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We construct families of embedded, singly periodic minimal surfaces of
any genus g in the quotient with any even number 2n > 2 of almost parallel
Scherk ends. A surface in such a family looks like n parallel planes connected
by n − 1 + g small catenoid necks. In the limit, the family converges to an
n-sheeted vertical plane with n − 1 + g singular points, termed nodes, in the
quotient. For the nodes to open up into catenoid necks, their locations must
satisfy a set of balance equations whose solutions are given by the roots of
Stieltjes polynomials.

Introduction

The goal of this paper is to construct families of singly periodic minimal surfaces
(SPMSs) of any genus in the quotient with any even number 2n > 2 of Scherk ends
(asymptotic to vertical planes). Each family is parameterized by a small positive
real number τ > 0. In the limit τ → 0, the Scherk ends tend to be parallel, and the
surface converges to an n-sheeted vertical plane with singular points termed nodes.
As τ increases, the nodes open up into catenoid necks, and the surface looks like
parallel planes connected by these catenoid necks.

There are many previously known examples of such SPMSs. Scherk [1835]
discovered examples with genus zero and four Scherk ends. Karcher [1988] gen-
eralized Scherk’s surface with any even number 2n > 2 of Scherk ends. In this
paper, examples of genus zero will be called “Karcher–Scherk saddle towers” or
simply “saddle towers”, and saddle towers with four Scherk ends will be called
“Scherk saddle towers”. Karcher also added handles between adjacent pairs of ends,
producing SPMSs of genus n with 2n Scherk ends. Traizet glued Scherk saddle
towers into SPMSs of genus (n2

−3n+2)/2 with 2n > 2 Scherk ends because he
was desingularizing simple arrangements of n > 1 vertical planes. Martín and
Ramos Batista [2006] replaced the ends of Costa’s surface by Scherk ends, thereby
constructing an embedded SPMS of genus one with six Scherk ends and, for the first
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time, without any horizontal symmetry plane. Hauswirth, Morabito, and Rodríguez
[Hauswirth et al. 2009] generalized this result, using an end-to-end gluing method
to replace the ends of Costa–Hoffman–Meeks surfaces by Scherk ends, thereby
constructing SPMSs of higher genus with six Scherk ends. Da Silva and Ramos
Batista [2010] constructed an SPMS of genus two with eight Scherk ends based on
Costa’s surface. Also, Yucra Hancco, Lobos, and Ramos Batista [Yucra Hancco
et al. 2014] constructed SPMSs with genus 2n and 2n Scherk ends.

The examples of da Silva and Ramos Batista as well as all examples of Traizet
admit catenoid limits that can be constructed using techniques in the present paper.

One motivation of this work is an ongoing project to address various technical
details in the gluing constructions.

Roughly speaking, given any “graph” G that embeds in the plane and minimizes
the length functional, one could desingularize G × R into an SPMS by placing a
saddle tower at each vertex. Previously, this was only proved for simple graphs
under the assumption of a horizontal reflection plane [Traizet 1996; 2001]. Recently,
we managed to allow the graph to have parallel edges, to remove the horizontal
reflection plane by Dehn twist [Chen and Traizet 2021], and to prove embeddedness
by analyzing the bendings of Scherk ends [Chen 2021].

However, we still require that the vertices of G are neither “degenerate” nor
“special”. Here, a vertex of degree 2k is said to be degenerate (resp. special) if k
(resp. k − 1) of its adjacent edges extend in the same direction while the other k
(resp. k − 1) edges extend in the opposite direction. This limitation is due to the
fact that a saddle tower with 2k Scherk ends cannot have k − 1 ends extending
in the same direction while the other k − 1 ends extend in the opposite direction.
Therefore, it is not possible to place a saddle tower at a degenerate or special vertex.

Nevertheless, we do know SPMSs that desingularize G × R where G is a graph
with a degenerate vertex. To include these in the gluing construction, we need
to place catenoid limits of saddle towers, as those constructed in this paper, at
degenerate vertices. From this point of view, the present paper can be seen as
preparatory: the insight gained here will help us to glue saddle towers with catenoid
limits of saddle towers in a future project.

This paper reproduces the main result of the thesis of Li [2012]. Technically, the
construction implemented in [Li 2012] was in the spirit of [Traizet 2002b], which
defines the Gauss map and the Riemann surface at the same time, and the period of
the surface was assumed horizontal. Here, for the convenience of future applications,
we present a construction in the spirit of [Traizet 2008; Chen and Traizet 2021;
Chen 2021], which defines all three Weierstrass integrands by prescribing their
periods, and the period of the surface is assumed vertical. In particular, we will
reveal that a balance condition in [Li 2012] is actually a disguise of the balance of
Scherk ends: the unit vectors in the directions of the ends sum up to zero.
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1. Main result

1.1. Configuration. We consider L + 1 vertical planes, L ≥ 1, labeled by integers
l ∈ [1, L +1]. Up to horizontal rotations, we assume that these planes are all parallel
to the xz-plane, which we identify as the complex plane C, with the x-axis (resp.
z-axis) corresponding to the real (resp. imaginary) axis. We use the term “layer”
for the space between two adjacent parallel planes. So there are L layers.

We want nl ≥ 1 catenoid necks on layer l, i.e., between the planes l and l + 1,
1 ≤ l ≤ L . For convenience, we adopt the convention that nl = 0 if l < 1 or l > L ,
and write N =

∑
nl for the total number of necks. Each neck is labeled by a pair

(l, k), where 1 ≤ l ≤ L and 1 ≤ k ≤ nl .
To each neck is associated a complex number ql,k ∈ C×

= C \ {0}, 1 ≤ l ≤ L ,
1 ≤ k ≤ nl . Then the positions of the necks are prescribed at ln ql,k + 2mπ i, m ∈ Z.
Recall that the z-axis is identified as the imaginary axis of the complex plane C, so
the necks are periodic with period vector (0, 0, 2π). Note that, if we multiply ql,k’s
by the same complex factor c, then the necks are all translated by ln c (mod 2π i).
So we may quotient out translations by fixing q1,1 = 1.

Also, each plane has two ends asymptotic to vertical planes. We label the end of
plane l that expands in the −x (resp. x) direction by 0l (resp. ∞l). To be compatible
with the language of graph theory that were used for gluing saddle towers [Chen
and Traizet 2021], we use

H = {ηl : 1 ≤ l ≤ L + 1, η ∈ {0,∞}}

to denote the set of ends. When 0l is used as subscript for parameter x , we write
xl,0 instead of x0l to ease the notation; the same applies to ∞l .

To each end is associated a real number θ̇h , h ∈ H. They prescribe infinitesimal
changes of the directions of the ends. More precisely, for small τ , we want the unit
vector in the direction of the end h to have a y-component of order τ θ̇h +O(τ 2).

Remark 1. Multiplying θ̇ by a common real constant leads to a reparameterization
of the family. Adding a common real constant to θ̇l,0 and subtracting the same
constant from θ̇l,∞ leads to horizontal rotations of the surface.

In the following, a configuration refers to the pair (q, θ̇ ), where

q = (ql,k) 1⩽l⩽L
1⩽k⩽nl

and θ̇ = (θ̇h)h∈H.

1.2. Force. Given a configuration (q, θ̇ ), let cl be the real numbers that solve

(1) −nlcl + nl−1cl−1 + θ̇l,0 + θ̇l,∞ = 0, 1 ≤ l ≤ L + 1.
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Recall the convention nl = 0 if l < 1 or l > L , so we also adopt the convention
cl = 0 if l < 1 or l > L . A summation over l yields

(2) 21 =

∑
h∈H

θ̇h = 0.

If (2) is satisfied, the real numbers cl are determined by (1) as functions of θ̇ .
For 1 ≤ l ≤ L + 1, let ψl be the meromorphic 1-form on the Riemann sphere Ĉ

with simple poles at ql,k with residue −cl for each 1 ≤ k ≤ nl , at ql−1,k with residue
cl−1 for each 1 ≤ k ≤ nl−1, at 0 with residue θ̇l,0, and at ∞ with residue θ̇l,∞. More
explicitly,

ψl =

( nl∑
k=1

−cl

z − ql,k
+

nl−1∑
k=1

cl−1

z − ql−1,k
+
θ̇l,0

z

)
dz.

We then see that (1) arises from the residue theorem.

Remark 2. In the definition of configuration, we may replace θ̇ by the param-
eters (cl, θ̇l+1,0 − θ̇l,0)1≤l≤L . Then θ̇l,0’s are defined up to an additive constant
(corresponding to a rotation), θ̇l,∞’s are determined by (1), and (2) is automatically
satisfied. To quotient out reparameterizations of the family, we may assume that
cl = 1 for some 1 ≤ l ≤ L .

We define the force Fl,k by

(3) Fl,k = Res
(
ψ2

l +ψ2
l+1

2
z

dz
, ql,k

)
.

Or, more explicitly,

(4) Fl,k =

∑
1≤k ̸= j≤nl

2c2
l ql,k

ql,k − ql, j
−

∑
1≤ j≤nl+1

clcl+1ql,k

ql,k − ql+1, j

−

∑
1≤ j≤nl−1

clcl−1ql,k

ql,k − ql−1, j
+ c2

l + cl(θ̇l+1,0 − θ̇l,0).

In [Li 2012], the force had two different formulas depending on the parity of l. One
verifies that both are equivalent to (4).

Remark 3 (electrostatic interpretation). The force equation (4) can be expressed as

Fl,k =

∑
1≤k ̸= j≤nl

c2
l (ql,k + ql, j )

ql,k − ql, j
−

∑
1≤ j≤nl+1

clcl+1(ql,k + ql+1, j )

2(ql,k − ql+1, j )

−

∑
1≤ j≤nl−1

clcl−1(ql,k + ql−1, j )

2(ql,k − ql−1, j )
+

cl

2
(θ̇l,∞ − θ̇l,0 − θ̇l+1,∞ + θ̇l+1,0).
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Note that

a+b
a−b

= coth
ln a−ln b

2
=

2
ln a−ln b

+

∞∑
m=1

(
2

ln a−ln b−2mπ i
+

2
ln a−ln b+2mπ i

)
.

