely many possibilities for L , we conclude that
{γc+1(K ) | K Pc G} is indeed finite.

(ii) Let G be a profinite group and suppose that A={γc+1(K ) | K Po G} is finite. If
N is any open normal subgroup of G, then the set LG/N = {γc+1(H) | H P G/N }
is the image of A under the map induced by the natural homomorphism G→G/N .
In particular, there exists some open normal subgroup M of G such that |LG/M | is
maximal. If N is an open normal subgroup of G contained in M , then |LG/N | =

|LG/M | and so, in particular, γc+1(M/N ) must coincide with γc+1(N/N ); that is,
γc+1(M)⩽ N . As this holds for all such open normal subgroups N , we conclude
that γc+1(M)= 1. This shows that G is virtually class-c nilpotent. □

The following example demonstrates that the assumption of finite generation is
necessary in Theorem 2.10(i). We construct a countably-based virtually abelian
pro-p group such that the set {K ′ | K Po G} contains infinitely many subgroups.

Example 2.11. Let p be a prime and, for each i ⩾ 0, set Vi to be the direct product
of p copies of the cyclic group C p of order p. Take H = C p and let H act on
each Vi by cyclically permuting the factors. Define Wi = Vi ⋊ H ∼= C p wr C p, the
standard wreath product. Then [Vi , H ] and [Vi , H, H ] are normal subgroups of Wi

of indices p2 and p3, respectively. Now take G=
(∏
∞

i=0 Vi
)
⋊H . This is a virtually

abelian pro-p group, indeed G = lim
←−−

Gn where Gn =
(∏n

i=0 Vi
)
⋊ H . Certainly G
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is not finitely generated. Observe that, for each finite subset S of N0,

US =

( ∏
i∈S
[Vi , H ]×

∏
i /∈S

Vi

)
⋊ H

is an open normal subgroup of G and

U ′S =
∏
i∈S
[Vi , H, H ]×

∏
i /∈S
[Vi , H ].

In particular, the set {K ′ | K Po G} is infinite for this group G.

3. Characterization of JNNcF profinite groups

We fix the integer c ⩾ 0 throughout this section. In order to establish Theorem B
that characterizes Fitting-free JNNcF profinite groups, we shall associate a directed
graph 0 to the set CH that appears in the statement of Theorem 3.3 below. This
graph is similar to that used by Reid [2010a]. A key difference is that the vertices of
0 correspond only to closed subgroups that have the form γc+1(K ) (where K is a
closed normal subgroup of the profinite group under consideration) rather than any
other nontrivial closed subgroups that the group may have. We begin by describing
this graph and establishing that it is locally finite.

In the following, recall that the Melnikov subgroup M(N ) of N is the intersection
of the maximal open normal subgroups of N .

Lemma 3.1. Let G be a Fitting-free JNNcF profinite group and let N be a nontrivial
closed normal subgroup of G. Then γi (M(N )) ̸= 1 for all i ⩾ 1.

Proof. We shall show that the normal subgroup M(N ) is nontrivial, for the hy-
pothesis that G is Fitting-free then ensures it cannot be nilpotent. Suppose for
a contradiction that M(N ) = 1. Let L be the set of open normal subgroups M
of N such that N/M is cyclic of prime order and M be the set of open normal
subgroups M of N such that N/M is a nonabelian finite simple group. Then(⋂

L
)
∩

(⋂
M

)
= M(N ) = 1. By Lemma 2.5, either

⋂
L = 1 or

⋂
M = 1. If⋂

L = 1, then N embeds in a Cartesian product of cyclic groups of prime order
and so N would be abelian, contrary to hypothesis.

Hence
⋂

M= 1. Then [Ribes and Zalesskii 2000, Corollary 8.2.3] tells us that
N is a Cartesian product of nonabelian finite simple groups SR indexed by the
set M, say N =

∏
R∈M SR . Now there exists some open normal subgroup K of G

such that N ∩ K < N . Define

M1 =
∏

SR⩽K
SR and M2 =

∏
SR⩽̸K

SR,

the products of those factors SR contained in K and not contained in K , respectively.
Any closed normal subgroup of N is the product of the factors SR that it contains,
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so M1 = N ∩K . Hence M2 is nontrivial and finite. Furthermore, since K is normal
in G, for g ∈G, SR ⩽̸ K if and only if S g

R ⩽̸ K . Therefore M2 is a normal subgroup
of G and we have a contradiction by Corollary 2.4. □

Let G be a finitely generated Fitting-free JNNcF profinite group and H be an
open subgroup of G. Construct a directed graph 0 = 0(H) whose vertices are the
members of the set

CH = {γc+1(K ) | K Pc G with γc+1(K )⩽̸ H}

and where there is an edge from a member A of CH to another member B when
B < A and there is no C ∈ CH with B < C < A.

Lemma 3.2. Let G be a finitely generated Fitting-free JNNcF profinite group, let
H be an open subgroup of G and let 0 = 0(H) be the graph defined above.

(i) If K and L are closed normal subgroups of G such that γc+1(K ), γc+1(L)∈CH

and there is an edge from γc+1(K ) to γc+1(L) in 0, then γc+1(M(γc+1(K )))⩽
γc+1(L).

(ii) If K is a closed normal subgroup of G such that γc+1(K ) ∈ CH , then there are
at most finitely many γc+1(L) ∈ CH such that there is an edge from γc+1(K ) to
γc+1(L) in 0.

Proof. (i) Suppose that there is an edge from γc+1(K ) to γc+1(L) in 0. Then
γc+1(L) is a proper subgroup of γc+1(K ), so the intersection R of the maximal
open normal subgroups of γc+1(K ) that contain γc+1(L) satisfies R <γc+1(K ). By
definition, M(γc+1(K ))⩽ R and so M(γc+1(K ))γc+1(L)⩽ R<γc+1(K ). Take J =
M(γc+1(K ))L . Then J is a closed normal subgroup of G and γc+1(L)⩽ γc+1(J )⩽
M(γc+1(K ))γc+1(L) < γc+1(K ). Since there is an edge in 0 from γc+1(K ) to
γc+1(L), this forces γc+1(J )= γc+1(L) and hence γc+1(M(γc+1(K )))⩽ γc+1(L).

(ii) Define M = γc+1(M(γc+1(K ))). By Lemma 3.1, M ̸= 1 and hence Q = G/M
is virtually class-c nilpotent. If there is an edge from γc+1(K ) to γc+1(L) in 0 then,
by part (i), γc+1(L) corresponds to γc+1(L/M) and here L/M is a closed normal
subgroup of Q. Consequently, there are only finitely many possibilities for γc+1(L)
by Theorem 2.10(i). □

Theorem 3.3. Let G be a finitely generated infinite profinite group that is Fitting-
free and let c be a nonnegative integer. Then the following conditions are equivalent:

(i) The group G is JNNcF.

(ii) The set AH = {γc+1(K ) | K Po G with γc+1(K )⩽̸ H} is finite for every open
subgroup H of G.

(iii) The set CH = {γc+1(K ) | K Pc G with γc+1(K )⩽̸ H} is finite for every open
subgroup H of G.
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Observe that if H is any open subgroup of G with C=CoreG(H), then AH =AC

and CH = CC . Hence each of the conditions (ii) and (iii) is equivalent to the
requirement that the given set be finite for every open normal subgroup H of G.

Proof. Assume that G is JNNcF. Suppose that CH is infinite for some open subgroup
H of G. As described above, construct the graph 0 = 0(H) whose vertices are the
members of CH . Lemma 3.2(ii) tells us that each vertex of 0 has finite out-degree.
Furthermore, if γc+1(K ) ∈ CH , then G/γc+1(K ) is a proper quotient of G and so
is virtually class-c nilpotent. Hence, by Theorem 2.10(i), G/γc+1(K ) contains
only finitely many subgroups of the form γc+1(L̄) where L̄ is a closed normal
subgroup; that is, there are only finitely many members of CH that contain γc+1(K ).
Consequently there is a path of finite length in 0 from γc+1(G) to γc+1(K ).

Thus 0 is a connected, locally finite, infinite directed graph. By König’s lemma
(see, for example, [Diestel 2017, Lemma 8.1.2]), 0 has an infinite directed path
and this corresponds to an infinite descending chain γc+1(K1) > γc+1(K2) > · · ·

of members of CH . An application of [Reid 2010a, Lemma 2.4], taking O = H ,
shows that J =

⋂
∞

i=1 γc+1(Ki ) ̸= 1. Then G/J is finitely generated and virtually
class-c nilpotent but it has infinitely many subgroups of the form γc+1(Ki )/J with
Ki Pc G. This contradicts Theorem 2.10(i). We conclude therefore that CH is finite
for every open subgroup H of G.

Since AH ⊆ CH for every H , it is certainly the case that the third condition in
the statement implies the second.

Suppose finally that AH is finite for every open subgroup H of G. As G is Fitting-
free, it is not virtually nilpotent. Let N be a nontrivial closed normal subgroup
of G. Then γc+1(N ) ̸= 1 and so there exists an open normal subgroup H of G such
that γc+1(N )⩽̸ H . By hypothesis, AH = {γc+1(L1), γc+1(L2), . . . , γc+1(Lr )} for
some open normal subgroups L1, L2, . . . , Lr of G. Set L =

⋂r
i=1 L i . If K is an

open normal subgroup of G with N ⩽ K , then necessarily γc+1(K ) ⩽̸ H and so
γc+1(K )= γc+1(L i ) for some i . Therefore

γc+1(L)⩽
⋂
{γc+1(K ) | N ⩽ K Po G}⩽

⋂
{K | N ⩽ K Po G} = N .

Hence L N/N is a class-c nilpotent open subgroup of G/N , as required. □

We shall now use Theorem 3.3 to establish further information about finitely
generated Fitting-free JNNcF groups, including a description of them as inverse
limits of suitable virtually nilpotent groups (see Theorem 3.7 below).

Suppose that G is a finitely generated Fitting-free JNNcF group. We start
with any open normal subgroup H0. Then certainly γc+1(H0) ̸= 1 since G is
Fitting-free. Now assume, as an inductive hypothesis, that we have constructed a
sequence of open normal subgroups G ⩾ H0 > H1 > · · ·> Hn−1 such that for each
i ∈ {1, 2, . . . , n− 1} the following holds: γc+1(Hi )⩽ MG(γc+1(Hi−1)) and if N is
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an open normal subgroup of G either γc+1(N )⩽ Hi−1 or γc+1(Hi )⩽ γc+1(N ). By
Theorem 3.3, the set AHn−1 = {γc+1(K ) | K Po G with γc+1(K )⩽̸ Hn−1} is finite.
Also MG(γc+1(Hn−1)) ̸= 1 since it contains M(γc+1(Hn−1)) which is nontrivial by
Lemma 3.1. Let

R = MG(γc+1(Hn−1))∩
⋂

AHn−1 .

Since this is a finite intersection of nontrivial closed normal subgroups, R is also
a nontrivial closed normal subgroup of G by Lemma 2.5. Then G/R is virtually
class-c nilpotent, so there exists an open normal subgroup S of G with γc+1(S)⩽ R.
Take Hn = Hn−1 ∩ S, so that Hn is open in G, Hn ⩽ Hn−1 and

γc+1(Hn)⩽ R ⩽ MG(γc+1(Hn−1)) < γc+1(Hn−1).

Furthermore, if N is an open normal subgroup of G, then either γc+1(N )⩽ Hn−1

or γc+1(N ) ∈AHn−1 . In the latter case, γc+1(Hn)⩽ R ⩽ γc+1(N ) according to our
definition of R.

By repeated application of these steps, we obtain a descending sequence of open
normal subgroups Hn . Let J =

⋂
∞

n=0 Hn . If J ̸= 1, then necessarily γc+1(J ) ̸= 1
so G/γc+1(J ) is virtually class-c nilpotent. By Theorem 2.10(i), the set {γc+1(K ) |
K Po G/γc+1(J )} is finite but each term γc+1(Hi )/γc+1(J ) is a member of this set.
This contradiction shows that J = 1.