Disregarding absolute convergence, we write this formally as

a + b
a − b

=

∑
m∈Z

2
ln a − ln b − 2mπ i

.

Then the force is given, formally, by

Fl,k =

∑
0̸=m∈Z

2c2
l

2mπ i
+

∑
m∈Z

1≤k ̸= j≤nl

2c2
l

ln ql,k − ln ql, j − 2mπ i

−

∑
m∈Z

1≤ j≤nl+1

clcl+1

ln ql,k − ln ql+1. j − 2mπ i
−

∑
m∈Z

1≤ j≤nl−1

clcl−1

ln ql,k − ln ql−1. j − 2mπ i

+
cl

2
(θ̇l,∞ − θ̇l,0 − θ̇l+1,∞ + θ̇l+1,0).

Recall that ln ql,k + 2mπ i are the real positions of the necks. So this formal
expression has an electrostatic interpretation similar to those in [Traizet 2002b;
2008]. Here, each neck interacts not only with all other necks in the same or
adjacent layers, but also with background constant fields given by θ̇ .

Remark 4 (another electrostatic interpretation). In fact, (4)/ql,k has a similar
electrostatic interpretation. But this time, the necks are seen as placed at ql,k . Each
neck interacts with all other necks in the same and adjacent layers, as well as a
virtual neck at 0 with “charge” cl + θ̇l+1,0 − θ̇l,0. This is no surprise, as electrostatic
laws are known to be preserved under conformal mappings (such as ln z).

1.3. Main result. In the following, we write F = (Fl,k)1≤l≤L ,1≤k≤nl .

Definition 5. The configuration is balanced if F = 0 and 21 = 0.

Summing up all forces yields a necessary condition for the configuration to be
balanced, namely

22 =

∑
1≤l≤L
1≤k≤nl

Fl,k =

∑
1≤l≤L+1

−
1
2

(
Res

(
zψ2

l

dz
, 0

)
+ Res

(
zψ2

l

dz
,∞

))

=

∑
1≤l≤L+1

θ̇2
l,∞ − θ̇2

l,0

2
= 0.

Lemma 6. The Jacobian matrix ∂(21,22)/∂θ̇ has real rank 2 as long as cl ̸= 0
for some 1 ≤ l ≤ L.
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The assumption of the lemma simply says that the surface does not remain a
degenerate plane to the first order.

Proof. The proposition says that the matrix has an invertible minor of size 2×2.
Explicitly, we have

∂(21,22)

∂(θ̇l,0, θ̇l,∞)
=

(
1 1

−θ̇l,0 θ̇l,∞

)
.

This minor is invertible if and only if θ̇l,0 + θ̇l,∞ does not equal 0. This must be
the case for at least one 1 ≤ l ≤ L because, otherwise, we have cl = 0 for all
1 ≤ l ≤ L . □

Definition 7. The configuration is rigid if the complex rank of ∂F/∂q is N − 1.

Remark 8. In fact, the complex rank of ∂F/∂q is at most N −1. We have seen that
a complex scaling of q corresponds to a translation of ln ql,k +2mπ i, m ∈ Z, which
does not change the force. It then makes sense to normalize q by fixing q1,1 = 1.

Theorem 9. Let (q, θ̇ ) be a balanced and rigid configuration such that cl ̸= 0 for
1 ≤ l ≤ L. Then for τ > 0 sufficiently small, there exists a smooth family Mτ of
complete singly periodic minimal surfaces of genus g = N − L , period (0, 0, 2π),
and 2(L + 1) Scherk ends such that, as τ → 0:

• Mτ converges to an (L+1)-sheeted xz-plane with singular points at

ln ql,k + 2mπ i, m ∈ Z.

Here, the xz-plane is identified as the complex plane C, with the x-axis (resp.
z-axis) identified as the real (resp. imaginary) axis.

• After suitable scaling and translation, each singular point opens up into a neck
that converges to a catenoid.

• The unit vector in the direction of each Scherk end h has the y-component
τ θ̇h +O(τ 2).

Also, Mτ is embedded if

(5) θ̇1,0 > · · ·> θ̇L+1,0 and θ̇1,∞ > · · ·> θ̇L+1,∞.

Remark 10. The family Mτ also depends smoothly on θ̇ belonging to the local
smooth manifold defined by 21 = 0 and 22 = 0. Up to reparameterizations of
the family and horizontal rotations, we obtain families parameterized by 2L − 1
parameters. Since we have 2(L + 1) Scherk ends, this parameter count is compati-
ble with the fact that Karcher–Scherk saddle towers with 2k ends form a family
parameterized by 2k − 3 parameters.
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Remark 11. If the embeddedness condition (5) is satisfied and21 =0, the sequence
θ̇l,0 + θ̇l,∞ is strictly monotonically decreasing, and changes sign once and only
once. Then the sequence nlcl is strictly concave (that is, nl−1cl−1+nl+1cl+1< 2nlcl

for 1 ≤ l ≤ L). Hence cl , 1 ≤ l ≤ L , are strictly positive, and the condition of
Lemma 6 is satisfied.

Remark 12. We could allow some cl to be negative, with the price of losing
embeddedness. Even worse, with negative cl , the vertical planes in the limit will
not be geometrically ordered as they are labeled. For instance, if L = 2, c1 > 0, but
c2 < 0, then the catenoid necks, as well as the first and third “planes”, will all lie
on the same side of the second “plane”.

Remark 13. We did not allow any cl to be 0 in Theorem 9. Otherwise, the surface
might still have nodes. In that case, the claimed family might not be smooth, and
the claimed genus would be incorrect.

2. Examples

2.1. Surfaces of genus zero. When the genus satisfies g = N − L = 0, we have
nl = 1 for all 1 ≤ l ≤ L , i.e., there is only one neck on every layer. It then makes
sense to drop the subscript k. For instance, the position and the force for the neck on
layer l are simply denoted by ql and Fl , respectively. We assume L > 1 in this part.

In this case, if 21 = 0, (1) can be explicitly solved by

cl =

l∑
i=1

(θ̇i,0 + θ̇i,∞), 1 ≤ l ≤ L ,

and the force can be written in the form

Fl = −Q̃l + Q̃l−1 + cl(θ̇l,∞ + θ̇l+1,0), 1 ≤ l ≤ L ,

where we changed to the parameters

Q̃l =
cl+1cl

1 − ql+1/ql
, 1 ≤ l < L ,

with the convention that Q̃0 = Q̃L = 0. Then the forces are linear in Q̃ and, if
22 = 0, the balance condition F = 0 is uniquely solved by

(6) Q̃l =

l∑
i=1

ci (θ̇i+1,0 + θ̇i,∞)= −

L∑
i=l+1

ci (θ̇i+1,0 + θ̇i,∞), 1 ≤ l < L .

Therefore, if we fix q1 = 1, all other ql , 1< l ≤ L , are uniquely determined.
Recall from Remark 11 that, under the embeddedness condition (5), the num-

bers cl , 1 ≤ l ≤ L , are positive. Furthermore, the summands in (6) change sign at
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most once, so the sequence Q̃ is unimodal, i.e., there exists 1 ≤ l ′ < L such that

0 = Q̃0 ≤ Q̃1 ≤ · · · ≤ Q̃l ′ ≥ · · · ≥ Q̃L−1 ≥ Q̃L = 0.

Hence Q̃l , 1 ≤ l ≤ L , are nonnegative. Lastly,

Q̃l <

l∑
i=1

ci (θ̇i,0 + θ̇i,∞)=

l∑
i=1

(c2
i − ci−1ci )≤ c2

l ≤ cl+1cl if l < l ′,

Q̃l <−

L∑
i=l+1

ci (θ̇i+1,0 + θ̇i+1,∞)=

L∑
i=l+1

(c2
i − ci+1ci )≤ c2

l+1 ≤ cl+1cl if l ≥ l ′.

So q consists of real numbers and ql+1/ql < 0 for all 1 ≤ l < L .
We have proved the following:

Proposition 14. If the genus satisfies g = N − L = 0, and θ̇ satisfies the balancing
condition 21 =22 = 0 as well as the embeddedness condition (5), then up to com-
plex scalings, there exist unique values for the parameters q , depending analytically
on θ̇ , such that the configuration (q, θ̇ ) is balanced. All such configurations are
rigid. If we fix q1 = 1, then q consist of real numbers, and we have ql > 0 (resp.
< 0) if l is odd (resp. even).

2.2. Surfaces with four ends. When L = 1, 21 =22 = 0 implies that

θ̇1,0 + θ̇2,∞ = θ̇2,0 + θ̇1,∞ = 0.

Up to reparameterizations of the family, we may assume that c1 = 1. It makes sense
to drop the subscript l, and write Fk for F1,k , qk for q1,k , and n for n1. The goal of
this part is to prove the following classification result.

Proposition 15. Up to a complex scaling, a configuration with L = 1 and n nodes
must be given by qk = exp(2π ik/n), and such a configuration is rigid.

Such a configuration is an n-covering of the configuration for Scherk saddle
towers. As a consequence, the arising minimal surfaces are n-coverings of Scherk
saddle towers. This is compatible with the result of [Meeks and Wolf 2007] that
the Scherk saddle towers are the only connected SPMSs with four Scherk ends.

Proof. To find the positions qk such that

(7) Fk =

∑
1≤k ̸= j≤n

2qk

qk − q j
− (n − 1)= 0, 1 ≤ k ≤ n,

we use the polynomial method. Consider the polynomial

P(z)=

n∏
k=1

(z − qk).



CATENOID LIMITS OF MINIMAL SURFACES WITH SCHERK-TYPE ENDS 19

Then we have

P ′
= P

n∑
k=1

1
z − qk

,

P ′′
= P

n∑
k=1

∑
1≤k ̸= j≤n

1
z − q j

1
z − qk

= 2P
n∑

k=1

1
z − qk

∑
1≤k ̸= j≤n

1
qk − q j

= P
n∑

k=1

n − 1
qk(z − qk)

= (n − 1)P
n∑

k=1

1
z

(
1
qk

+
1

z − qk

)
(by (7))

=
n − 1

z

(
P ′

−
P ′(0)
P(0)

P
)
.

For the last equation to have a polynomial solution, we must have P ′(0) = 0.
Otherwise, the left-hand side would be a polynomial of degree n−2, but the right-
hand side would be a polynomial of degree n−1.

Consequently, Fk = 0 if and only if

z P ′′(z)− (n − 1)P ′(z)= 0,

which, up to a complex scaling, is uniquely solved by

P(z)= zn
− 1.

So a balanced 4-end configuration must be given by the roots of unity qk =

exp(2π ik/n), 0 ≤ k ≤ n − 1.
We now verify that the configuration is rigid. For this purpose, we compute

∂Fk

∂q j
=

{
2 qk
(qk−q j )2

, j ̸= k,

2
∑

1≤k ̸=i≤n
−qi

(qk−qi )2
, j = k.

Note that
∑n

j=1 q j∂Fk/∂q j = 0 while

q j
∂Fk

∂q j
= 2

q j qk

(qk − q j )2
= 2

e2π i j+k
n

(e2π i j
n − e2π i k

n )2
∈ R<0

when j ̸= k, so the matrix

∂F
∂q

diag(q1, . . . , qn)

has real entries, has a kernel of complex dimension 1 (spanned by the all-one vector),
and any of its principal submatrices are diagonally dominant. We then conclude
that the matrix, as well as the Jacobian ∂F/∂q, has a complex rank n−1. This
finishes the proof of rigidity. □
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Remark 16. The perturbation argument as in the proof of [Traizet 2002b, Proposi-
tion 1] also applies here, word by word, to prove the rigidity.

2.3. Gluing two saddle towers of different periods. We want to construct a smooth
family of configurations depending on a positive real number λ such that, for small λ,
the configuration looks like two columns of nodes far away from each other, one
with period 2π/n1, and the other with period 2π/n2. If balanced and rigid, these
configurations would give rise to minimal surfaces that look like two Scherk saddle
towers with different periods that are glued along a pair of ends. The construction
is in the same spirit as [Traizet 2002b, §2.5; 2008, §4.3.4].

Proposition 17. For a real number λ > 0 sufficiently small, there are balanced and
rigid configurations (q(λ), θ̇(λ)) with L = 2 depending smoothly on λ such that, at
λ= 0,

q2, j

q1,k
= 0, 1 ≤ k ≤ n1, 1 ≤ j ≤ n2.

Up to a complex scaling and reparameterization, we may fix q1,1 = 1, and write
q2,1 = λ exp(iφ). Then, at λ= 0, we have

(8) θ̇1,0 + θ̇2,∞ = θ̇2,0 + θ̇3,∞ = θ̇3,0 + θ̇1,∞ = 0

and,

q1,k = exp
(

k − 1
n1

2π i
)
, 1 ≤ k ≤ n1,

q̃2,k := q2,k/q2,1 = exp
(

k − 1
n2

2π i
)
, 1 ≤ k ≤ n2,

where φ lcm(n1, n2) is necessarily a multiple of π .

In other words, the construction only works if the configuration admits a reflection
symmetry.

Remark 18. H. Chen was shown a video suggesting that, when two Scherk saddle
towers are glued into a minimal surface, one can slide one saddle tower with respect
to the other while the surface remains minimal. The proposition above suggests
that this is not possible.

In fact, the family of configurations also depends on θ̇ belonging to the local
manifold defined by 21 =22 = 0 and (one equation from) (8). Up to rotations of
the configuration and reparameterizations of the family of minimal surfaces, the
family of configurations is parameterized, as expected, by two parameters.
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Proof. Let us first study the situation at λ= 0. We compute, at λ= 0,

F1,k

c2
1

=

∑
1≤k ̸= j≤n1

2q1,k

q1,k − q1, j
−

∑
1≤ j≤n2

c2

c1

q1,k

q1,k − q2, j
+ 1 +

θ̇2,0 − θ̇1,0

c1

=

∑
1≤k ̸= j≤n1

2q1,k

q1,k − q1, j
− n2

c2

c1
+ 1 +

θ̇2,0 − θ̇1,0

c1
,

F2,k

c2
2

=

∑
1≤k ̸= j≤n2

2q2,k

q2,k − q2, j
−

∑
1≤ j≤n1

c1

c2

q2,k

q2,k − q1, j
+ 1 +

θ̇3,0 − θ̇2,0

c2

=

∑
1≤k ̸= j≤n2

2q2,k

q2,k − q2, j
+ 1 +

θ̇3,0 − θ̇2,0

c2
.

Write Gl =
∑

k Fl,k . Summing the above over k gives, at λ= 0,

1
n1

G1

c2
1

= n1 − n2
c2

c1
+
θ̇2,0 − θ̇1,0

c1
,

1
n2

G2

c2
2

= n2 +
θ̇3,0 − θ̇2,0

c2
.

So G1 = G2 = 0, at λ= 0, only if

0 = − (θ̇2,0 + θ̇3,∞)= θ̇3,0 − θ̇2,0 + n2c2

= − (θ̇1,0 + θ̇2,∞)= n1c1 − n2c2 + θ̇2,0 − θ̇1,0.

This together with 21 = 0 proves (8).
Now assume that (8) is satisfied. Then we have, at λ= 0,

F1,k

c2
1

=

∑
1≤k ̸= j≤n1

2q1,k

q1,k − q1, j
− (n1 − 1),

F2,k

c2
2

=

∑
1≤k ̸= j≤n2

2q2,k

q2,k − q2, j
− (n2 − 1).

These expressions are identical to the force (7) for single layer configurations. So
we know for l = 1, 2 that, at λ= 0, the configuration is balanced only if

q̃l,k :=
ql,k

ql,1
= exp

(
k − 1

nl
2π i

)
.

Up to complex scaling, we may fix q1,1 = 1 so q̃1,k = q1,k . And up to reparameteri-
zation of the family (of configurations), we write q2,1 = λ exp(iφ).



22 HAO CHEN, PETER CONNOR AND KEVIN LI

Now assume these initial values for q̃l,k . Then we have, at λ= 0,

G2

c1c2
= −

n2∑
k=1

n1∑
j=1

q2,k

q2,k − q1, j
=

n2∑
k=1

n1∑
j=1

∞∑
m=1

(
q2,k

q1, j

)m

=

n2∑
k=1

n1∑
j=1

∞∑
m=1

qm
2,1 exp

(
2miπ

(
k − 1

n2
−

j − 1
n1

))
.

Seen as a power series of q2,1, the coefficient for qm
2,1 is

n2∑
k=1

n1∑
j=1

exp
(

2miπ
(

k − 1
n2

−
j − 1
n1

))
.

It is nonzero only if m is a common multiple of n1 and n2, in which case the
coefficient of qm

2,1 equals n1n2. In particular, let µ= lcm(n1, n2); then, at λ= 0,

(9) Im
G2

λµ
= c1c2n1n2 sin(µφ)

vanishes if and only if µφ is a multiple of π .
Now we use the implicit function theorem to find balanced configurations with

λ > 0. From the proof for Proposition 15, we know that (∂Fl,k/∂ q̃l, j )2≤ j,k≤nl ,
l = 1, 2, are invertible. Hence for λ sufficiently small, there exist unique values for
(q̃l,k)l=1,2;2≤k≤nl , depending smoothly on λ, θ̇ , and φ, where (Fl,k)l=1,2;2≤k≤nl = 0.
By (9), there exists a unique value for φ, depending smoothly on λ and θ̇ , such
that Im G2/λ

µ
= 0. Note also that Re G2 is linear in θ̇ . By Lemma 6, the solutions

(λ, θ̇) to Re G2 = 0 and 21 =22 = 0 form a manifold of dimension 4 (including
multiplication by common real factor on θ̇ and rotation of the configuration). Finally,
we have G1 = 0 by the residue theorem, and the balance is proved.

For the rigidity of the configurations with sufficiently small λ, we need to prove
that the matrix 

( ∂F1,k
∂q1, j

)
2≤ j,k≤n1 ( ∂F2,k

∂q̃2, j

)
2≤ j,k≤n2

∂G2
∂q2,1


is invertible. We know that the first two blocks are invertible at λ= 0. By continuity,
they remain invertible for λ sufficiently small. The last block is clearly nonzero for
λ ̸= 0 sufficiently small. □

2.4. Surfaces with six ends of type (n, 1). In this section, we investigate examples
with L = 2 (hence six ends), n1 = n, n2 = 1. Up to a reparameterization of the
family, we may assume that c1 = 1. Up to a complex scaling, we may assume that
q2,1 = 1.
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We will prove that the q1,k’s are given by the roots of hypergeometric polynomials.
Let us first recall their definitions. A hypergeometric function is defined by

2 F1(a, b; c; z)=

∞∑
k=0

(a)k(b)k
(c)k

zk

k!

with a, b, c ∈ C, c is not a nonpositive integer,

(a)k = a(a + 1) · · · (a + k − 1)=
0(a + k)
0(a)

,

and (a)0 = 1. The hypergeometric function w = 2 F1(a, b; c; z) solves the hyperge-
ometric differential equation

(10) z(1 − z)w′′
+ [c − (a + b + 1)z]w′

− abw = 0.

If a = −n is a negative integer,

2 F1(−n, b; c; z) :=

n∑
k=0

(−1)k
(n

k

)(b)k
(c)k

zk

is a polynomial of degree n, and is referred to as a hypergeometric polynomial.

Proposition 19. Let (q, θ̇ ) be a balanced configuration with L = 2, c1 = 1, n1 = n,
n2 = 1. Then, up to a complex scaling, we have q2,1 = 1 and (q1,k)1≤k≤n are the
roots of the hypergeometric polynomial 2 F1(−n, b; c; z) with

b := n − c2 + θ̇2,0 − θ̇1,0, c := 1 + θ̇2,0 − θ̇1,0.

As long as b and c are not nonpositive integers, and c − b is not a nonpositive
integer bigger than −n, the configuration is rigid.