In conclusion, we have established the following observation:

Lemma 3.4. Let G be a finitely generated profinite group that is Fitting-free and
JNNcF. Then there is a descending sequence G ⩾ H0 > H1 > H2 > · · · of open
normal subgroups such that:

(i) For each n ⩾ 1, γc+1(Hn)⩽ MG(γc+1(Hn−1)) < γc+1(Hn−1).

(ii)
⋂
∞

n=0 Hn = 1.

(iii) If N is an open normal subgroup of G and n ⩾ 1, then either γc+1(N )⩽ Hn−1

or γc+1(Hn)⩽ γc+1(N ).

The conditions appearing in the lemma are sufficient to ensure that the group G
is JNNcF. In fact, we can make them marginally weaker as the following shows:

Theorem 3.5. Let G be a finitely generated Fitting-free profinite group and let c
be a nonnegative integer. Then G is JNNcF if and only if there is a descending
sequence G ⩾ H0 > H1 > H2 > · · · of open normal subgroups such that:

(i)
⋂
∞

n=0 Hn = 1.

(ii) If N is an open normal subgroup of G and n ⩾ 1, then either γc+1(N )⩽ Hn−1

or γc+1(Hn)⩽ γc+1(N ).

When these conditions are satisfied, the group G is just infinite if and only if
γc+1(Hn) has finite index in G for all n ⩾ 0.
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Proof. If G is JNNcF, the existence of the descending sequence of open sub-
groups Hn is provided by Lemma 3.4. Suppose conversely that G possesses a
descending chain Hn , n ⩾ 0, of open normal subgroups satisfying (i) and (ii). Since
G is Fitting-free, it cannot be virtually nilpotent. Let K be a nontrivial closed
normal subgroup of G. Then, for the same reason, γc+1(K ) ̸= 1. Therefore, since
condition (i) holds, there exists some m ⩾ 0 such that γc+1(K ) ⩽̸ Hm . Let N be
any open normal subgroup of G with K ⩽ N . Since γc+1(N )⩽̸ Hm , condition (ii)
shows that γc+1(Hm+1)⩽ γc+1(N )⩽ N . It follows that

γc+1(Hm+1)⩽
⋂
{N | K ⩽ N Po G} = K ,

and hence G/K is virtually nilpotent of class c, as required.
Finally, observe that if |G :γc+1(Hn)| is infinite for some n⩾0, then G/γc+1(Hn)

is an infinite quotient, and therefore G is not just infinite. On the other hand, if
|G : γc+1(Hn)|<∞ for all n ⩾ 0, then in the previous paragraph it follows that if K
is a nontrivial closed normal subgroup of G then γc+1(Hm+1)⩽ K for some m ⩾ 0,
and so K has finite index. Hence G is in fact just infinite under this assumption. □

Reid [2012, Theorem 3.6] presents a condition which guarantees the existence of
a just infinite quotient of a profinite group. The condition is expressed in terms of the
relation ≻nar concerning chief factors of the profinite group G under consideration.
Notice, however, that with use of [Reid 2012, Proposition 3.5(iii)], the assumption
that K1/L1 ≻nar K2/L2 ≻nar · · · is a descending sequence of open chief factors (as
appears in [Reid 2012, Theorem 3.6]) is equivalent to the existence of open normal
subgroups G ⩾ K1 > L1 ⩾ K2 > L2 ⩾ · · · with L =

⋂
∞

n=1 Ln such that, for each n,
Kn/L is a narrow subgroup of G/L and MG/L(Kn/L) = Ln/L . Theorem 3.6
below can consequently be viewed as an analogous result for the existence of
JNNcF quotients of a profinite group.

The application of Zorn’s Lemma in our proof is more delicate than for Reid’s
result. Under the hypotheses and notation of [Reid 2012, Theorem 3.6], the quotient
G/Ln would be finite and so would have only finitely many subgroups. However,
our corresponding quotient G/Ln is a finitely generated virtually nilpotent group
and this does not necessarily even possess the ascending chain condition on closed
normal subgroups.

Theorem 3.6. Let G be a finitely generated profinite group and let c be a nonnega-
tive integer.

(i) For each n ⩾ 1, let Kn and Ln be closed normal subgroups of G and define
L =

⋂
∞

n=1 Ln . Suppose that

G ⩾ K1 > L1 ⩾ γc+1(L1)L ⩾ K2 > L2 ⩾ γc+1(L2)L ⩾ · · ·
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and that, for each n, Kn/L is a narrow subgroup of G/L with MG/L(Kn/L)=
Ln/L and G/Ln is virtually class-c nilpotent. Then there exists a closed
normal subgroup K of G that is maximal subject to the conditions that K ⩾ L
and Kn ⩽̸ Ln K for all n. Furthermore, such a closed normal subgroup K has
the property that G/K is JNNcF.

(ii) Every Fitting-free JNNcF quotient G/K of G arises in the manner described
in (i) with L = K .

Proof. (i) When c = 0, this follows from [Reid 2012, Theorem 3.6(i)]. We shall
assume that c ⩾ 1 in the following argument. Let N be the set of all closed normal
subgroups N of G which contain L and such that Kn ⩽̸ Ln N for all n ⩾ 1. We shall
order N by inclusion. Observe that L ∈N since Ln L = Ln < Kn . Let C be a chain
in N and define R=

⋃
C. Suppose that R /∈N . Then there exists some m ⩾ 1 such

that Km ⩽ Lm R. If C ∈C, then Km ⩽̸ LmC , so (Km∩C)Lm = Km∩LmC < Km and
therefore Km ∩C ⩽ Lm since Lm is maximal among G-invariant open subgroups
of Km . Hence [C, Km] ⩽ Lm and so C ⩽ CG(Km/Lm) for all C ∈ C. Since this
centralizer is an open subgroup of G, it follows that R ⩽ CG(Km/Lm). Hence
Km ⩽ Lm R ⩽ CG(Km/Lm) and so the chief factor Km/Lm is abelian; that is, it is
an elementary abelian q-group for some prime q .

Since G/Lm is virtually class-c nilpotent, there is an open normal subgroup A
with Lm ⩽ A such that γc+1(A) ⩽ Lm . If Km ⩽̸ A, then Km ∩ A = Lm and so
Km A/Lm ∼= Km/Lm × A/Lm is also class-c nilpotent. Consequently, if necessary,
we may replace A by Km A and hence assume Km ⩽ A. For each prime p, write
A[p]/Lm for the Sylow pro-p subgroup of A/Lm . Then A/Lm is the product∏

p A[p]/Lm of these pro-p groups. Furthermore, for each C ∈ C and prime p, let
C[p]/Lm be the Sylow pro-p subgroup of (C ∩ A)Lm/Lm . Since C is a chain, so
is the set Sp = {C[p]/Lm | C ∈ C}. As a finitely generated nilpotent pro-p group,
A[p]/Lm satisfies the ascending chain condition on closed subgroups and so there
exists some maximal member M[p]/Lm of Sp.

If it were the case that Km/Lm ⩽ M[q]/Lm , then Km ⩽ (C ∩ A)Lm ⩽ C Lm for
some C ∈ C, contrary to the fact that C ∈N . Define M to be the closed subgroup
of A defined by M/Lm =

∏
p M[p]/Lm . Then Km ⩽̸ M since we have observed

that Km/Lm is not contained in the Sylow pro-q subgroup of M/Lm .
On the other hand, C ∩ A ⩽ M for all C ∈ C, since by construction C[p]/Lm ⩽

M[p]/Lm for each prime p. Furthermore, since A is a clopen subset of G,⋃
C∈C

(C ∩ A)=
(⋃

C
)
∩ A = R ∩ A

and so we conclude that R∩ A ⩽ M . Therefore, Km ⩽ Lm R∩ A= (R∩ A)Lm ⩽ M ,
which contradicts our previous observation.
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In conclusion, we have shown that R =
⋃

C ∈ N and so every chain in N
has an upper bound. Therefore, by Zorn’s lemma, there is a maximal member
K ∈ N ; that is, K is maximal subject to the condition that Kn ⩽̸ Ln K for all
n ⩾ 1. Suppose that G/K is virtually class-c nilpotent. By Theorem 2.10(i), the
set {γc+1(J ) | J Pc G/K } is finite. Hence γc+1(Lm)K = γc+1(Lm+1)K for some
m ⩾ 1 and so

Km+1 ⩽ γc+1(Lm)L ⩽ γc+1(Lm)K = γc+1(Lm+1)K ⩽ Lm+1K ,

contrary to the fact that K ∈ N . We deduce that G/K is not virtually class-c
nilpotent.

Now let N be a closed normal subgroup of G that strictly contains K . Then
N /∈ N by maximality of K , so there exists some m ⩾ 1 such that Km ⩽ Lm N ;
that is, Km/L ⩽ MG/L(Km/L) · (N/L). Lemma 2.2(ii) then tells us that Km ⩽ N .
Hence G/N is a quotient of G/Lm and so is virtually class-c nilpotent. This shows
that G/K is indeed JNNcF.

(ii) Assume that G/K is a JNNcF quotient of G and that it is Fitting-free. We
define the sequences of closed normal subgroups Kn and Ln as follows. First
take any chief factor of G/K and let K1/K be a narrow subgroup as provided by
Lemma 2.2(iii) and define L1 by L1/K = MG/K (K1/K ). Note that L1 > K by
use of Corollary 2.4 and hence γc+1(L1)K > K by the hypothesis that G/K is
Fitting-free. Assuming that, for some n ⩾ 2, we have defined Kn−1 and Ln−1 with
γc+1(Ln−1)K > K , use Lemma 2.2 again to produce a narrow subgroup Kn/K
of G/K with Kn ⩽ γc+1(Ln−1)K . Define Ln by Ln/K = MG/K (Kn/K ) and note
γc+1(Ln)K > K . This produces the required chain of closed normal subgroups

G ⩾ K1 > L1 ⩾ γc+1(L1)K ⩾ K2 > L2 ⩾ γc+1(L2)K ⩾ · · · .

Now L=
⋂
∞

n=1 Ln certainly contains K , while the quotient G/L cannot be virtually
class-c nilpotent by Theorem 2.10(i) as the subgroups γc+1(Ln/L) are distinct.
Hence L = K . Finally, if N is a closed normal subgroup of G with N > K , then
G/N is virtually class-c nilpotent and so, by use of Theorem 2.10(i), there exists
m ⩾ 1 such that γc+1(Lm)N = γc+1(Lm+1)N . The same argument as used in part (i)
shows that Km+1 ⩽ Lm+1 N . This shows that, amongst closed normal subgroups,
K is indeed maximal subject to Kn ⩽̸ Ln K for all n; that is, arises as in part (i). □

Our final result of this section is a characterization of finitely generated Fitting-
free JNNcF profinite groups as inverse limits. The natural inverse system to associate
to such a group is of virtually nilpotent profinite groups rather than of some class
of finite groups. The properties possessed by this inverse system are analogous to
those in [Reid 2018, Theorem 4.1].
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Theorem 3.7. Let G be a finitely generated profinite group that is Fitting-free
and let c be a nonnegative integer. If G is JNNcF, then it is the inverse limit of
a family Gn , for n ⩾ 0, of profinite groups with respect to surjective continuous
homomorphisms ρn : Gn+1→ Gn with the following properties. For every n ⩾ 0,
Gn has an open normal subgroup Pn such that, upon setting Qn = Pn+1ρn:

(i) Gn is virtually class-c nilpotent.

(ii) Pn > Qn .

(iii) γc+1(Pn) > MGn (γc+1(Pn))⩾ ker ρn−1 ⩾ γc+1(Qn) > 1.

(iv) If N is an open normal subgroup of Gn , then either

γc+1(N )⩽ Pn or γc+1(Qn)⩽ γc+1(N ).

Conversely, suppose, for some integer d ⩾ 1, that G = lim
←−−

Gn is an inverse limit
of a countable family of d-generator profinite groups with respect to surjective
continuous homomorphisms ρn such that G is Fitting-free and the above conditions
hold. For each n, let πn : G → Gn be the natural map associated to the inverse
limit. Then if K is a nontrivial closed normal subgroup of G, there exists n0 ⩾ 0
such that kerπn0 ⩽ K . In particular, G is JNNcF.