Proof. The force equations are

F1,k =

∑
1≤k ̸= j≤n

2q1,k

q1,k − q1, j
−

q1,kc2

q1,k − 1
+ c, 1 ≤ k ≤ n,

F2,1 = −

n∑
j=1

c2

1 − q1, j
+ c2

2 + c2(θ̇3,0 − θ̇2,0),

where c := 1 + θ̇2,0 − θ̇1,0. To solve F1,k = 0 for k = 1, 2, . . . , n, we use again the
polynomial method. Let

P(z)=

n∏
k=1

(z − q1,k).
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Then we have

P ′
= P

n∑
k=1

1
z − q1,k

;

P ′′
= 2P

n∑
k=1

1
z − q1,k

∑
1≤k ̸= j≤n

1
q1,k − q1, j

= P
n∑

k=1

1
(z − q1,k)

(
c2

q1,k − 1
−

c
q1,k

)
(by F1,k = 0)

= P
n∑

k=1

(
c2

(z − 1)(z − q1,k)
+

c2

(z − 1)(q1,k − 1)
−

c
z(z − q1,k)

−
c

zq1,k

)
.

So the configuration is balanced if and only if

(11) P ′′
+

(
−c2

z − 1
+

c
z

)
P ′

+

(
c2

z − 1
P ′(1)
P(1)

−
c
z

P ′(0)
P(0)

)
P = 0.

Define
b := n − 1 − c2 + c.

For (11) to have a polynomial solution of degree n, we must have

c2
P ′(1)
P(1)

= c
P ′(0)
P(0)

= −nb,

so that the leading coefficients cancel. Then (11) becomes the hypergeometric
differential equation

z(1 − z)P ′′
+ [c − (−n + b + 1)z]P ′

+ nbP = 0

to which the only polynomial solution (up to a multiplicative constant) is given by
the hypergeometric polynomial P(z)= 2 F1(−n, b; c; z) of degree n.

Furthermore, in order for F2,1 = 0, we must have

(12) θ̇3,0 − θ̇2,0 =

n∑
j=1

1
1 − q1, j

− c2 =
P ′(1)
P(1)

− c2 = −
nb
c2

− c2.

Note that b and c are real. If b is not a nonpositive integer, and c − b is not a
nonpositive integer bigger than −n, then all the n roots of P(z)= 2 F1(−n, b; c; z)
are simple. Indeed, under these assumptions, we have P(0) = 1 and P(1) =

(c − b)n/(c)n ̸= 0 by the Chu–Vandermonde identity. If z0 is a root of P(z), then
z0 ̸= 0, 1. In view of the hypergeometric differential equation, if z0 is not simple,
we have P(z0)= P ′(z0)= 0; hence P(z)≡ 0 by the uniqueness theorem.
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The rigidity means that no perturbation of q1,k preserve the balance to the first
order. To prove this fact, we use a perturbation argument similar to that in the proof
of [Traizet 2002b, Proposition 1].

Let (q1,k(t))1≤k≤n be a deformation of the configuration such that q1,k(0)= q1,k

and (Ḟ1,k(0))1≤k≤n = 0, where dot denotes derivative with respect to t . Define

Pt(z)=

n∑
j=0

a j (t)z j
:=

n∏
k=1

(z − q1,k(t)).

Then we have

z(1 − z)P ′′

t + [c − (−n + b + 1)z]P ′

t + nbPt = o(t),

meaning that the coefficients from the left side are all o(t). So the coefficients of
Pt must satisfy

(13) (b + j)(n − j)a j (t)+ ( j2
+ j + cj)a j+1(t)= o(t), 0 ≤ j ≤ n.

Note that Pt(z) is monic by definition, meaning that an(t)≡ 1. Since b and c are
not nonpositive integers, we conclude that a j (t) = o(t) for all 0 ≤ j ≤ n. The
simple roots depend analytically on the coefficients, so q1,k(t)= q1,k + o(t). □

The simple roots of 2 F1(−n, b; c; z) are either real or form conjugate pairs. As
a consequence, if rigid, the configurations in the proposition above will give rise to
minimal surfaces with horizontal symmetry planes.

Example 20. For each integer n ≥ 2, Dominici, Johnston, and Jordaan [Dominici
et al. 2013] enumerated the real parameters (b, c) for which 2 F1(−n, b; c; z) has
only real simple roots. The results are plotted in blue in Figure 1. The embeddedness
conditions (5) are

θ̇1,0 > θ̇2,0 =⇒ c < 1,

θ̇1,∞ > θ̇2,∞ =⇒ b >−n,

θ̇2,0 > θ̇3,0 =⇒ c2
2 >−nb,

θ̇2,∞ > θ̇3,∞ =⇒ c2
2 > n(c2 + b),

where c2 = n − 1 − b + c. The region defined by these is plotted in red in Figure 1.
Then noninteger parameters (b, c) in the intersection of red and blue regions give
rise to balanced and rigid configurations with real q1,k .

Figure 2 shows the configurations of three examples with n = 5. □

Remark 21. As c → 0, 2 F1(−n, b; c; z)/0(c) converges to a polynomial with a
root at 0. One may interpret that, as c increases across 0, a root moves from the
interval (−∞, 0) to the interval (0, 1) through 0.
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n = 2

b

c

− n + 2

− n

−1 1
n = 3

b

c

− n + 2

− n

−1 1
n ≥ 4

b

c

− n + 2

− n

−1 1

Figure 1. The set of b and c for which 2 F1(−n, b; c; z) has only
real simple roots (blue), and for which the embeddedness conditions
are satisfied (red).

When b = 1 − n, 2 F1(−n, b; c; z) becomes a polynomial of degree n−1. One
may interpret that, as b increases across 1 − n, a root moves from the interval
(−∞, 0) to the interval (1,∞) through the infinity.

Example 22. Assume that b + c = 1 − n (hence c2 = −2b). Then by the identity

2 F1(−n, b; c; z)=
(b)n
(c)n

(−z)n2 F1

(
−n, 1 − c − n; 1 − b − n;

1
z

)
,

the simple roots must be symmetrically placed. That is, if z0 is a root, so is 1/z0.
This symmetry appears in the resulting minimal surfaces as a rotational symmetry.
If the simple roots are real, the rotation reduces to a vertical reflectional. In view of
Figure 1, we obtain the following concrete examples.

-6 -4 -2 2 4 6

-π

π

-6 -4 -2 2 4 6

-π

π

-10 -5 5 10

-π

π

Figure 2. (5, 1) balanced configurations with b = −3.4, c = −0.1
(top left), b = −3.4, c = 0.1 (top right), and b = −4.001, c = 0.5
(bottom). The circles and squares represent the necks at levels one
and two, respectively.
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Figure 3. Genus one example with n = 2 and 0< c < 1.

• n ≥ 2 and 0< c< 1. In this case 2 F1(−n, b; c; z) has n simple negative roots.
See Figure 3 for an example of this type with n = 2. Figure 4 shows the
configurations of two examples with n = 5.

• n ≥ 3 and −1< c < 0, or n = 3 and −
5
4 < c <−1, or n = 2 and −

1
2 < c < 0.

In these cases, 2 F1(−n, b; c; z) has n − 2 simple negative roots, one root
0< z0 < 1, and another root 1/z0 > 1. Figure 5 shows the configurations of
two examples with n = 5. □

Remark 23. Examples with six Scherk ends are parameterized by three real param-
eters, here by b, c, and the family parameter τ . We see that the relation b+c = 1−n
imposes a rotational symmetry. It can be imagined that removing the relation would
break this symmetry.

Remark 24. The polynomial method is often used to find balanced configurations
of interacting points in the plane. In minimal surface theory, it has been employed in
many implementations of Traizet’s node-opening technique [Traizet 2002a; 2002b;
Traizet and Weber 2005; Li 2012; Connor and Weber 2012; Connor 2017a; 2017b;
Chen and Freese 2022].

-10 -5 5 10

-π

π

-4 -2 2 4

-π

π

Figure 4. (5, 1) balanced configurations with c = 0.001 (left) and
c = 0.5 (right). The circles and squares represent the necks at levels
one and two, respectively.
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-4 -2 2 4

-π

π

-6 -4 -2 2 4 6

-π

π

Figure 5. (5, 1) balanced configurations with c = −0.5 (left) and
c = −0.999 (right). The circles and squares represent the necks at
levels one and two, respectively.

2.5. Surfaces with eight ends of type (1, n, 1). Proposition 19 generalizes to the
following lemma with similar proof:

Lemma 25. We fix ql±1,k’s and assume that cl = 1. Then ql,k’s in a balanced
configuration are given by the roots of a Stieltjes polynomial P(z) of degree nl

that solves the generalized Lamé equation (a.k.a. second-order Fuchsian equation)
[Marden 1966]

(14) P ′′
+

(
c
z

+

nl−1∑
k=1

−cl−1

z − ql−1,k
+

nl+1∑
k=1

−cl+1

z − ql+1,k

)
P ′

+

(
γ0

z
+

nl−1∑
k=1

γl−1,k

z − ql−1,k
+

nl+1∑
k=1

γl+1,k

z − ql+1,k

)
P = 0,

where c = 1 + θ̇l+1,0 − θ̇l,0, subject to conditions

γ0 +

nl−1∑
k=1

γl−1,k +

nl+1∑
k=1

γl+1,k = 0,

nl−1∑
k=1

γl−1,kql−1,k +

nl+1∑
k=1

γl+1,kql+1,k =: −nlb,

and
c − nl−1cl−1 − nl+1cl+1 = 1 − nl + b.

Also, the matrix (∂Fl,k/∂ql, j )1≤ j,k≤nl is nonsingular as long as b is not a nonpositive
integer bigger than nl .

A root of P(z) is simple if and only if it does not coincide with 0 or any ql±1,k . If
the roots (ql,k) of P(z) are all simple, then they solve the equations [Marden 1966]∑
1≤k ̸= j≤nl

2
ql,k −ql, j

+

∑
1≤ j≤nl+1

−cl+1

ql,k −ql+1, j
+

∑
1≤ j≤nl−1

−cl−1

ql,k −ql−1, j
+

c
ql,k

=
Fl,k

ql,k
=0,
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which is exactly our balance condition; see Remark 4. In addition, an equation
system generalizing (13) has been obtained in [Heine 1878, §136], from which we
may conclude the nonsingularity of the Jacobian. In fact, there are(

nl−1+nl+nl+1−1
nl−1+nl+1−1

)
choices of γ for which (14) has a polynomial solution of degree nl [Heine 1878,
§135].

This observation allows us to easily construct balanced and rigid configurations
of type (1, n, 1). Up to reparametrizations and complex scalings, we may assume
that c2 = 1 and q1,1 = 1. Then q3,1 must be real, and (q2,k)1≤k≤n are given by
roots of a Heun polynomial. Such a configuration depends locally on four real
parameters, namely q3,1, c1, c3 and c (or b). When these are given, we have n + 1
Heun polynomials, each of which gives balanced positions of q2,k’s. For each of
the Heun polynomials P , we have

θ̇2,0 − θ̇1,0 =
P ′(1)
P(1)

− c1,

θ̇3,0 − θ̇2,0 = c − 1 = b + c1 + c3 − n,

θ̇4,0 − θ̇3,0 =
P ′(q3,1)

P(q3,1)
− c3.

Together with the family parameter τ , the surface depends locally on five parameters,
which is expected because there are eight ends.

Example 26 (symmetric examples). When q3,1 = q1,1 = 1, the Heun polynomial re-
duces to a hypergeometric polynomial 2 F1(−n, b; c; z), where c1+c3 =n−1−b+c.
Assume further that b+c = 1−n, so c1+c3 =−2b. This imposes a symmetry in the
configuration. Because (c1 + c3)P ′(1)/P(1)= −nb, the embeddedness conditions
simplify to

c1 >
1
2 n, c3 >

1
2 n, 1 −

1
2 n < c < 1, −n < b <−

1
2 n.

As explained in Example 22, the hypergeometric polynomial has real roots if b and
c lie in the blue regions of Figure 1. More specifically:

• When n ≥ 2 and 0< c < 1, 2 F1(−n, b; c; z) has n simple negative roots. See
Figure 6 for an example with n = 5.

• When n ≥4 and −1<c<0, or n =3 and −
1
2 <c<0, 2 F1(−n, b; c; z) has n−2

simple negative roots, one root 0< z0 < 1, and another root 1/z0 > 1. □

Example 27 (offset handles). There are embedded examples in which the handles
are not symmetrically placed. For instance, one balanced configuration of type
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Figure 6. Genus four example with n = 5 and 0< c < 1.

(1, 2, 1) is given by

q3,1 =
2
3 , q2,1 = −

1
3 , q2,2 = −23,

c1 =
8
5 , c3 =

4189
2890 , b = −

9857
8670 ,

so c =
3956
4335 . □

2.6. Concatenating surfaces of type (1, n, 1). We describe a family of examples
in the same spirit as [Traizet 2002a, Proposition 2.3]. Assume that we are in
possession of R configurations of type (1, n(r), 1), n(r) > 1, 1 ≤ r ≤ R. In the
following, we use superscript (r) to denote the parameters of the r -th configuration.
Up to reparameterizations and complex scalings, we may assume that c(r)2 = 1 and
q(r)1,1 = 1. Then we may concatenate these configurations into one of type

(1, n2, 1, n4, 1, . . . , 1, n2R, 1)

such that q1,1 = 1, c1 = 1, and for 1 ≤ r ≤ R, we have n2r = n(r),

q2r,k = q2r−1,1q(r)2,k, q2r+1,1 = q2r−1,1q(r)3,1, c2r =
c2r−1

c(r)1

, c2r+1 = c2r−1
c(r)3

c(r)1

,

and
θ̇2r+1,0 − θ̇2r,0 = c2r (c(r) − 1).

The balance of even layers then follows from the balance of each subconfiguration.
The balance of odd layers leads to

θ̇2r,0 − θ̇2r−1,0 = c2r (θ̇
(r)
2,0 − θ̇

(r)
1,0 + c(r)1 )+ c2r−2(θ̇

(r−1)
4,0 − θ̇

(r−1)
3,0 + c(r−1)

3 )− c2r−1

for 1 ≤ r ≤ R + 1. As expected, such a configuration depends locally on 4R real
parameters, namely q(r)3,1, c(r)1 , c(r)3 , and c(r), 1 ≤ r ≤ R.
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We may impose symmetry by assuming that q(r)3,1 = 1, so q2r+1,1 = 1 for all

0 ≤ r ≤ R, and that b(r)+c(r)= 1−n(r), so c(r)1 +c(r)3 = n(r)−1−b(r)+c(r)=−2b(r).
Then q2r,k = q(r)2,k , 1 ≤ k ≤ n(r), are given by the roots of 2 F1(−n(r), b(r); c(r); z),
1 ≤ r ≤ R. Recall from Remark 11 that the embeddedness conditions simplifies
to the concavity of the sequence (nlcl)1≤l≤L . For even l, the concavity implies
that b(r) > −n; hence c(r) < 1 for all 1 ≤ r ≤ R. We may choose, for instance,
nlcl = ln(1 + l) or nlcl = (exp l − 1)/ exp(l − 1) to obtain embedded minimal
surfaces.

Remark 28. We can also append a configuration of type (1, n(r)) to the sequence
of (1, n(r), 1)-configurations to obtain a configuration of type

(1, n2, 1, n4, 1, . . . , 1, n2R−2, 1, n2R),

where the ql,k, cl, θ̇l,0 terms are defined as above. Therefore, an embedded example
of any genus with any even number (> 2) of ends can be constructed.

2.7. Numerical examples. The balance equations can be combined into one differ-
ential equation that is much easier to solve. A solution to this differential equation
corresponds to several balance configurations that are equivalent by permuting the
locations of the nodes.

Lemma 29. Let L be a positive integer, n1, n2, . . . , nL ∈ N, and suppose {ql,k} is
a configuration such that the ql,k are distinct. Let

Pl(z)=

nl∏
k=1

(z − ql,k), P(z)=

L∏
l=1

Pl(z), P0(z)= PL+1(z)= 1,

and

F P(z)=

L∑
l=1

(
c2

l z P ′′

l (z)P(z)
Pl(z)

−
clcl+1z P ′

l (z)P
′

l+1(z)P(z)

Pl(z)Pl+1(z)

+ (c2
l + cl(θ̇l+1,0 − θ̇l,0))

P ′

l (z)P(z)
Pl(z)

)
.

Then the configuration {ql,k} is balanced if and only if F P(z)≡ 0.

Proof. We have seen that

P ′′

l (ql,k)

P ′

l (ql,k)
=

∑
1≤k ̸= j≤nl

2
ql,k − ql, j

,
P ′

l±1(ql,k)

Pl±1(ql,k)
=

nl±1∑
j=1

1
ql,k − ql±1, j

.

Define

Fl(z)=
c2

l z P ′′

l (z)
P ′

l (z)
−

clcl+1z P ′

l+1(z)

Pl+1(z)
−

clcl−1z P ′

l−1(z)

Pl−1(z)
+ c2

l + cl(θ̇l+1,0 − θ̇l,0).
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Then Fl,k = Fl(ql,k). Set

Ql(z)=
P ′

l (z)P(z)
Pl(z)

Fl(z)

=
c2

l z P ′′

l (z)P(z)
Pl(z)

−
clcl+1z P ′

l (z)P
′

l+1(z)P(z)

Pl(z)Pl+1(z)
−

clcl−1z P ′

l−1(z)P
′

l (z)P(z)

Pl−1(z)Pl(z)

+ (c2
l + cl(θ̇l+1,0 − θ̇l,0))

P ′

l (z)P(z)
Pl(z)

.

Then Fl,k = 0 if and only if Ql(ql,k)= 0.
Now observe that Ql(z) and Q(z)=F P(z) are polynomials with degree strictly

less than

deg P = N =

L∑
l=1

nl,

and Q(ql,k) = Ql(ql,k) for 1 ≤ k ≤ nl and 1 ≤ l ≤ L . If Q ≡ 0 then Ql(ql,k) = 0
and so {ql,k} is a balanced configuration. If {ql,k} is a balanced configuration then
Q(ql,k) = Ql(ql,k) = Fl,k = 0. Hence, Q has at least N distinct roots. Since the
degree of Q is strictly less than N , we must have Q ≡ 0. □

It is relatively easy to numerically solve F P(z) ≡ 0 as long as we don’t have
too many levels and necks. So we use this lemma to find balanced configurations.
Since all previous examples admit a horizontal reflection symmetry, we are most
interested in examples without this symmetry, or with no nontrivial symmetry at all.

Figure 7 shows an example with L = 3,

n1 = 1, n2 = 3, n3 = 2,

c1 = 2, c2 = 1, c3 =
13
16 ,

θ1,0 = 0, θ2,0 = −
1
2 , θ3,0 = −

27
16 , θ4,0 = −

29
16 .

This configuration corresponds to an embedded minimal surface with eight ends
and genus three in the quotient. It has no horizontal reflectional symmetry, but does
have a rotational symmetry.

Figure 8 shows two examples with L = 3,

n1 = 1, n2 = 4, n3 = 3,

c1 =
7
2 , c2 = 1, c3 =

3
4 ,

θ1,0 = 0, θ2,0 = −2, θ3,0 = −
13
5 , θ4,0 = −

541
180 .

These configurations correspond to embedded minimal surfaces with eight ends
and genus five in the quotient, with no nontrivial symmetry.
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-4 -2 2 4

-π

π

Figure 7. A (1, 3, 2) balanced configuration with no horizontal
reflectional symmetry. The circles, squares, and diamonds represent
the necks at levels one, two, and three, respectively.

Figure 9 shows two examples with L = 3,

n1 = 1, n2 = 7, n3 = 3,

c1 =
17
7 , c2 = 1, c3 =

3
2 ,

θ1,0 = 0, θ2,0 = −
1
2 , θ3,0 = −

3
2 , θ4,0 = −

2468
441 .

These configurations correspond to embedded minimal surfaces with eight ends
and genus eight in the quotient, with no nontrivial symmetry.