In the case of finitely generated profinite groups, it is known that any homo-
morphism is necessarily continuous. Consequently, the word “continuous” could
be omitted from the statement without affecting its validity. For arbitrary finitely
generated profinite groups, this follows by the work of Nikolov and Segal [2007]
(and depends upon the classification of finite simple groups). However, as the
groups Gn are assumed to be virtually nilpotent, it is easy to reduce to the case of
finitely generated (nilpotent) pro-p groups which was already covered by Serre;
compare with [Anderson 1976].

Proof. Suppose G is JNNcF. Then, as observed in Lemma 3.4, there is a descending
sequence G ⩾ H0>H1>H2> · · · of open normal subgroups such that

⋂
∞

n=0 Hn=1
and, for each n ⩾ 1, γc+1(Hn) ⩽ MG(γc+1(Hn−1)) < γc+1(Hn−1) and if N Po G
either γc+1(N )⩽ Hn−1 or γc+1(Hn)⩽ γc+1(N ). To simplify notation, write Mn =

MG(γc+1(Hn+1)) for each n ⩾ 0. Then define Gn = G/Mn , Pn = Hn/Mn and
Qn = Hn+1/Mn . Let ρn : Gn+1 → Gn be the natural map. Since

⋂
∞

n=0 Mn ⩽⋂
∞

n=0 Hn = 1, it follows that G = lim
←−−

Gn , while the conditions stated in the theorem
all hold. Indeed, using Lemma 2.2(i), ker ρn−1 = Mn−1/Mn = MGn (γc+1(Pn)).

Conversely, suppose that G = lim
←−−

Gn is an inverse limit of d-generator profinite
groups Gn , for n ⩾ 0, with respect to surjective continuous homomorphisms ρn :

Gn+1→Gn such that G is Fitting-free and conditions (i)–(iv) hold where Pn Po Gn

and Qn = Pn+1ρn . Then G is also d-generated (by [Ribes and Zalesskii 2000,
Lemma 2.5.3]). Let πn :G→Gn be the natural maps associated to the inverse limit.
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Observe first that the open normal subgroups P1 and Q1 of G1 satisfy γc+1(P1)>

γc+1(Q1) > 1. Suppose that Gn , for some n ⩾ 1, possesses open normal subgroups
C0, C1, . . . , Cn such that the subgroups γc+1(Ci ) are distinct and nontrivial. Upon
taking the inverse images under the homomorphism ρn , we obtain open normal
subgroups C0ρ

−1
n , C1ρ

−1
n , . . . , Cnρ

−1
n with γc+1(Ciρ

−1
n ) ⩽̸ ker ρn . When taken

together with Qn+1, these give n+1 open normal subgroups K of Gn+1 such that the
corresponding γc+1(K ) are distinct and nontrivial. By induction, we conclude that
{γc+1(K ) | K Po Gn} contains at least n+1 subgroups for all n. The corresponding
set for G must therefore be infinite and hence G is not virtually class-c nilpotent
by Theorem 2.10(i).

Now let K be a nontrivial closed normal subgroup of G. Since G is Fitting-free,
γc+1(γc+1(K )) ̸= 1. If γc+1(K )πn+2 ⩽ Pn+2 for some n ⩾ 1, then we see that
γc+1(γc+1(K ))πn = 1 because Pn+2ρn+1= Qn+1 and γc+1(Qn+1)⩽ ker ρn . Hence
there exists n0 ⩾ 1 such that γc+1(K )πn ⩽̸ Pn for all n ⩾ n0. Let N be any open nor-
mal subgroup of G with K ⩽ N . If n ⩾ n0, then Nπn is an open normal subgroup of
Gn with γc+1(Nπn))⩽̸ Pn and so γc+1(Qn)⩽ γc+1(Nπn) by condition (iv). Hence

γc+1(Pn+1)⩽ γc+1(Nπn+1) ker ρn ⩽ γc+1(Nπn+1)MGn+1(γc+1(Pn+1)),

and so we deduce γc+1(Pn+1) ⩽ γc+1(Nπn+1) by Lemma 2.2(ii). Consequently
ker ρn ⩽ γc+1(Nπn+1) for all n ⩾ n0; that is, kerπn ⩽ γc+1(N ) kerπn+1 for all
n ⩾ n0. This implies

kerπn0 ⩽
⋂

n⩾n0

γc+1(N ) kerπn = γc+1(N )⩽ N

since γc+1(N ) is closed. Now K is the intersection of all such open normal sub-
groups N and therefore kerπn0 ⩽ K . Consequently, G/K is a quotient of Gn0 and
so is virtually class-c nilpotent. This demonstrates that G is JNNcF, as required. □

4. Characterization of hereditarily JNNcF profinite groups

In this section, we fix again the integer c ⩾ 0 and we shall provide various descrip-
tions of Fitting-free profinite groups that are hereditarily JNNcF. The results that we
present parallel those of the previous section and indicate what additional properties
ensure that not only is the group itself JNNcF, but also every open subgroup is JNNcF.

Let G be a profinite group. Analogous to the sets appearing in Theorem 3.3, we
define, for an open subgroup H of G,

A∗H = {γc+1(K ) | K ⩽o G with H ⩽ NG(K ) and γc+1(K )⩽̸ H},

C∗H = {γc+1(K ) | K ⩽c G with H ⩽ NG(K ) and γc+1(K )⩽̸ H}.
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If H and L are open subgroups of G with H ⩽ L , we also set

AH (L)= {γc+1(K ) | K Po L with γc+1(K )⩽̸ H},

CH (L)= {γc+1(K ) | K Pc L with γc+1(K )⩽̸ H}.

The following observation is straightforward:

Lemma 4.1. Let G be a profinite group and H be an open subgroup of G. Then

(i) A∗H =
⋃
{AH (L) | L ⩽o G with H ⩽ L};

(ii) C∗H =
⋃
{CH (L) | L ⩽o G with H ⩽ L}.

In order to establish Theorem 4.4, which is the analogue of Theorem 3.3 for
hereditarily JNNcF groups, we need to know that the condition that the group is
Fitting-free is inherited by open subgroups. We establish this in Lemma 4.3 below.
We shall use the following analogue of an observation made in the proof of [Wilson
2010, (2.1)]. The argument is similar but included for completeness.

Lemma 4.2. Let G be a Fitting-free JNNcF profinite group. Then:

(i) Every nonidentity element of G has infinitely many conjugates in G.

(ii) If H is a nontrivial finite subgroup of G, then H has infinitely many conjugates
in G.

Proof. (i) Suppose that x is a nonidentity element of G with finitely many conjugates
in G. Let X be the closed normal subgroup of G generated by the conjugates of x
and C be the intersection of the centralizers in G of each conjugate of x . Since x
has finitely many conjugates, C is open in G and, in particular, nontrivial. Since
[C, X ] = 1, it follows that C ∩ X is an abelian closed normal subgroup of G and
so C ∩ X = 1 by assumption. This contradicts Lemma 2.5.

(ii) Let H be a nontrivial finite subgroup of G with finitely many conjugates in G.
If x is a nonidentity element of H , then every conjugate of x belongs to one of
the conjugates of H . It follows that x has finitely many conjugates in G, which
contradicts (i). □

Lemma 4.3. Let G be a Fitting-free JNNcF profinite group. If H is any open
subgroup of G, then H is also Fitting-free.

Proof. Suppose that A is an abelian closed normal subgroup of H . Let B =
A∩CoreG(H). Note that B has finitely many conjugates in G and each of them is
a normal subgroup of CoreG(H). Hence the normal closure BG is the product of
these subgroups and this is nilpotent by Fitting’s Theorem. Since G is Fitting-free,
it follows that B = 1. Therefore A is finite and so, by Lemma 4.2(ii), A = 1. □

Theorem 4.4. Let G be a finitely generated infinite profinite group that is Fitting-
free and let c be a nonnegative integer. Then the following conditions are equivalent:
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(i) The group G is hereditarily JNNcF.

(ii) The set A∗H is finite for every open subgroup H of G.

(iii) The set C∗H is finite for every open subgroup H of G.

Proof. Suppose first that A∗H is finite for every open subgroup H of G. Since
AH ⊆A∗H , it follows that G is JNNcF by Theorem 3.3. Let L be an open subgroup
of G. Then L is Fitting-free by Lemma 4.3 and AH (L) is finite for every open
subgroup H of L as it is contained in A∗H . Hence L is also JNNcF by Theorem 3.3.
This establishes (ii)⇒ (i).

Since A∗H ⊆C∗H , certainly (iii)⇒ (ii). Finally assume that G is hereditarily JNNcF
and let H be an open subgroup of G. There are finitely many open subgroups L of
G with H ⩽ L . If L is such an open subgroup, then L is JNNcF, so CH (L) is finite
by Theorem 3.3 together with Lemma 4.3. Hence C∗H is a finite union of finite sets,
by Lemma 4.1, and so is finite. This establishes the final implication (i)⇒ (iii). □

Wilson [2010, (2.1)] characterizes when a just infinite group is not hereditarily
just infinite. The following is our analogue for JNNcF groups. The same method
is used to construct the basal subgroup K and a few additional steps establish its
properties.

Proposition 4.5. Let G be a Fitting-free JNNcF profinite group that is not heredi-
tarily JNNcF. Then G has an infinite closed basal subgroup K such that NG(K )/K
is not virtually class-c nilpotent and K has no nontrivial abelian closed subgroup
that is topologically characteristic in K . In particular, K is not normal in G.

Proof. Since G is not hereditarily JNNcF, there is an open subgroup H of G and a
nontrivial closed normal subgroup L of H such that H/L is not virtually class-c
nilpotent. Let C be the core of H in G. If C ∩ L = 1, then L is finite, which
is a contradiction by Lemma 4.2(ii). Hence C ∩ L ̸= 1. Note that C L/L is a
subgroup of finite index in H/L and is isomorphic to C/(C ∩ L). If C/(C ∩ L)
were virtually class-c nilpotent, then as H/L is a finite extension we would obtain
another contradiction. Hence C/(C ∩ L) is not virtually class-c nilpotent and we
may replace H and L by C and C ∩ L , respectively, and assume that H is an open
normal subgroup of G with a nontrivial closed normal subgroup L such that H/L
is not virtually class-c nilpotent.

Now L has finitely many conjugates in G and these are all contained in H .
Hence L P LG and Lemma 2.8 tells us that we can construct a basal subgroup K
of G by intersecting a suitable collection of the conjugates of L . We may assume
that L is one of these conjugates so that K ⩽ L . Note that K is infinite by use of
Lemma 4.2(ii). If NG(K )/K were virtually class-c nilpotent, then so would be
H/L since K ⩽ L ⩽ H ⩽ NG(K ), contrary to our hypothesis. Note then that K
cannot be normal in G since if it were then NG(K )/K = G/K would be virtually
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class-c nilpotent. Finally if A were a nontrivial abelian closed subgroup that is
topologically characteristic in K , then as conjugation is a homeomorphism there
would be precisely one G-conjugate of A in each conjugate of K . Hence A would
also be basal and its normal closure AG would be a nontrivial abelian normal
subgroup of G, contrary to assumption. This establishes the claimed conditions. □

Using the characterization given in Theorem 4.4, we are able to give a description
of hereditarily JNNcF groups of a similar form to our earlier Theorem 3.5.

Theorem 4.6. Let G be a finitely generated profinite group that is Fitting-free and
let c be a nonnegative integer. Then G is hereditarily JNNcF if and only if there is
a descending sequence G ⩾ H0 > H1 > H2 > · · · of open normal subgroups such
that:

(i)
⋂
∞

n=0 Hn = 1.

(ii) If L is an open subgroup of G that is normalized by Hn−1 for some n ⩾ 1, then
either γc+1(L)⩽ Hn−1 or γc+1(Hn)⩽ γc+1(L).