3. Construction

3.1. Opening nodes. To each vertical plane is associated a punctured complex
plane C×

l ≃C\{0}, 1≤ l ≤ L+1. They can be seen as Riemann spheres Ĉl ≃C∪{∞}

with two fixed punctures at pl,0 = 0 and pl,∞ = ∞, corresponding to the two ends.
To each neck is associated a puncture p◦

l,k ∈ C×

l and a puncture p′◦

l,k ∈ C×

l+1. Our
initial surface at τ = 0 is the noded Riemann surface 60 obtained by identifying
p◦

l,k and p′◦

l,k for 1 ≤ l ≤ L and 1 ≤ k ≤ nl .

-6 -4 -2 2 4 6

-π

π

-6 -4 -2 2 4 6

-π

π

Figure 8. (1, 4, 3) balanced configurations with no symmetries.
The circles, squares, and diamonds represent the necks at levels
one, two, and three, respectively.
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-2 -1 1 2

-π

π

-2 -1 1 2

-π

π

Figure 9. (1, 7, 3) balanced configurations with no symmetries.
The circles, squares, and diamonds represent the necks at levels
one, two, and three, respectively.

As τ increases, we open the nodes into necks as follows. Fix local coordinates
wl,0 = z in the neighborhood of 0 ∈ Ĉl and wl,∞ = 1/z in the neighborhood of
∞ ∈ Ĉl . For each neck, we consider parameters (pl,k, p′

l,k) in the neighborhoods
of (p◦

l,k, p′◦

l,k) and local coordinates

wl,k = ln
z

pl,k
and w′

l,k = ln
z

p′

l,k

in a neighborhood of pl,k and p′

l,k , respectively. In this paper, the branch cut of ln z
is along the negative real axis, and we use the principal value of ln z with imaginary
part in the interval (−π, π].

As we only open finitely many necks, we may choose δ > 0 independent of k
and l such that the disks

|wh|< 2δ, h ∈ H (= [1, L + 1] × {0,∞}),

|wl,k |< 2δ and |w′

l,k |< 2δ, 1 ≤ l ≤ L , 1 ≤ k ≤ nk

are all disjoint. For parameters t = (tl,k)1≤l≤L ,1≤k≤nl in a neighborhood of 0 with
|tl,k |< δ2, we remove the disks

|wl,k |<
|tl,k |
δ

and |w′

l,k |<
|tl,k |
δ

and identify the annuli

|tl,k |
δ

≤ |wl,k | ≤ δ and
|tl,k |
δ

≤ |w′

l,k | ≤ δ



CATENOID LIMITS OF MINIMAL SURFACES WITH SCHERK-TYPE ENDS 35

by

wl,kw
′

l,k = tl,k .

If tl,k ̸= 0 for all 1 ≤ l ≤ L and 1 ≤ k ≤ nl , we obtain a Riemann surface denoted
by 6t .

3.2. Weierstrass data. We construct a conformal minimal immersion using the
Weierstrass parameterization in the form

z 7→ Re
∫ z
(81,82,83),

where 8i are meromorphic 1-forms on 6t satisfying the conformality equation

(15) Q :=82
1 +82

2 +82
3 = 0.

3.2.1. A-periods. We consider the following fixed domains in all 6t :

Ul,δ =
{
z ∈ Ĉv : |w◦

l,k(z)|> δ/2 ∀1 ≤ k ≤ nl if 1 ≤ l ≤ L
and |w′◦

l,k(z)|> δ/2 ∀1 ≤ k ≤ nl−1 if 2 ≤ l ≤ L + 1
}

and Uδ =
⊔

1≤l≤L Ul,δ.
Let Al,k denote a small counterclockwise circle in Ul,δ around pl,k ; it is then

homologous in 6t to a clockwise circle in Ul+1,δ around p′

l,k . Moreover, let Al,0

(resp. Al,∞) denote a small counterclockwise circle in Ul,δ around 0 (resp. ∞).
Recall that the vertical period vector is assumed to be (0, 0, 2π), so we need to

solve the A-period problems

Re
∫

Ah

(81,82,83)= (0, 0, 2πσh) and Re
∫

Al,k

(81,82,83)= (0, 0, 0)

for h ∈ H, 1 ≤ l ≤ L , and 1 ≤ k ≤ nl . Here, the orientation σh = ±1 satisfies

σh = −σς(h),

where the “counterclockwise rotation” ς on H is defined by

(16)


ς(0l)= 0l−1, 2 ≤ l ≤ L + 1,
ς(01)= ∞1,

ς(∞l)= ∞l+1, 1 ≤ l ≤ L ,
ς(∞L+1)= 0L+1.

In particular, we have σl,0 = −σl,∞ for all 1 ≤ l ≤ L + 1.
Recall that the surface tends to an (L+1)-sheeted xz-plane in the limit τ → 0. So

we define the meromorphic functions 81, 82 and 83 as the unique regular 1-forms
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on 6t (see [Traizet 2013, §8]) with simple poles at ph , h ∈ H, and the A-periods∫
Ah

(81, 8̃2,83)= 2π i(αh, βh, γh − iσh), h ∈ H,∫
Al,k

(81, 8̃2,83)= 2π i(αl,k, βl,k, γl,k), 1 ≤ l ≤ L , 1 ≤ k ≤ nl,

where 82 = τ8̃2 and, by the residue theorem, it is necessary that

αl,0 +αl,∞ +

∑
1≤k≤nl

αl,k −

∑
1≤k≤nl−1

αl−1,k = 0,(17)

βl,0 +βl,∞ +

∑
1≤k≤nl

βl,k −

∑
1≤k≤nl−1

βl−1,k = 0,(18)

γl,0 + γl,∞ +

∑
1≤k≤nl

γl,k −

∑
1≤k≤nl−1

γl−1,k = 0,(19)

for 1 ≤ l ≤ L + 1. Then the A-period problems are solved by definition.

3.2.2. Balance of ends. Summing up (18) over l gives

(20)
∑
h∈H

βh = 0,

which we use to replace (18) with l = L + 1.
In this paper, the punctures pl,0 and pl,∞ correspond to Scherk-type ends. Hence

we fix

(21) α2
h + τ 2β2

h ≡ 1 and γh ≡ 0

for all h ∈ H, so that (the stereographic projection of) the Gauss map

G = −
81 + i82

83

extends holomorphically to the punctures ph with unitary values. Then (19) is not
independent: if it is solved for 1 ≤ l ≤ L , it is automatically solved for l = L + 1.

In particular, at τ = 0, we have α2
h = 1. In view of the orientation of the ends,

we choose αl,0 = 1 and αl,∞ = −1 so that G(pl,∞)= G(pl,0)= iσl,0.
Summing up (17) over l gives

(22)
∑

1≤l≤L+1

(√
1 − τ 2β2

l,∞ −

√
1 − τ 2β2

l,0
)
= 0,

which we use to replace (17) with l = L + 1.

Remark 30. The conditions (20) and (22) are disguises of the balance condition of
Scherk ends, namely that the unit vectors in their directions should sum up to 0.
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3.2.3. B-periods. For 1 ≤ l ≤ L + 1, we fix a point Ol ∈ Ul,δ . For every 1 ≤ l ≤ L
and 1 ≤ k ≤ nl and tl,k ̸= 0, let Bl,k be the concatenation of

(1) a path in Ul,δ from Ol to wl,k = δ,

(2) the path parameterized by wl,k = δ1−2s t s
l,k for s ∈ [0, 1], from wl,k = δ to

wl,k = th/δ, which is identified with w′

l,k = δ, and

(3) a path in Ul+1,δ from w′

l,k = δ to Ol+1.

We need to solve the B-period problem, namely that

(23) Re
∫

Bl,k

(81,82,83)= Re
∫

Bl,1

(81,82,83).

3.2.4. Conformality.

Lemma 31. For t sufficiently close to 0, the conformality condition (15) is equiva-
lent to

Gl,k :=

∫
Al,k

wl,k Q
dwl,k

= 0, 1 ≤ l ≤ L , 1 ≤ k ≤ nl,(24)

Fl,k :=

∫
Al,k

Q
dwl,k

= 0, 1 ≤ l ≤ L , 2 ≤ k ≤ nl,(25)

F′

l,k :=

∫
A′

l,k

Q
dw′

l,k
= 0, 1 ≤ l ≤ L , 1 + δl,L ≤ k ≤ nl,(26)

where A′

l,k in (26) denotes a small counterclockwise circle in Ul+1,δ around p′

l,k
(hence homologous to −Al,k), and δl,L = 1 if l = L and 0 otherwise.

Proof. By our choice of αh and γh , the quadratic differential Q has at most simple
poles at the 2L +2 punctures ph , h ∈H. The space of such quadratic differentials is
of complex dimension 3(N − L)− 3 + (2L + 2)= 3N − L − 1. We will prove that

Q 7→ (G,F,F′)

is an isomorphism. We prove the claim at t = 0; then the claim follows by continuity.
Consider Q in the kernel. Recall from [Traizet 2008] that a regular quadratic

differential on 60 has at most double poles at the nodes pl,k and p′

l,k . Then (24)
guarantees that Q has at most simple poles at the nodes. By (25) and (26), Q may
only have simple poles at pl,1 ∈ C×

l , 1 ≤ l ≤ L , and p′

L ,1 ∈ C×

L+1. So, on each
Riemann sphere Ĉl , Q is a quadratic differential with at most simple poles at three
punctures; the other two being 0, ∞. But such a quadratic differential must be 0. □

3.3. Using the implicit function theorem. All parameters vary in a neighborhood
of their central values, denoted by a superscript ◦. We will see that

β◦

h = θ̇h, α◦

l,k = γ ◦

l,k = 0, β◦

l,k = −cl, p′◦

l,k = pl,k .

Let us first solve (20) and (22).
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Proposition 32. Suppose we are given a configuration (q, θ̇ ) such that21 =22 =0.
For τ sufficiently small and βh close to β◦

h = θ̇h , the solutions (τ, β) to (20) and (22)
form a smooth manifold of dimension 2L+1.

Proof. At τ = 0, (20) is solved by β◦

h = θ̇h if 21 = 0. Taking the derivative of (22)
with respect to τ 2 gives

(27)
∑

1≤l≤L+1

β2
l,∞ −β2

l,0

2
= 0,

which is solved by β◦

h = θ̇h if 22 = 0. The proposition then follows from Lemma 6
and the implicit function theorem. □

From now on, we assume that the parameters (τ, (βh)h∈H) are solutions to (20)
and (22) in a neighborhood of (0, θ̇ ).

3.3.1. Solving conformality problems.

Proposition 33. For τ sufficiently small and βl,k , pl,k , and p′

l,k in a neighborhood
of their central values, there exist unique values of tl,k , αl,k , and γl,k , depending
real-analytically on (τ 2, β, p, p′), such that the balance equations (17) and (19)
with 1 ≤ l ≤ L and the conformality equations (24) and (25) are solved. Also, at
τ = 0, we have tl,k = 0, αl,k = γl,k = 0,

∂tl,k
∂(τ 2)

=
1
4
β2

l,k,

and, for 2 ≤ k ≤ nl ,

(28)
∂

∂(τ 2)
(αl,k − iσl,0γl,k)= −

1
2

Res
(
8̃2

2

dwl,k
, pl,k

)
= −

1
2

Res
(

z8̃2
2

dz
, pl,k

)
.

Note that, according to this proposition, if β◦

l,k ̸= 0, then tl,k > 0 for sufficiently
small τ .

Proof. At τ = 0, for 2 ≤ k ≤ nl we have

Gl,k =

∫
Al,k

wl,k Q
dwl,k

= 2π i(α2
l,k + γ 2

l,k)= 0,

which vanishes when
αl,k = γl,k = 0.

Recall that αh = ±1 at τ = 0 and that γh ≡ 0. Then by the residue theorem, we have

αl,1 = γl,1 = 0.
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As a consequence, we have at τ = 0

8◦

1 =
dz
z
, 8◦

2 = 0, and 8◦

3 = −iσl,0
dz
z

;

so Q = 0 as we expect.
We then compute the partial derivatives at τ = 0:

∂

∂αl,k
Fl,k =

∫
Al,k

2
8◦

1

dwl,k

∂81

∂αl,k

∣∣∣∣
τ=0

=

∫
Al,k

2
dz/z
dz/p

dz
z − pl,k

= 4π i,

∂

∂γl,k
Fl,k =

∫
Al,k

2
8◦

3

dwl,k

∂83

∂γl,k

∣∣∣∣
τ=0

=

∫
Al,k

−2iσl,0
dz/z
dz/p

dz
z − pl,k

= 4πσl,0,

∂

∂tl,k
Gl,k =

∫
Al,k

2wl,k

dwl,k

(
8◦

1
∂8◦

1

∂tl,k
+8◦

3
∂8◦

3

∂tl,k

)
=

−1
π i

( ∫
Al,k

8◦

1

wl,k

∫
A′

l,k

8◦

1

w′

l,k
+

∫
Al,k

8◦

3

wl,k

∫
A′

l,k

8◦

3

w′

l,k

)
= −8π i,

where the second to last line is true by [Traizet 2008, Lemma 3]. All other partial
derivatives vanish. Therefore, by the implicit function theorem, there exist unique
values of αl,k , γl,k (with 2 ≤ k ≤ nl), and tl,k (with 1 ≤ k ≤ nl) that solve the
conformality equations (24) and (25). Recall that αh are determined by (21). Then
αl,1 and γl,1 are uniquely determined by the linear balance equations (17) and (19).

Moreover,

∂

∂(τ 2)
Fl,k =

∫
Al,k

8̃2
2

dwl,k
,

∂

∂(τ 2)
Gl,k = 2π iβ2

l,k .

Hence the total derivatives satisfy

d
d(τ 2)

Fl,k = 4π i ∂αl,k
∂(τ 2)

+ 4πσl,0
∂γl,k
∂(τ 2)

+ 2π i Res
(
8̃2

2
dwl,k

, pl,k

)
= 0

and
d

d(τ 2)

∫
Al,k

Gl,k = −8π i ∂tl,k
∂(τ 2)

+ 2π iβ2
l,k = 0.

This proves the claimed partial derivatives with respect to τ 2. □

Remark 34. We see from the computations that our local coordinates w and w′ are
chosen for convenience. Had we used other coordinates, the computations would
be very different, but ∂(αl,k − iσl,0γl,k)/∂(τ

2) would be invariant, and ∂tl,k/∂(τ 2)

would be rescaled to keep the conformal type of 6t (to the first order). So the
choice of local coordinates has no substantial impact on our construction.
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3.3.2. Solving B-period problems. In the following, we make a change of variable
τ = exp(−1/ξ 2).

Proposition 35. Let the parameters tl,k , αl,k , and γl,k be given by Proposition 33.
For ξ sufficiently small and pl,k and p′

l,k in a neighborhood of their central values,
there exist unique values of βl,k , depending smoothly on (ξ, p, p′) and (βh)h∈H,
such that the balance equation (18) with 1 ≤ l ≤ L and the y-component of the
B-period problem (23) are solved. In addition, at ξ = 0 and βh = β◦

h = θ̇h , we have
βl,k = βl,1 = −cl where cl is given by (1).

Proof. By Lemma 8.3 of [Chen and Traizet 2021],( ∫
Bl,k

8̃2

)
−βl,k ln tl,k

extends holomorphically to t = 0 as bounded analytic functions of other parameters.
We have seen that tl,k ∼ τ 2β2

l,k/4. So

H := −
ξ 2

2
Re

( ∫
Bl,k

8̃2 −

∫
Bl,1

8̃2

)
= βl,k −βl,1

at ξ = 0. Therefore, H = 0 is solved at ξ = 0 by βl,k = βl,1 for all 2 ≤ k ≤ nl ,
and βl,1 = −cl follows as (1) is just a reformulation of (18). The proposition then
follows by the implicit function theorem. □

Proposition 36. Assume that the parameters tl,k , αl,k , βl,k and γl,k are given by
Propositions 33 and 35. For ξ sufficiently small and pl,k in a neighborhood of their
central values, there exist unique values of p′

l,k , depending smoothly on ξ , p, and
(βh)h∈H, such that the x- and z-components of the B-period problem (23) are solved.
In addition, up to complex scalings on C×

l+1, 1 ≤ l ≤ L , we have p′

l,k = pl,k at ξ = 0
for any 1< k ≤ nl .

Proof. At ξ = 0, recall that 81 = dz/z and 83 = −iσl,0 dz/z. So

Re
∫

Bl,k

81 − Re
∫

Bl,1

81 = Re ln pl,k
pl,1

− Re ln
p′

l,k
p′

l,1
;

Re
∫

Bl,k

83 − Re
∫

Bl,1

83 = σl,0

(
Im ln pl,k

pl,1
+ Im ln

p′

l,k
p′

l,1

)
.

They vanish if and only if ln(pl,k/pl,1)= ln(p′

l,k/p′

l,1). We normalize the complex
scaling on C×

l+1, 1 ≤ l ≤ L , by fixing p′

l,1 = pl,1. Then the B-period problem is
solved at ξ = 0 with p′

l,k = pl,k . By the same argument as in [Traizet 2008], the
integrals are smooth functions of ξ and other parameters, so the proposition follows
by the implicit function theorem. □
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3.3.3. Balancing conditions. Define

Rl,k = Res
( z8̃2

2

dz
, pl,k

)
and R′

l,k = Res
( z8̃2

2

dz
, p′

l,k

)
.

Let the central values p◦

l,k equal conjl ql,k , where q is from a balanced configuration.
So the central values p′◦

l,k equal conjl+1 ql,k and

8̃◦

2 =

{
conj∗ ψl on C×

l for l odd,
ψl on C×

l for l even.

Then we have

Rl,k +R′

l,k = 2 conjl+1 Fl,k

at the central values, where Fl,k is the force given by (4). Also, by the residue
theorem on C×

l ,

(29)
nl−1∑
k=1

R′

l−1,k +

nl∑
k=1

Rl,k +β2
l,0 −β2

l,∞ = 0.

Proposition 37. Assume that the parameters tl,k , αl,k , and γl,k are given as analytic
functions of τ 2 by Proposition 33. Then F̃′

l,k := τ−2F′

l,k extends analytically to
τ = 0 with the value{

4π i conjl+1 Fl,k, 2 ≤ k ≤ nl,

4π i conjl+1(Fl,1 +
∑l−1

j=1
∑n j

k=1 F j,k
)
, k = 1.

Proof. If f (z) is an analytic function in z and f (0) = 0, then f (z)/z extends
analytically to z = 0 with the value d f/dz |z=0. We compute at τ = 0 that

∂

∂α
F′

l,k = −4π i and
∂

∂γ
F′

l,k = 4πσl,0.

Then
d

d(τ 2)
F′

l,k = −4π i
∂αl,k

∂(τ 2)
+ 4πσl,0

∂γl,k

∂(τ 2)
+ 2π iR′

l,k .