Proof. Suppose first that G is hereditarily JNNcF. We start with any open normal
subgroup H0 of G. Suppose then, as an inductive hypothesis, that we have con-
structed open normal subgroups G ⩾ H0 > H1 > · · · > Hn−1 such that, for each
i ∈ {1, . . . , n − 1}, γc+1(Hi−1) > γc+1(Hi ) and if L is normalized by Hi−1 then
either γc+1(L)⩽ Hi−1 or γc+1(Hi )⩽ γc+1(L). By Theorem 4.4, the set

A∗Hn−1
= {γc+1(K ) | K ⩽o G with Hn−1 ⩽ NG(K ) and γc+1(K )⩽̸ Hn−1}

is finite. Use of Lemma 3.1 shows that MG(γc+1(Hn−1)) ̸= 1. Hence

R = MG(γc+1(Hn−1))∩
⋂

A∗Hn−1

is a nontrivial closed normal subgroup of G (by Lemma 2.5). The quotient G/R
is then virtually class-c nilpotent, so there exists an open normal subgroup S with
γc+1(S)⩽ R. Take Hn = Hn−1 ∩ S, so that Hn is an open normal subgroup of G
contained in Hn−1 with γc+1(Hn) ⩽ R < γc+1(Hn−1). If L is an open subgroup
normalized by Hn−1, then either γc+1(L)⩽ Hn−1 or γc+1(L) ∈A∗Hn−1

. In the latter
case, γc+1(Hn)⩽ R ⩽ γc+1(L).

Repeating this process constructs a descending sequence of open normal sub-
groups Hn such that condition (ii) holds. If the intersection J =

⋂
∞

n=0 Hn were
nontrivial, then G/γc+1(J ) would be virtually class-c nilpotent, but would have
infinitely many distinct subgroups γc+1(Hn/γc+1(J )) contrary to Theorem 2.10.
Hence condition (i) also holds.

Conversely suppose that G is a finitely generated profinite group that has no
nontrivial abelian closed normal subgroup with a descending sequence of open
normal subgroups Hn satisfying conditions (i) and (ii). In particular, G satisfies
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the conditions appearing in Theorem 3.5 and so is JNNcF. Suppose that it is not
hereditarily JNNcF. By Proposition 4.5, G has a closed basal subgroup K with
no nontrivial abelian topologically characteristic subgroup such that NG(K )/K
is not virtually class-c nilpotent. Then γc+1(K ) ̸= 1, so there exists m ⩾ 0 such
that γc+1(K ) ⩽̸ Hm . Since

⋂
∞

n=0 Hn = 1, it follows that every open subgroup
of G contains some Hn . Hence, by increasing m if necessary, we can assume
Hm ⩽ NG(K ). Let U be any open normal subgroup of G and L = KU . Then Hm

normalizes L and γc+1(L)⩽̸ Hm . Hence, by condition (ii), γc+1(Hm+1)⩽ γc+1(L).
It follows that

γc+1(Hm+1)⩽
⋂

UPoG
KU = K .

Therefore NG(K )/K is isomorphic to a quotient of a subgroup of G/γc+1(Hm+1)

and hence is virtually class-c nilpotent. This is a contradiction and we conclude
that G is indeed hereditarily JNNcF, as claimed. □

We complete the section by giving a suitable description of a hereditarily JNNcF
profinite group as an inverse limit of virtually nilpotent groups in a manner analogous
to the description appearing in Theorem 3.7.

Theorem 4.7. Let G be a finitely generated profinite group that is Fitting-free and
let c be a nonnegative integer. If G is hereditarily JNNcF, then it is the inverse limit
of a family Gn , for n ⩾ 0, of profinite groups with respect to surjective continuous
homomorphisms ρn : Gn+1→ Gn with the following properties. For every n ⩾ 0,
Gn has an open normal subgroup Pn such that, upon setting Qn = Pn+1ρn:

(i) Gn is virtually class-c nilpotent.

(ii) Pn > Qn .

(iii) γc+1(Pn) > MGn (γc+1(Pn))⩾ ker ρn−1 ⩾ γc+1(Qn) > 1.

(iv) If N is an open normal subgroup of Gn , then either

γc+1(N )⩽ Pn or γc+1(Qn)⩽ γc+1(N ).

(v) There is no nonnormal closed subgroup V of Gn with at most n conjugates
such that any pair of distinct conjugates of V centralize each other and such
that the normal closure W = V G satisfies γc+1(Pn)⩽ γc+1(γc+1(W )).

Conversely, if , for some integer d ⩾ 1, G = lim
←−−

Gn is an inverse limit of a count-
able family of d-generator profinite groups with respect to surjective continuous
homomorphisms ρn such that G is Fitting-free and the above conditions hold, then
G is hereditarily JNNcF.

Proof. Suppose that G is hereditarily JNNcF. Since G is finitely generated it has
finitely many open subgroups of each index and so we can enumerate a sequence
of open normal subgroups Un of G such that, for each n ⩾ 1, every open subgroup



STRUCTURE OF GROUPS WITH PROPER QUOTIENTS VIRTUALLY NILPOTENT 169

of index at most n contains Un . Take H0 to be any open normal subgroup of G.
Certainly γc+1(H0) ̸= 1. Now assume, as an inductive hypothesis, that we have
constructed a sequence of open normal subgroups G ⩾ H0 > H1 > · · · > Hn−1.
By Theorem 4.4, the set A∗Hn−1

is finite while MG(γc+1(Hn−1)) is nontrivial by
Lemma 3.1. Hence, by Lemma 2.5,

R = MG(γc+1(Hn−1))∩
(⋂

A∗Hn−1

)′
is a nontrivial closed subgroup of G, so G/R is virtually class-c nilpotent and
there exists an open normal subgroup S of G with γc+1(S) ⩽ R. Take Hn =

Hn−1∩Un∩ S. In particular, γc+1(Hn)⩽ R ⩽ MG(γc+1(Hn−1)) < γc+1(Hn−1). By
repeated application, we conclude there is a descending sequence of open normal
subgroups G ⩾ H0 > H1 > H2 > · · · such that Hn ⩽ Un and

γc+1(Hn)⩽ MG(γc+1(Hn−1))∩
(⋂

A∗Hn−1

)′
< γc+1(Hn−1)

for all n ⩾ 1. Since Hn ⩽ Un for each n, it immediately follows that
⋂
∞

n=0 Hn = 1.
Now, for n ⩾ 0, write Mn = MG(γc+1(H2n+2)) and define Gn = G/Mn , Pn =

H2n/Mn and Qn = H2n+2/Mn . Let ρn : Gn+1 → Gn be the natural map. Since⋂
∞

n=0 Mn = 1, it is the case that G = lim
←−−

Gn . Since each Mn ̸= 1, the assumption
that G is JNNcF ensures each Gn is virtually class-c nilpotent and conditions (ii) and
(iii) follow immediately from the construction. Indeed ker ρn−1 = Mn−1/Mn =

MGn (γc+1(Pn)) using Lemma 2.2(i). If N Po Gn , say N = K/Mn , such that
γc+1(N )⩽̸ Pn , then γc+1(K )∈AH2n ⊆A∗H2n

. Hence γc+1(H2n+2)<γc+1(H2n+1)⩽⋂
A∗H2n

⩽ γc+1(K ) and this establishes condition (iv).
Suppose there is a nonnormal closed subgroup V of Gn with at most n conjugates

such that [V g, V h
] = 1 when gh−1 /∈ NGn (V ) and such that the normal closure

W = V Gn satisfies γc+1(Pn) ⩽ γc+1(γc+1(W )). Since elements from distinct
conjugates of V commute, γc+1(γc+1(W )) is the product of the conjugates of
γc+1(γc+1(V )). Write V = K/Mn and W = L/Mn . Then observe L = K G ,
γc+1(γc+1(L)) ⩽ γc+1(γc+1(K ))G Mn and γc+1(H2n) ⩽ γc+1(γc+1(L))Mn , which
implies γc+1(H2n) ⩽ γc+1(γc+1(L)) with use of Lemma 2.2(ii). Also K has at
most n conjugates in G, so it must be the case that H2n+1 ⩽ Un ⩽ NG(K ). Now
γc+1(H2n+1) < γc+1(γc+1(L)), so γc+1(γc+1(K )) ⩽̸ γc+1(H2n+1) and therefore
γc+1(K )⩽̸ H2n+1. In conclusion, for each i ⩾ 0, K Hi is an open subgroup of G
with the property that γc+1(K Hi ) ∈A∗H2n+1

. Thus⋂
A∗H2n+1

⩽
⋂
i⩾0
γc+1(K )Hi = γc+1(K ).

Since
⋂

A∗H2n+1
is a normal subgroup, it is contained in all conjugates of K and

therefore
γc+1(H2n+2)⩽

(⋂
A∗H2n+1

)′
⩽ [K g, K h

]
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for all g, h∈G. Consequently, 1 ̸=γc+1(Qn)⩽ [V g, V h
] for all g, h∈Gn . However,

as V is not normal in Gn there exists g, h ∈ Gn such that V g and V h are distinct
and these satisfy [V g, V h

] = 1. This contradiction establishes condition (v).
Conversely, suppose that G = lim

←−−
Gn is an inverse limit of d-generator profinite

groups Gn , for n ⩾ 0, with respect to surjective continuous homomorphisms ρn :

Gn+1 → Gn such that G has no nontrivial abelian closed normal subgroup and
that conditions (i)–(v) hold where Pn Po Gn and Qn = Pn+1ρn . In particular, the
conditions of Theorem 3.7 are satisfied and so G is JNNcF. Let πn : G→ Gn be
the natural maps associated to the inverse limit. Suppose that G is not hereditarily
JNNcF. Then by Proposition 4.5, G has some closed nonnormal basal subgroup K .
Take n0 to be a positive integer such that K has fewer than n0 conjugates in G and
set L = K G , the direct product of the conjugates of K .

Since γc+1(γc+2(L)) ̸= 1, it is the case that kerπn ⩽ γc+1(γc+2(L)) for all
sufficiently large n by Theorem 3.7. Hence, increasing n0 if necessary, we may
assume that kerπn < γc+1(γc+2(L)) ⩽ L ′ for all n ⩾ n0. The subgroup K has at
least two conjugates in G and any distinct pair commutes as K is basal. If Kπn

were normal in Gn , then the images of these conjugates would coincide and so
Lπn = Kπn would be abelian. This is impossible since kerπn < L ′. Since the
number of conjugates cannot increase in the image, we deduce that, when n ⩾ n0,
Kπn is a closed subgroup of Gn that is not normal and has at most n0 conjugates
in Gn . For such n, if x ∈γc+1(Pn+2), write x=gπn+2 for some g∈G. Using the fact
that γc+1(Qn+1)⩽ ker ρn , one observes g ∈ kerπn ⩽ γc+1(γc+1(L)) and therefore
γc+1(Pn+2) ⩽ γc+1(γc+1(Lπn+2)) for n ⩾ n0. In particular, for such n, taking
V = Kπn+2 and W = Lπn+2 in Gn+2 contradicts the hypothesis in condition (v). □

When comparing the above description of hereditarily JNNcF groups with the
corresponding result of Reid [2018, Theorem 5.2] for hereditarily just infinite groups,
one notices the bound on the number of conjugates appearing in our condition (v).
There seems to be no analogue in the corresponding description of hereditarily just
infinite groups. However, note that the bound of n for the number of conjugates
could, with only minor adjustment to the proof, be replaced by some bound f (n)
where f :N→N is any strictly increasing function. In [Reid 2018], the hereditarily
just infinite group is isomorphic to an inverse limit G = lim

←−−
Gn of finite groups

and there is therefore an implicit bound on the number of conjugates for subgroups
of Gn . Consequently, this condition is quite reasonable.

5. Subgroups of finite index in JNNcF groups

In this section we shall establish Theorem C (see Corollary 5.5) and so consider
both profinite groups and discrete groups. We shall adopt the common convention
that, in the case of profinite groups, all subgroups are assumed to be within the same
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category and so “subgroup” means “closed subgroup” in this case. This enables our
results to be more streamlined in their statement and the proofs correspondingly
cleaner. We fix the integer c ⩾ 0 throughout and begin with an observation that is,
modulo our standard assumption about abelian normal subgroups, an improvement
on Corollary 2.4.

Lemma 5.1. Let G be a profinite group or discrete group that is JNNcF and Fitting-
free. Then G has no nontrivial normal subgroup that is virtually nilpotent.

Proof. Suppose that N is a nontrivial normal subgroup of G with a nilpotent normal
subgroup of finite index in N . The Fitting subgroup F(N ) of N is then a product
of finitely many nilpotent normal subgroups of N and so is a nilpotent normal
subgroup of G. Since G is Fitting-free, it follows that N is finite. Then CG(N ) has
finite index in G, which contradicts Lemma 2.7. □

Lemma 5.2. Let G be a profinite group or a discrete group that is Fitting-free.
Suppose that every normal subgroup of finite index is JNNcF. Then G is hereditarily
JNNcF.

Proof. Suppose that H is a subgroup of finite index in G and that N is a nontrivial
normal subgroup of H . Let K = CoreG(H), so that K is a normal subgroup of
G also of finite index and hence JNNcF by hypothesis. If it were the case that
K ∩N = 1, then [K , N ] = 1 since both K and N are normal subgroups of H . Then
N ⩽ CG(K ), in contradiction to Lemma 2.7. We deduce therefore that K ∩ N ̸= 1.
Then H/N is a finite extension of K N/N ∼= K/(K ∩N ), which is virtually class-c
nilpotent. Hence H is JNNcF, as required. □

Recall that the finite radical Fin(G) of a group G is the union of all finite normal
subgroups of G. The following is a JNNcF analogue of [Reid 2010b, Lemma 4].

Lemma 5.3. (i) Let G be a group with Fin(G)= 1. If H is a subgroup of finite
index, then Fin(H)= 1.

(ii) Let G be a profinite or discrete group with Fin(G)= 1 and H be a subgroup of
finite index that is JNNcF. Then every subgroup of G containing H is JNNcF.

Proof. (i) This is established in [Reid 2010b, Lemma 4].

(ii) Suppose that H ⩽ L ⩽ G. First note that L is not virtually class-c nilpotent
as it contains H . Let K be a nontrivial normal subgroup of L . Since Fin(L)= 1
by part (i), K is infinite. As H ∩ K has finite index in K , it follows that H ∩ K is
nontrivial and so H/(H ∩ K ) is virtually class-c nilpotent. We conclude that L/K
is a finite extension of HK/K ∼= H/(H ∩K ), so L/K is virtually class-c nilpotent.
Hence L is JNNcF. □

We are now in a position to establish a theorem for JNNcF groups that is an
analogue of the main theorem of [Reid 2010b]:
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Theorem 5.4. Let G be a profinite group or a discrete group and let c be a non-
negative integer. Suppose that G is JNNcF and Fitting-free, and that H is a normal
subgroup of finite index in G. Then the following are equivalent:

(i) The subgroup H is JNNcF.

(ii) Every subgroup of G containing H is JNNcF.

(iii) Every maximal subgroup of G containing H is JNNcF.

Proof. By Lemma 5.1, Fin(G)= 1. Hence an application of Lemma 5.3(ii) shows
that condition (i) implies condition (ii). It is trivial that condition (ii) implies
condition (iii).

Now assume condition (iii). Let K be a nontrivial normal subgroup of H . Since
H is a normal subgroup of G, we observe that K g P H ⩽ NG(K ) for all g ∈G and
hence K P K G . By Lemma 2.8, there is a basal subgroup B that is an intersection of
some conjugates of K and, conjugating if necessary, we may assume B ⩽ K . Note
also that H ⩽ NG(B) since each conjugate of K is normal in H . We shall show
that B is normal in G. For then, G/B is virtually class-c nilpotent by hypothesis
and hence H/K is also virtually class-c nilpotent since B ⩽ K . This will establish
that H is indeed JNNcF.

Suppose, for a contradiction, that B is not a normal subgroup of G. Consequently,
NG(B) is a proper subgroup of G and there is some maximal subgroup M of G
with NG(B)⩽ M . Now BG is the direct product of the conjugates of B and it is not
virtually nilpotent by Lemma 5.1. Observe that B has fewer conjugates in M than
in the group G, so BG/B M is isomorphic to a direct product of some copies of B
and so is not virtually nilpotent. On the other hand, M is JNNcF by assumption, so
the quotient M/B M of M by the normal closure of B in M is a virtually nilpotent
group. Hence (M ∩ BG)/B M is virtually nilpotent and this implies BG/B M is also
virtually nilpotent since M ∩ BG has finite index in BG . This is a contradiction and
completes the proof of the theorem. □

With use of Lemma 5.2, we then immediately conclude:

Corollary 5.5. Let G be a profinite or discrete group that is JNNcF and Fitting-free.
Then G is hereditarily JNNcF if and only if every maximal (open) subgroup of finite
index is JNNcF.

6. A construction of hereditarily JNNcF groups

The work of the preceding sections suggests that JNNcF groups are quite closely
related to just infinite groups. Similarly, Wilson’s classification [1971; 2000] of
just infinite groups has the same dichotomy as Hardy’s [2002] for JNAF groups,
namely branch groups and subgroups of wreath products built from hereditarily just
infinite or JNAF groups. To fully investigate the class of JNNcF groups, one would
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like a good supply of examples of hereditarily JNNcF groups. In Theorem 6.2, we
provide one method for constructing such a group. At first sight the construction
may appear somewhat unspectacular since it merely consists of a semidirect product
of a hereditarily just infinite group H by some group A of (outer) automorphisms.
However, by applying it to a variety of known hereditarily just infinite groups H
and observing that the range of possible groups A that could be used is rather wide,
we manufacture interesting examples of JNNcF groups. In both Examples 6.10
and 6.16, we shall observe that, with suitable choices of ingredients for H , among
abelian profinite groups the options for A are about as wide as could be hoped
for. For example, one can take A to be any closed subgroup of the Cartesian
product of countably many copies of the profinite completion Ẑ of the integers. In
Example 6.17, we are able to take A to be any finitely generated virtually nilpotent
pro-p group and so again this permits a wide range of possible choices.

Lemma 6.1. Let H be a group and A be a group of automorphisms of H such that
A∩ Inn H = 1. Define G = H ⋊ A to be the semidirect product of H by A via its
natural action on H. Then CG(H)= Z(H).

Proof. Let x = hα ∈CG(H) with h ∈ H and α ∈ A. If τh denotes the inner automor-
phism of H induced by h on H , then we observe τhα = 1 in Aut H , so α ∈ Inn H .
Hence α= 1, so x = h and necessarily h ∈ Z(H). The reverse inclusion is trivial. □

Theorem 6.2. Let H be a hereditarily just infinite (discrete or profinite) group that
is Fitting-free. Let A be a (discrete or profinite, respectively) group of (continuous)
automorphisms of H that is virtually class-c nilpotent, for some c ⩾ 0, and satisfies
A∩ Inn H = 1. Then the semidirect product of H by A is hereditarily JNNcF.

The only discrete hereditarily just infinite groups that are virtually abelian are the
infinite cyclic group and the infinite dihedral group. The only profinite hereditarily
just infinite groups that are virtually abelian are semidirect products of the p-adic
integers by a finite (and consequently cyclic) subgroup of its automorphism group.
Consequently, the hypothesis that H is Fitting-free in the above theorem excludes
only a small number of possibilities. Moreover, this hypothesis on H is also
necessary since the semidirect product H ⋊ A can otherwise be virtually abelian.

Proof. Let H be a hereditarily just infinite discrete group that is Fitting-free and
A ⩽ Aut H be virtually class-c nilpotent with A∩ Inn H = 1. We shall first show
that the semidirect product G = H ⋊ A is JNNcF. We shall view H and A as
subgroups of G in the natural way. Note that as H is Fitting-free, it is not virtually
nilpotent and therefore neither is G.

Let N be a nontrivial normal subgroup of G. If H ∩ N = 1, then [H, N ] = 1, so
N ⩽CG(H)= Z(H) by use of Lemma 6.1. This is a contradiction and so H∩N ̸=1.
Thus H ∩ N is of finite index in H . Then G/(H ∩ N ) has a copy of the group A
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as a subgroup of finite index and is therefore also virtually class-c nilpotent. We
deduce that G/N is virtually class-c nilpotent and hence G is JNNcF, as claimed.

Let L be a normal subgroup of finite index in G and let N be a nontrivial normal
subgroup of L . If H ∩ N = 1, then [H ∩ L , N ]⩽ H ∩ N = 1, so N ⩽ CG(H ∩ L).
By Lemma 2.7, this is impossible since H ∩ L is a normal subgroup of G that is
nontrivial (since it has finite index in H ) and we have already observed G is JNNcF.

Therefore H ∩ N ̸= 1. Since H is hereditarily just infinite, H ∩ N has finite
index in H ∩ L . Moreover, H ∩ N is normalized by L and hence has finitely
many conjugates in G, each of which also has finite index in H . We deduce that
R=CoreG(H∩N ) is nontrivial, so G/R is virtually class-c nilpotent. Since R ⩽ N ,
we conclude that L/N is virtually class-c nilpotent.

We have shown that every normal subgroup of finite index in G is JNNcF and
therefore G is hereditarily JNNcF by Lemma 5.2.

The situation when H is profinite and A consists of continuous automorphisms
of H is established by the same argument. The only difference is that one needs A
to have the structure of a profinite group under the topology induced from the group
Autc H of topological automorphisms of H so that G=H⋊A is a profinite group. □

Hereditarily JNNcF groups via iterated wreath products. We shall now construct
abelian groups of automorphisms of some just infinite groups that arise as iterated
wreath products of nonabelian finite simple groups. We permit two possible options
for the action used for the permutational wreath product at each step. The just
infinite groups constructed are closely related to those in Wilson’s Construction A
[2010], though he uses two applications of the permutational wreath product at each
stage. If one employs the product action option (P) at each step of our construction,
then the inverse limit constructed would be a special case of what Vannacci terms a
generalized Wilson group (see [Matteo 2016, Definition 3]). Vannacci makes use
of [Reid 2012, Theorem 6.2] to determine that the profinite groups concerned are
hereditarily just infinite (and his groups also satisfy the hypotheses of the corrected
version in [Reid 2018]). Since we also wish to construct discrete examples of
hereditarily just infinite groups via a direct limit, we shall present a direct verification
as the discrete and profinite cases are closely linked. This verification is somewhat
general since it only requires the action employed to be transitive and subprimitive
(in the sense of [Reid 2012]). We shall then specialize to regular actions and
product actions in Example 6.6 when constructing automorphisms of the resulting
hereditarily just infinite groups so as to apply Theorem 6.2.

We first recall the definition of what is meant by a subprimitive action:

Definition 6.3 [Reid 2012, Definition 1.4]. Let � be a set and H be a permutation
group on �. We shall say that H acts subprimitively on � if every normal subgroup
K of H acts faithfully on every K -orbit.
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Let X0, X1, X2, . . . be a sequence of nonabelian finite simple groups. Define
W0 = X0. Suppose that for some n ⩾ 1, we have constructed a group Wn−1 and
choose some faithful, transitive and subprimitive action of Wn−1 on a finite set�n−1.
We define Wn = Xn wr�n−1 Wn−1 to be the wreath product of Xn by Wn−1 and write
Bn = X�n−1

n for its base group. We shall assume at this point that such an action
always exists, while in Example 6.6 below we describe possible examples. Write
ρn :Wn→Wn−1 for the natural surjective homomorphism associated to the wreath
product and also note that Wn−1 occurs as a subgroup of Wn so we have a chain
of inclusions W0 ⩽ W1 ⩽ W2 ⩽ · · · . We shall write W to denote the direct limit
lim
−−→

Wn of these wreath products and Ŵ to denote the inverse limit lim
←−−

Wn . It will
be convenient to view W as the union of the groups Wn .

The following is the key observation required to show that W is a hereditarily
just infinite (discrete) group and Ŵ is a hereditarily just infinite profinite group.

Lemma 6.4. Let X be a nonabelian simple group and H be a permutation group
on a finite set � that acts transitively and subprimitively. Define W = X wr� H to
be the wreath product of X by H with respect to this action and B to be the base
group of W . Let K be a normal subgroup of W and N be a normal subgroup of K
such that N ⩽̸ B. Then B ⩽ N.

Proof. Write π : W → H for the natural map associated to the wreath product.
Since H acts transitively and faithfully on �, it easily follows that B is the unique
minimal normal subgroup of W . Therefore B ⩽ K , so we may write K = B ⋊ L
where L is a normal subgroup of H . Write �= 01 ∪02 ∪ · · · ∪0k as the disjoint
union of the orbits of L . Since H is assumed to act subprimitively, L acts faithfully
on each 0i .

Since N ⩽̸ B by hypothesis, M = Nπ is a nontrivial normal subgroup of L ,
so the orbits of M on 0i form a block system for L . Consequently, M must act
without fixed points on each 0i , as otherwise M would fix all points of 0i and then
lie in the kernel of the action of L on 0i . Therefore M acts without fixed points
on �. Let us write

B = Q1× Q2× · · ·× Qm,

where each Q j = X1 j corresponds to an orbit 1 j of M on �. Let us suppose, for a
contradiction, that B ⩽̸ N . Then Q j ⩽̸ N for some j . Since M permutes the factors
of Q j transitively, Q j is a minimal normal subgroup of B M = B N . However,
B ⩽ K so B normalizes N and hence Q j ∩ N is normal in B N . We deduce that
Q j ∩N = 1 and hence [Q j , N ] = 1. This implies that B N fixes all the direct factors
of Q j , which is a contradiction. This establishes that B ⩽ N , as claimed. □

Corollary 6.5. (i) The group W = lim
−−→

Wn is hereditarily just infinite.

(ii) The profinite group Ŵ = lim
←−−

Wn is hereditarily just infinite.
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Proof. (i) Let K be a normal subgroup of finite index in W and N be a nontrivial
normal subgroup of K . Then N ∩Wk ̸= 1 for some k. Consequently N ∩Wn ⩽̸ Bn

for all n ⩾ k + 1. Applying Lemma 6.4 with W = Wn , we deduce Bn ⩽ N ∩Wn

for each n ⩾ k+ 1. Hence ⟨Bk+1, Bk+2, . . . ⟩ is contained in N and the former is
the kernel of the surjective homomorphism W →Wk . It follows that K/N is finite
and this shows that W is hereditarily just infinite.

(ii) We shall write πn : Ŵ →Wn for the surjective homomorphisms associated with
the inverse limit. Let K be an open normal subgroup of Ŵ and N be a nontrivial
closed normal subgroup of K . Then Nπk ̸= 1 for some k. Now Nπn P Kπn P Wn

and Nπn ⩽̸ Bn for all n ⩾ k+1. Hence by Lemma 6.4, Bn ⩽ Nπn for all n ⩾ k+1;
that is, ker ρn−1 ⩽ Nπn for all n ⩾ k + 1. It follows that kerπn−1 ⩽ N kerπn for
all n ⩾ k+ 1. As the kernels form a neighborhood base for the identity in Ŵ , we
conclude that

kerπk ⩽
∞⋂

n=0
N kerπn = N = N .

Since Ŵ/ kerπk ∼=Wk is finite, it follows that K/N is finite. This establishes that
Ŵ is hereditarily just infinite. □

We now specify the examples of subprimitive actions that we shall use and
construct abelian groups of automorphisms of the iterated wreath products.

Example 6.6. As before, let X0, X1, X2, . . . be a sequence of nonabelian finite
simple groups. Define W0 = X0, �0 = X0, and let W0 act regularly on �0. We also
define B0 =W0 for use later. Suppose that, for n ⩾ 1, we have constructed Wn−1

with a specified action on a set �n−1. As above, define Wn = Xn wr�n−1 Wn−1 and
write Bn = X �n−1

n for its base group. There are then two options for the action of
Wn on some set �n:

(R) take �n =Wn and let Wn act regularly upon �n; or

(P) let Xn act regularly on itself and use the product action of Wn on �n = Bn =

X �n−1
n .

For more information upon the product action of a wreath product, see, for
example, [Dixon and Mortimer 1996, Section 2.7]. In the case (P) of the product
action, the elements of Bn act regularly on the set �n while the elements of Wn−1

act to permute the factors; that is, the action of Wn−1 on �n coincides with the
conjugation action of Wn−1 on the base group Bn of Wn . It is immediate from
the definition that the regular action of Wn is subprimitive. The product action is
faithful and transitive and the following ensures shows that it is a valid choice for
our construction.
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Lemma 6.7. Let X be a nonabelian finite simple group acting regularly upon itself
and H be a transitive permutation group on a finite set �. Then the product action
of W = X wr� H on the base group B = X� is subprimitive.

Proof. By transitivity of H on �, B is the unique minimal normal subgroup of W .
Consequently, if K is a normal subgroup of W then B ⩽ K . In the product action,
B acts regularly and hence K is transitive on B. Thus, as the product action is
faithful, it follows that the action of K on the only K -orbit is also faithful. □

Corollary 6.5 therefore applies and tells us that W = lim
−−→

Wn and Ŵ = lim
←−−

Wn

are hereditarily just infinite. We shall now construct some examples of abelian
subgroups of the automorphism groups of these groups. There has been much study
of automorphism groups of wreath products (see, for example, [Mohammadi Has-
sanabadi 1978]), but our requirement is simply to produce some automorphisms
that commute and so we choose not to use the full power of such studies.

Suppose that, for each i ⩾ 0, φi is an automorphism of the simple group X i . We
take ψ0 = φ0. Suppose that at stage n−1, we have constructed an automorphism
ψn−1 of Wn−1. Since the action of Wn−1 on �n−1 is either regular or the product
action (with �n−1 = Bn−1 in the latter case), ψn−1 induces a permutation of �n−1

(that we also denote by ψn−1) with the property that

(1) (ωy)ψn−1 = (ωψn−1)
yψn−1

for all ω ∈�n−1 and y ∈Wn−1. We define a bijection ψn :Wn→Wn by

ψn : (xω)y 7→ ((xωψ −1
n−1
)φn)(yψn−1)

where xω ∈ Xn for each ω ∈�n−1 and y ∈ Wn−1. (Here we are writing elements
of the base group Bn as sequences (xω) indexed by �n−1 with xω ∈ Xn in the
ω-coordinate). Thus the effect of ψn on elements in the base group is to apply
φn to each coordinate and permute the coordinates using the permutation ψn−1

of �n−1, while we simply apply the previous automorphism ψn−1 to elements in
the complement Wn−1. It is a straightforward calculation to verify that the resulting
map is an automorphism of Wn and by construction it restricts to ψn−1 on the
subgroup Wn−1. (Indeed, in the case (R), the group Wn is the standard wreath
product of Xn by Wn−1. If we write φ = φn and β = ψn−1, then ψn = φ

∗β∗ is
the composite of the automorphisms φ∗ and β∗ introduced on pages 474 and 476,
respectively, of [Neumann and Neumann 1959]. The verification for the product
action case (P) is similarly straightforward and depends primarily on (1)).

The final result is that, for each n, we have constructed an automorphism ψn of
Wn that extends all the previous automorphisms. As a consequence, we certainly
have determined an automorphism ψ of W whose restriction to each Wn coincides
with ψn and an automorphism ψ̂ of the group Ŵ such that ψ̂πn = πnψn for each
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n (where, as above, we write πn : Ŵ → Wn for the surjective homomorphism
determined by the inverse limit). The key properties of the automorphisms that we
have constructed are as follows:

Lemma 6.8. Let (φi ), (φ
′

i ) be sequences of automorphisms with φi , φ
′

i ∈Aut X i for
each i . Define ψ and ψ̂ to be the automorphisms of W and Ŵ determined by the
sequence (φi ) and ψ ′ and ψ̂ ′ those determined by (φ′i ). Then:

(i) ψ̂ is a continuous automorphism of Ŵ .

(ii) ψψ ′ and ψ̂ψ̂ ′ are the automorphisms of W and Ŵ determined by the sequence
(φiφ

′

i ).

(iii) If , for some n ⩾ 0, φ0, φ1, . . . , φn−1 are the identity maps and φn is an outer
automorphism of Xn , then ψ is an outer automorphism of W and ψ̂ is an outer
automorphism of Ŵ .

Proof. (i) By construction, ψ̂ fixes the kernels kerπn associated to the inverse
limit. These form a neighborhood base for the identity and so we deduce that ψ̂ is
continuous.

(ii) For each n, write ψn and ψ ′n for the automorphisms of Wn determined by the
sequences (φi ) and (φ′i ). One computes that, for n ⩾ 1, the composite ψnψ

′
n is

given by

(xω)y 7→ ((xω(ψ ′n−1)
−1ψ −1

n−1
)φnφ

′
n)(yψn−1ψ

′

n−1)= ((xω(ψn−1ψ
′

n−1)
−1)φnφ

′
n)(yψn−1ψ

′

n−1).

A straightforward induction argument then shows that ψnψ
′
n is the automorphism

of Wn determined by the sequence (φiφ
′

i ). The claim appearing in the lemma then
follows.

(iii) Suppose that φ0, φ1, . . . , φn−1 are the identity and that φn /∈ Inn Xn . We
claim that ψm /∈ Inn Wm for all m ⩾ n. The first of these automorphisms is given by
((xω)ω∈�n−1 ·y)ψn= (xωφn)ω∈�n−1 ·y for xω ∈ Xn and y ∈Wn−1. Suppose that ψn is
produced by conjugating by the element bz where b∈ Bn and z∈Wn−1. Note thatψn

fixes Wn−1 and hence b normalizes Wn−1. Since yb
=[b, y−1

]y for all y ∈Wn−1, we
determine that b centralizes Wn−1. Therefore z ∈ Z(Wn−1)= 1. We then determine
that b = (bω)ω∈�n−1 is the constant sequence and φn coincides with conjugation by
the element bω, contrary to assumption. Hence ψn is an outer automorphism of Wn .

Now suppose, as an induction hypothesis, that ψm /∈ Inn Wm for some m ⩾ n.
Suppose that ψm+1 is produced by conjugating by bz where b ∈ Bm+1 and z ∈Wm .
Then b fixes Wm and hence centralizes this subgroup. Consequently, ψm , which
is the restriction of ψm+1 to Wm is given by conjugating by z. This contradicts the
inductive hypothesis. We conclude that ψm is an outer automorphism for all m ⩾ n.
It now immediately follows that ψ is an outer automorphism of W and ψ̂ is an
outer automorphism of Ŵ . □
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Theorem 6.9. Let X0, X1, . . . be a sequence of nonabelian finite simple groups. De-
fine W to be the direct limit and Ŵ to be the inverse limit of the wreath products Wn

constructed as in Example 6.6. Suppose that, for each i ⩾ 0, φi is an automorphism
of X i such that ⟨φi ⟩ ∩ Inn X i = 1. Then the group A =

∏
∞

i=0⟨φi ⟩ embeds naturally

(i) as a subgroup of Aut W such that A∩ Inn W = 1;

(ii) as a profinite subgroup of Autc Ŵ such that A∩ Inn Ŵ = 1.

Combining this theorem with Theorem 6.2 and Corollary 6.5 produces examples
of hereditarily JNAF discrete and profinite groups.

Proof. (i) Each element g of A =
∏
∞

i=1⟨φi ⟩ is a sequence (φ ki
i ) of automor-

phisms. Let ψg denote the automorphism of W determined by this sequence. By
Lemma 6.8(ii), the map g 7→ ψg is a homomorphism θ : A→ Aut W . It is clearly
injective while part (iii) of the lemma ensures that the image satisfies Aθ∩Inn W =1.

(ii) As with the first part, each g in A =
∏
∞

i=1⟨φi ⟩ determines a continuous auto-
morphism ψ̂g of Ŵ . Hence there is an injective homomorphism θ : A→ Autc Ŵ
given by g 7→ ψ̂g. The subgroups 0n = {γ ∈ Aθ | [Ŵ , γ ]⩽ kerπn}, for n ⩾ 0, form
a neighborhood base for the identity in the subspace topology on Aθ (see [Dixon
et al. 1999, Section 5.2]) and the inverse image of 0n under θ is

∏
i⩾n+1⟨φi ⟩, which

is open in the product topology on A. Hence θ is continuous and so its image is
a profinite subgroup of Autc Ŵ that is topologically isomorphic to A and satisfies
Aθ ∩ Inn Ŵ = 1 by Lemma 6.8(iii). □

Example 6.10. As a concrete example to finish our discussion of iterated wreath
products, fix a prime number p and let (ni ) be a sequence of positive integers. Take
X i = PSL2(pni ), so that X i has an outer automorphism φi of order ni induced by
the Frobenius automorphism of the finite field Fpni . Then Theorem 6.9 shows that
the group A =

∏
∞

i=0 Cni appears as a subgroup of the automorphism group of the
direct limit W with A ∩ Inn W = 1 and as a profinite subgroup of Autc Ŵ with
A∩ Inn Ŵ = 1.

Many examples of profinite groups occur as closed subgroups of such a Cartesian
product. For example, by taking a suitable enumeration (ni ) of prime-powers,
we can embed the Cartesian product of countably many copies of the profinite
completion Ẑ of the integers in some suitable product A and hence use Theorem 6.2
to construct a hereditarily JNAF profinite group of the form

(lim
←−−

Wn)⋊
∞∏

i=0
Ẑ.

Hereditarily JNNcF groups via Wilson’s Construction B. The next examples of
hereditarily just infinite groups that we shall consider are those introduced by Wilson
[2010] in his Construction B. We recall this construction here in order that we can
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describe some automorphisms of these groups. We make one notational adjustment
to Wilson’s recipe. When constructing the group Gn , he defines s = |Un−1| and
views Gn−1 =Un−1 ⋊ Ln−1 as a subgroup of the symmetric group of degree s via
its action upon Un−1. Accordingly, various elements in his construction have an
integer i as a parameter with 1 ⩽ i ⩽ s. In our description, we shall index using the
elements of Un−1 since this will aid our defining automorphisms of the constructed
groups. We refer to [Wilson 2010] for justification of the assertions made when
describing the construction.

Let (pn), for n ⩾ 1, and (qn), for n ⩾ 0, be two sequences of prime numbers such
that, for every n ⩾ 1, pn ̸= 2, pn divides qn − 1 and qn−1 ̸= pn . Also let (tn) be a
sequence of positive integers. We now describe the construction of a sequence Gn

of finite soluble groups.
First define G0 = U0 to be the additive group of the finite field Fq0 and take

L0 = 1. In particular, G0 is cyclic of order q0.
Now suppose that we have constructed a group Gn−1 = Un−1 ⋊ Ln−1 where

Un−1 is the unique minimal normal subgroup of Gn−1 and Un−1 is an elementary
abelian qn−1-group. To simplify notation, write U =Un−1 and let Gn−1 act upon
U by using the regular action of Un−1 upon itself and the conjugation action of
Ln−1 upon the normal subgroup Un−1. Define

0 =U ×{1, 2, . . . , tn} = {(u, k) | u ∈U, 1 ⩽ k ⩽ tn}.

Let A be an elementary abelian pn-group with basis {aγ | γ ∈ 0} and V be the
group algebra Fqn A. Let ζ be an element of order pn in the multiplicative group
of the field Fqn . Define invertible linear maps xδ, yδ (for δ ∈ 0) and z of V by
xδ : v 7→ vaδ for v ∈ V , yδ :

∏
a rγ
γ 7→ ζ rδ

∏
a rγ
γ for each

∏
a rγ
γ ∈ A, and z : v 7→ ζv

for v ∈ V . Then define the following subgroups of GL(V ): X = ⟨ xγ | γ ∈ 0 ⟩,
Y =⟨ yγ | γ ∈0 ⟩ and E =⟨X, Y ⟩. The action of Gn−1 upon U induces an action on
0 and hence an action on the basis of A: a g

(u,k) = a(ug,k) for each u ∈U , 1 ⩽ k ⩽ tn
and g ∈ Gn−1. Hence each g ∈ Gn−1 determines an invertible linear transformation
of V and this normalizes both X and Y (see [Wilson 2010, (4.3)]).

Now fix some element u0∈U . Set 0̃={(u, k)∈0 |u ̸=u0} and, for (u, k)∈ 0̃, let

ã(u,k) = a−1
(u0,k)a(u,k), x̃(u,k) = x −1

(u0,k)x(u,k), ỹ(u,k) = y −1
(u0,k)y(u,k).

Define Ã = ⟨ ãγ | γ ∈ 0̃ ⟩, X̃ = ⟨ x̃γ | γ ∈ 0̃ ⟩, Ỹ = ⟨ ỹγ | γ ∈ 0̃ ⟩, and D = ⟨X̃ , Ỹ ⟩.
In [Wilson 2010, (4.2)], it is observed that

(2) [xγ , yδ] =
{

z if γ = δ,
1 if γ ̸= δ.

Since z is central, it follows that E is nilpotent of class 2 and that D= X̃ Ỹ ⟨z⟩. Also
set W = Fqn Ã. Then W is an irreducible D-module and the group Gn−1, via its
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action on V , normalizes D and induces automorphisms of W ; see [Wilson 2010,
(4.4) and (4.5)]. Finally set Gn= (W⋊D)⋊Gn−1, Un=W and Ln=D⋊Gn−1. As-
sociated to this semidirect product, there are surjective homomorphisms Gn→Gn−1

and inclusions Gn−1 ↪→ Gn . Let Ĝ = lim
←−−

Gn and G = lim
−−→

Gn be the associated
inverse and direct limits.

Proposition 6.11 [Wilson 2010, (4.7)]. The inverse limit Ĝ is a hereditarily just
infinite profinite group and the direct limit G is a hereditarily just infinite (discrete)
group.

We need the following additional properties of the groups Gn that are not recorded
in Wilson’s paper:

Lemma 6.12. (i) For n ⩾ 1, the center of Gn is trivial.

(ii) If n = 1 and p1 divides q0− 1, then the center of D ⋊G0 is cyclic generated
by z.

(iii) If n ⩾ 1 and pn divides qn−1− 1, then the center of D is cyclic generated by z.

Proof. (i) It is observed in [Wilson 2010, (4.6)(b)] that CGn (W ) = W . Hence
Z(Gn)⩽ W . However, note z ∈ D′ by [Wilson 2010, (4.4)(a)] and wz

= ζw for all
w ∈W and so only the identity (that is, the zero vector in W ) commutes with all
elements of Gn .

(ii) Suppose that p1 divides q0− 1 and recall that U = G0 when n = 0. Consider
first the action of G0 on X = ⟨ xγ | γ ∈ 0 ⟩. The group X is an elementary abelian
pn-group and so as an Fpn G0-module is a direct sum X =

⊕t1
k=1 Xk where Xk is

isomorphic to the group algebra Fpn G0 (since G0 acts regularly on U in this case).
There is a unique 1-dimensional submodule of Xk upon which G0 acts trivially,
namely that generated by the product vk =

∏
u∈U x(u,k), and an element of X is

fixed by G0 if and only if it belongs to P = ⟨v1, v2, . . . , vt1⟩.
Now if vk were an element of X̃ , it could be written as vk =

∏
u ̸=u0

x̃ ru
(u,k) for

some values ru ; that is, vk = x −s
(u0,k)

∏
u ̸=u0

x ru
(u,k) where s =

∑
u ̸=u0

ru . Hence ru = 1
for all u ̸= u0, but then s = |U | − 1≡ 0 (mod p1) since p1 divides q0− 1. This is
a contradiction and so we conclude vk /∈ X̃ for all k. Since the set of x̃γ for γ ∈ 0̃
forms a basis for X , we deduce that X̃ ∩ P = 1; that is, only the identity element
of X̃ is fixed under the action of G0. Similarly, only the identity element is fixed
under the action of G0 on Ỹ . From these observations, we deduce that if a = ghzt

is centralized by G0 where g ∈ X̃ and h ∈ Ỹ , then necessarily g= h = 1. The claim
that Z(D ⋊G0)= ⟨z⟩ then follows.

(iii) Suppose that pn divides qn−1− 1. Let a = ghzt be in the center of D where
g ∈ X̃ and h ∈ Ỹ . From (2), it follows that, for γ = (u, k) and δ = (v, ℓ) with
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u, v ̸= u0,

[x̃γ , ỹδ] = [x −1
(u0,k)x(u,k), y −1

(u0,ℓ)
y(v,ℓ)] =


z2 if γ = δ,
z if k = ℓ and u ̸= v,
1 if k ̸= ℓ.

Suppose g =
∏
γ∈0̃ x̃ rγ

γ . Then, for δ = (v, ℓ) ∈ 0̃, [g, ỹδ] = zNℓ+rδ where Nℓ =∑
u ̸=u0

r(u,ℓ). It follows that rδ ≡ −Nℓ (mod pn) for all δ = (u, ℓ) ∈ 0̃. Hence
Nℓ ≡ −(|U | − 1)Nℓ ≡ 0 (mod pn) for 1 ⩽ ℓ ⩽ tn , using the fact that U is an
elementary abelian qn−1-group and pn divides qn−1−1. This shows rδ≡0 (mod pn)

for all δ ∈ 0̃ and hence g = 1. It similarly follows that h = 1. We conclude that
a = zt for some t and this establishes that Z(D)= ⟨z⟩. □

We shall now describe a method to construct some automorphisms of the groups
G and Ĝ. For each i ⩾ 0, let λi be a nonzero scalar in the field Fqi . In particular,
ψ0 : x 7→ λ0x is an automorphism of the additive group G0 = Fq0 . Now suppose
that we have constructed an automorphism ψn−1 of Gn−1. Since Un−1 is the unique
minimal normal subgroup of Gn−1, ψn−1 induces an automorphism of U =Un−1.
Hence we induce a bijection ψn−1 : 0 → 0 by (u, k)ψn−1 = (uψn−1, k) and
consequently determine an automorphism of A by aγ 7→ aγψn−1 and this extends to
an invertible linear map ψn−1 : V → V .

Lemma 6.13. The induced linear map ψn−1 ∈ GL(V ) satisfies ψ −1
n−1xδψn−1 =

xδψn−1 and ψ −1
n−1 yδψn−1 = yδψn−1 for each δ ∈ 0.

Proof. If v ∈ V , then vψ −1
n−1xδψn−1 = (vψ

−1
n−1 · aδ)ψn−1 = v · aδψn−1 and hence

ψ −1
n−1xδψn−1 = xδψn−1 . For an element

∏
a rγ
γ ∈ A, we compute(∏

a rγ
γ

)
ψ −1

n−1 yδψn−1 =
(∏

a rγ
γψ −1

n−1

)
yδψn−1 =

(
ζ rδψn−1

∏
a rγ
γψ −1

n−1

)
ψn−1 = ζ

rδψn−1
∏

a rγ
γ

and hence ψ −1
n−1 yδψn−1 = yδψn−1 . □

As a consequence, we determine an automorphism ψ∗n−1 of the subgroup E of
GL(V ) given by conjugating by this linear map ψn−1. Notice furthermore that
Dψ∗n−1 = D since

x̃(u,k)ψ∗n−1 = ψ
−1

n−1x −1
(u0,k)x(u,k)ψn−1 = x −1

(u0ψn−1,k)x(uψn−1,k) = x̃ −1
(u0ψn−1,k) x̃(uψn−1,k)

and similarly for ỹ(u,k). Finally, we determine a bijection ψn :Gn→Gn by applying
ψ∗n−1 to elements in D and applying ψn−1 to those in Gn−1 and defining its effect
on elements of W = Fqn Ã by

ã(u,k)ψn = λna−1
(u0ψn−1,k)a(uψn−1,k) = λn ã−1

(u0ψn−1,k)ã(uψn−1,k)

and extending by linearity. Thus, the effect of ψn on W is the composite of the
linear map ψn−1 defined above together with scalar multiplication by λn . Since
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each xδ and yδ is a linear map, it follows that ψn induces an automorphism of
W ⋊ D. Also notice that, since the action of Gn−1 on U = Un−1 is given by the
regular action of Un−1 on itself and the conjugation action of Ln−1 on Un−1, the
automorphism ψn−1 satisfies

(ug)ψn−1 = (uψn−1)
gψn−1

for all u ∈ U and g ∈ Gn−1 (and here exponentiation denotes the action). One
determines, using Lemma 6.13, that (x g

δ )ψ
∗

n−1 = (xδψ
∗

n−1)
gψn−1 for δ ∈ 0 and

g ∈Gn−1. Similar formulae hold when we conjugate yδ and aδ by elements of Gn−1

(in the latter case, we rely upon the fact that an element of Gn−1 induces a linear
map on V and so commutes with the operation of multiplying by the scalar λn).
We conclude that ψn is indeed an automorphism of Gn that restricts to the previous
one ψn−1 on Gn−1. As a consequence, we determine an automorphism ψ of G
whose restriction to each Gn equals ψn and an automorphism ψ̂ of Ĝ such that
ψ̂πn = πnψn for each n (where πn : Ĝ → Gn is the surjective homomorphism
associated to the inverse limit). The properties of this construction are analogous
to those for the iterated wreath product and the first two parts of the following are
established similarly to those of Lemma 6.8.

Lemma 6.14. Let (λi ), (µi ) be sequences of scalars with λi , µi ∈ F∗qi
. Define ψ

and ψ̂ to be the automorphisms of G and Ĝ determined by the sequence (λi ) and θ
and θ̂ those determined by (µi ). Then:

(i) ψ̂ is a continuous automorphism of Ĝ.

(ii) ψθ and ψ̂ θ̂ are the automorphisms of G and Ĝ determined by the sequence
(λiµi ).

(iii) If pi divides qi−1 − 1 for all i ⩾ 1 and, for some n ⩾ 0, λi = 1 in Fqi for
0 ⩽ i ⩽ n− 1 and λn is not in the subgroup of order pn in the multiplicative
group of the field Fqn , then ψ is an outer automorphism of G and ψ̂ is an outer
automorphism of Ĝ.

Proof. We prove part (iii). Suppose that pi divides qi−1−1 for all i ⩾ 1 in addition
to the original assumptions on the pi and q j . Suppose that λi = 1 for 0 ⩽ i ⩽ n− 1
and that λn is not a power of ζ where ζ is an element of order pn in F∗qn

. Since
λi = 1 for 0 ⩽ i ⩽ n− 1, the automorphism ψn−1 of Gn−1 is the identity map. We
shall first show that ψn /∈ Inn Gn . We will need a different argument according to
the value of n. If n = 0, then G0 is abelian so ψ0 cannot be an inner automorphism
as it is not the identity.

Suppose that n = 1 and that ψ1 is produced by conjugating by the element wdh
where w ∈ W , d ∈ D and h ∈ G0. In this case, ψ0 is the identity, so ψ1 induces
the identity on D ⋊G0 and hence dh ∈ Z(D ⋊G0); that is, h = 1 and d = zk for
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some k by Lemma 6.12(ii). Now observe that w must normalize D since Dψ1 = D
and it follows that [w, g] = 1 for all g ∈ D. Hence Fqnw is a D-invariant subspace
of W ; so w = 0 as W is an irreducible D-module, by [Wilson 2010, (4.5)(c)]. In
conclusion, ψ1 is the inner automorphism of G1 determined by conjugation by zk .
This means that λ1 = ζ

k , contrary to our assumption.
Suppose that n ⩾ 2 and that ψn ∈ Inn Gn , and let conjugation by the element

wdg (where w ∈W , d ∈ D and g ∈ Gn−1) achieve the same effect as applying ψn .
In particular, wdg centralizes Gn−1 and so wd normalizes Gn−1. It follows that
[wd, y] = 1 for all y ∈ Gn−1 and hence w and d are both centralized by Gn−1 and
g ∈ Z(Gn−1). Therefore g = 1 by Lemma 6.12(i). Also necessarily d ∈ Z(D),
so d = zk for some k by Lemma 6.12(iii), while w spans a D-submodule of W
and hence w = 0. We conclude, as in the previous case, that ψn is the inner
automorphism of Gn determined by conjugation by zk , which is impossible as
λn /∈ ⟨ζ ⟩ by assumption.

Now suppose that ψm /∈ Inn Gm for some m ⩾ n. If it were the case that ψm+1

is produced by conjugating by wdg where w ∈ W , d ∈ D and g ∈ Gm , then ψm

would coincide with conjugation by g, contrary to assumption. Hence ψm /∈ Inn Gm

for all m ⩾ n. It now follows that ψ is an outer automorphism of W and ψ̂ is an
outer automorphism of Ŵ . □

Theorem 6.15. Let (pn), for n ⩾ 1, and (qn), for n ⩾ 0, be a sequence of prime
numbers such that for every n ⩾ 1, pn ̸= 2, pn divides both qn−1−1 and qn−1. Let
(tn) be any sequence of positive integers and define G to be the direct limit and Ĝ to
be the inverse limit of the semidirect products Gn built via Wilson’s Construction B.
Take r0 = q0− 1 and, for each i ⩾ 1, write qi − 1= ri p mi

i where pi ∤ ri and let Cri

denote a cyclic group of order ri . Then the group A =
∏
∞

i=0 Cri embeds naturally

(i) as a subgroup of Aut G such that A∩ Inn G = 1;

(ii) as a profinite subgroup of Autc Ĝ such that A∩ Inn Ĝ = 1.

Proof. The proof is similar to that of Theorem 6.9. For each i , let λi be an element
of order ri in the multiplicative group F∗qi

. Then, for i ⩾ 1, ⟨λi ⟩ ∩ ⟨ζi ⟩ = 1 where ζi

denotes an element of order pi in F∗qi
. Now if

g = (λ ki
i ) ∈

∞∏
i=0
⟨λi ⟩ ∼= A,

write ψg for the automorphism ψ determined by the sequence (λ ki
i ) as above.

Lemma 6.14 ensures that g 7→ ψg is a homomorphism into Aut G whose image
satisfies the conclusion of (i). The second part is established similarly: we determine
an injective homomorphism θ :

∏
∞

i=0⟨λi ⟩ → Autc Ĝ and this is continuous since
the inverse image under θ of the basic neighborhood of the identity comprising
those automorphisms that act trivially on Gn is

∏
i⩾n+1⟨λi ⟩. □
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Example 6.16. A specific example can be constructed as follows. Let (ni ) be
any sequence of positive integers. Let (pi ), for i ⩾ 1, be any sequence of odd
primes such that pi does not divide ni . When i ⩾ 1, take ai = lcm(pi ni , pi+1) and
a0= lcm(n0, p1). Now take, for i ⩾ 0, qi to be any prime number of the form ai k+1
for some k ∈N. (The existence of such a prime number is guaranteed by Dirichlet’s
theorem). These choices of sequences then fulfill the requirements of Theorem 6.15
and the integer ri appearing in the statement is divisible by ni by construction. Con-
sequently, we deduce that the Cartesian product

∏
∞

i=0 Cni embeds in the subgroup
A appearing in Theorem 6.15. We may use any closed subgroup of this Cartesian
product as the choice of A in Theorem 6.2. In particular, there are many choices
of abelian profinite groups A such that Ĝ ⋊ A is hereditarily JNAF including, as
with the iterated wreath product, a hereditarily JNAF example of the form

(lim
←−−

Gn)⋊
∞∏

i=0
Ẑ.

Hereditarily JNNcF groups by use of the Nottingham group. The following con-
struction brings together two facets of the study of pro-p groups. As a first ingredient,
we make use of the work of Lubotzky–Shalev [1994] on R-analytic groups, in
the specific case when R is the formal powers series ring Fp[[T ]], to identify a
specific hereditarily just infinite pro-p group G. Secondly, we use the fact that
every countably based pro-p group embeds in the automorphism group Aut(R) to
obtain a wide range of groups of automorphisms of our group G.

Example 6.17. Let p be a prime number and let n be a positive integer with n ⩾ 2
such that p does not divide n. Take R = Fp[[T ]], the pro-p ring of all formal power
series over the field of p elements, which is a local ring with unique maximal ideal
m= T Fp[[T ]] generated by the indeterminate T . Then take G = SL1

n(R), the first
principal congruence subgroup of the special linear group of all n×n matrices of
determinant 1 over R; that is,

G = {g ∈ SLn(R) | g ≡ I (mod m)},

where I denotes the n×n identity matrix. Using the techniques of [Lubotzky and
Shalev 1994], it is straightforward to observe that G is a hereditarily just infinite
pro-p group. First, G is R-perfect and so the terms of its lower central series are
the congruence subgroups

γk(G)= Gk = {g ∈ SLn(R) | g ≡ I (mod mk)},

for each k ⩾ 1. Adapting slightly the notation used in [Lubotzky and Shalev 1994],
we see that the (completed) graded Lie ring associated to the lower central series of
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G satisfies

L(G)= LG(G)=
∞⊕

i=1
Gi/Gi+1 ∼=

∞∏
i=1

T isln(Fp)∼= sln(m),

the latter being the Lie algebra over Fp of n×n matrices with entries in m and
trace 0. To every closed subgroup H of G we associate a closed Lie subalgebra of
L(G) that we denote by LG(H) and whose properties are described in [Lubotzky
and Shalev 1994, Lemma 2.13]. Using the isomorphism above we view LG(H) as a
Lie subalgebra of sln(m). In particular, LG(Gk) corresponds to the Lie subalgebra∏
∞

i=k T isln(Fp) ∼= sln(m
k). If W is a nonzero Fp-subspace of sln(R) satisfying

[W, sln(mk)]Lie ⊆W for some k ⩾ 1, then a direct computation shows there exists
r such that sln(mr )⊆W . (It is this computation that uses the fact that p ∤ n).

Now let H and N be closed subgroups of G such that 1 ̸= N P H P G. Then
LG(H) is an ideal of the Lie algebra sln(m) and hence there exists r such that
sln(m

r )⊆ LG(H). Consequently, Gr ⩽ H , so that [N ,Gr ]⩽ N and one deduces
[LG(N ), sln(mr )]Lie ⊆ LG(N ). It follows that sln(ms) ⊆ LG(N ) for some s and
hence Gs ⩽ N and so |G : N |<∞. This shows that G is hereditarily just infinite.

Next we exploit properties of the Nottingham group N over Fp to produce groups
of automorphisms of the above group G. The group N is the Sylow pro-p subgroup
of the profinite group Autc(R)=Aut(R); it coincides with the group Aut1(R) of all
automorphisms of the ring R that act trivially modulo m2. Any element α of N is
then uniquely determined by its effect upon the indeterminate T and, conversely, for
any f ∈ R with f ≡ T (mod m2) there is a unique element of N mapping T to f .
(Thus N could alternatively be defined as a group of power series T +m2 with
the binary operation given by substitution of power series. For our construction,
however, the behavior as automorphisms is more relevant). We refer to [Camina
2000] for background material concerning the Nottingham group, which plays a
role also in number theory and dynamics.

The action of the Nottingham group N on R induces a faithful action upon the
group G = SL1

n(R) and hence we construct a subgroup Ṅ ⩽ Autc G isomorphic
to N . Suppose α ∈N is an element that induces an inner automorphism α̇ of the
group G, and put f = Tα ∈ T +m2. Then there exists a matrix h ∈ G such that
hx α̇ = xh for all x ∈ G. In particular, upon taking x = I + T ei j for 1 ⩽ i, j ⩽ n
with i ̸= j , we conclude that h must be a diagonal matrix such that every pair
of distinct diagonal entries a and b are linked by the relation T a = f b in R. It
follows that f 2

= T 2 and hence, since f ≡ T (mod m2), that f = T and α̇ = idG .
In conclusion, the copy of the Nottingham group in Autc G satisfies Ṅ ∩ Inn G = 1.

As the final step in our construction, we use the result of Camina [1997] that
every countably-based pro-p group can be embedded as a closed subgroup in N .
Hence if A is any finitely generated pro-p group that is virtually nilpotent (say,
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of class c), then it may be embedded in Autc G in such a way that A∩ Inn G = 1.
Hence we have satisfied the conditions of Theorem 6.2 and the semidirect product
G ⋊ A is an example of a hereditarily JNNcF pro-p group.
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