For 2 ≤ k ≤ nl , by (28), F̃′

l,k := τ−2F′

l,k extends to τ = 0 with the value

d
d(τ 2)

F′

l,k = 2π i(Rl,k +R′

l,k)= 4π i conjl+1 Fl,k .
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As for k = 1 and l < L , we compute at τ = 0

nl∑
k=1

dF′

l,k

d(τ 2)
+

nl−1∑
k=1

conj
(dF′

l−1,k

d(τ 2)

)
= −4π i

∂

∂τ 2

( nl∑
k=1

αl,k −

nl−1∑
k=1

αl−1,k

)

+4πσl,0
∂

∂τ 2

( nl∑
k=1

γl,k −

nl−1∑
k=1

γl−1,k

)
(because σl−1,0 = −σl,0)

+2π i
( nl∑

k=1

R′

l,k −

nl−1∑
k=1

R′

l−1,k

)

= 4π i
∂

∂τ 2 (αl,0+αl,∞)−4πσl,0
∂

∂τ 2 (γl,0+γl,∞) (by (17) and (19))

+2π i
( nl∑

k=1

R′

l,k +

nl∑
k=1

Rl,k +β2
l,0−β2

l,∞

)
(by (29))

= 2π i
(
β2

l,∞−β2
l,0+

nl∑
k=1

(Rl,k +R′

l,k)+β
2
l,0−β2

l,∞

)
(by (21))

= 4π i
nl∑

k=1

conjl+1 Fl,k,

Then

nl∑
k=1

dF′

l,k

d(τ 2)
=

dF′

l,1

d(τ 2)
+ 4π i conjl+1

nl∑
k=2

Fl,k

= (− conj)l
l∑

m=1

(− conj)m
( nm∑

k=1

dF′

m,k

d(τ 2)
+

nm−1∑
k=1

conj
(dF′

m−1,k

d(τ 2)

))

= (− conj)l
l∑

m=1

(− conj)m
(

4π i
nm∑

k=1

conjm+1 Fm,k

)

= 4π i conjl+1
l∑

m=1

nm∑
k=1

Fm,k,

so F̃′

l,1 := τ−2F′

l,1 extends to τ = 0 with the value

dF′

l,1

d(τ 2)
= 4π i conjl+1

(
Fl,1 +

l−1∑
m=1

nm∑
k=1

Fm,k

)
. □
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Therefore, if (q, θ̇ ) is balanced, F̃′
= 0 is solved at τ = 0. Recall that we

normalize the complex scaling on C×

1 by fixing p1,1. If (q, θ̇ ) is rigid, because
22 =

∑
Fl,k = 0 independent of p, the partial derivative of (̃F′)(l,k) ̸= (L , 1) with

respect to (pl,k)(l,k) ̸=(1,1) is an isomorphism from CN−1 to CN−1. The following
proposition then follows by the implicit function theorem.

Proposition 38. Assume that the parameters tl,k , αl,k , βl,k , γl,k , p′

l,k are given by
Propositions 33, 35, and 36. Assume further that the central values ql,k = conjl p◦

l,k
and θ̇h = β◦

h form a balanced and rigid configuration (q, θ̇ ). Then for (τ, β) in
a neighborhood of (0, θ̇ ) that solves (20) and (22), there exists values for pl,k ,
unique up to a complex scaling, depending smoothly on τ and (βh)h∈H, such that
pl,k(0, θ̇ )= p◦

l,k and the conformality condition (26) is solved.

3.4. Embeddedness. It remains to prove that:

Proposition 39. The minimal immersion given by the Weierstrass parameterization
is regular and embedded.

Proof. The immersion is regular if |81|
2
+|82|

2
+|83|

2 > 0. This is easily verified
on Uδ. On the necks and the ends, the regularity follows if we prove that 8̃2 has
no zeros outside Uδ. At τ = 0, 8̃2 has nl + nl−1 + 2 poles on Ĉl , hence nl + nl−1

zeros. By taking δ sufficiently small, we may assume that all these zeros lie in Ul,δ .
By continuity, 8̃2 has nl + nl−2 zeros in Ul,δ also for τ sufficiently small. But for
τ ̸= 0, 8̃2 is meromorphic on a Riemann surface 6τ of genus g = N − L and has
2L + 2 simple poles, hence has 2(N − L)− 2 + 2L + 2 = 2N zeros. So 8̃2 has no
further zeros in 6t , and, in particular, not outside Uδ.

We now prove that the immersion

z 7→ Re
∫ z
(81, 8̃2,83)

is an embedding, and the limit positions of the necks are as prescribed.
On Ul,δ , the Gauss map G =−(81+i82)/83 converges to iσl,0, so the immersion

is locally a graph over the xz-plane. Fix an orientation σ1,0 = −1; then up to
translations, we have

lim
τ→0

(
Re

∫ z
81 + i Re

∫ z
83

)
= conjl(ln z)+ 2mπ i,

where m depends on the integral path, and

lim
τ→0

Re
∫ z

8̃2 = Re
∫ z
(conj∗)lψl =:9l(conjl z),

which is well defined for z ∈ Ul,δ because the residues of ψl are all real.
With a change of variable z 7→ ln z, we see that the immersion restricted to

Ul,δ converges to a periodic graph over the xz-planes, defined within bounded
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x-coordinate and away from the points ln ql,k + 2mπ i, and the period is 2π i. Here,
again, we identified the xz-plane with the complex plane.

This graph must be included in a slab parallel to the xz-plane with bounded
thickness. We have seen from the integration along Bk that the distance between
adjacent slabs is of the order O(ln τ). So the slabs are disjoint for τ sufficiently
small.

As for the necks and ends, note that there exists Y > 0 such that 9−1
l ([−Y, Y ])

is bounded by nl + nl−1 + 2 convex curves. After the change of variable z 7→ ln z,
all but two of these curves remain convex; those around 0 and ∞ become periodic
infinite curves. If Y is chosen sufficiently large, there exists X > 0 independent
of l such that the curves |z| = exp(±X) are included in 9−1

l ([−Y, Y ]) for every
1 ≤ l ≤ L + 1. After the change of variable z 7→ ln z, these curves become curves
with Re z = ±X .

Hence for τ sufficiently small, we may find Y +

l and Y −

l , with Y −

l < Y +

l < Y −

l+1,
and X > 0, such that:

• The immersion with Y −

l < y < Y +

l and −X < x < X is a graph bounded by
nl +nl−1 planar convex curves parallel to the xz-plane and two periodic planar
infinite curves parallel to the yz-plane.

• The immersion with Y +

l < y < Y −

l+1 and −X < x < X consists of annuli, each
bounded by two planar convex curves parallel to the xz-plane. These annuli
are disjoint and, by a theorem of Schiffman [1956], all embedded.

• The immersion with |x | > X are ends, i.e., graphs over vertical half-planes,
extending in the direction (−1,−θ̇l,0) and (+1,−θ̇l,∞), 1 ≤ l ≤ L + 1. If the
inequality (5) is satisfied, these graphs are disjoint.

This finishes the proof of embeddedness. □

Acknowledgements

H. Chen is partially supported by an Individual Research Grant from Deutsche
Forschungsgemeinschaft within the project “Defects in Triply Periodic Minimal
Surfaces”, Projektnummer 398759432. We would like to thank the referee for many
helpful comments.

References

[Chen 2021] H. Chen, “Gluing Karcher–Scherk saddle towers, II: Singly periodic minimal surfaces”,
preprint, 2021. arXiv 2107.06957

[Chen and Freese 2022] H. Chen and D. Freese, “Helicoids and vortices”, Proc. A. 478:2267 (2022),
art. id. 20220431. MR

[Chen and Traizet 2021] H. Chen and M. Traizet, “Gluing Karcher–Scherk saddle towers, I: Triply
periodic minimal surfaces”, preprint, 2021. arXiv 2103.15676

http://msp.org/idx/arx/2107.06957
http://msp.org/idx/mr/4520810
http://msp.org/idx/arx/2103.15676


CATENOID LIMITS OF MINIMAL SURFACES WITH SCHERK-TYPE ENDS 45

[Connor 2017a] P. Connor, “A note on balance equations for doubly periodic minimal surfaces”,
Math. J. Okayama Univ. 59 (2017), 117–130. MR Zbl

[Connor 2017b] P. Connor, “A note on special polynomials and minimal surfaces”, Houston J. Math.
43:1 (2017), 79–88. MR Zbl

[Connor and Weber 2012] P. Connor and M. Weber, “The construction of doubly periodic minimal
surfaces via balance equations”, Amer. J. Math. 134:5 (2012), 1275–1301. MR Zbl

[Dominici et al. 2013] D. Dominici, S. J. Johnston, and K. Jordaan, “Real zeros of 2 F1 hypergeometric
polynomials”, J. Comput. Appl. Math. 247 (2013), 152–161. MR Zbl

[Hauswirth et al. 2009] L. Hauswirth, F. Morabito, and M. M. Rodríguez, “An end-to-end construction
for singly periodic minimal surfaces”, Pacific J. Math. 241:1 (2009), 1–61. MR Zbl

[Heine 1878] E. Heine, Handbuch der kugelfunctionen, theorie und anwendungen, bd. I, G. Reimer,
Berlin, 1878. Zbl

[Karcher 1988] H. Karcher, “Embedded minimal surfaces derived from Scherk’s examples”, Manu-
scripta Math. 62:1 (1988), 83–114. MR Zbl

[Li 2012] K. Li, Singly-periodic minimal surfaces with Scherk ends near parallel planes, Ph.D.
thesis, Indiana University, Ann Arbor, MI, 2012, available at https://www.proquest.com/docview/
1095137445. MR

[Marden 1966] M. Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys 3, American
Mathematical Society, Providence, R.I., 1966. MR Zbl

[Martín and Ramos Batista 2006] F. Martín and V. Ramos Batista, “The embedded singly periodic
Scherk–Costa surfaces”, Math. Ann. 336:1 (2006), 155–189. MR Zbl

[Meeks and Wolf 2007] W. H. Meeks, III and M. Wolf, “Minimal surfaces with the area growth of
two planes: the case of infinite symmetry”, J. Amer. Math. Soc. 20:2 (2007), 441–465. MR Zbl

[Scherk 1835] H. F. Scherk, “Bemerkungen über die kleinste fläche innerhalb gegebener grenzen”, J.
Reine Angew. Math. 13 (1835), 185–208. MR Zbl

[Shiffman 1956] M. Shiffman, “On surfaces of stationary area bounded by two circles, or convex
curves, in parallel planes”, Ann. of Math. (2) 63 (1956), 77–90. MR Zbl

[da Silva and Ramos Batista 2010] M. F. da Silva and V. Ramos Batista, “Scherk saddle towers of
genus two in R3”, Geom. Dedicata 149 (2010), 59–71. MR Zbl

[Traizet 1996] M. Traizet, “Construction de surfaces minimales en recollant des surfaces de Scherk”,
Ann. Inst. Fourier (Grenoble) 46:5 (1996), 1385–1442. MR Zbl

[Traizet 2001] M. Traizet, “Weierstrass representation of some simply-periodic minimal surfaces”,
Ann. Global Anal. Geom. 20:1 (2001), 77–101. MR Zbl

[Traizet 2002a] M. Traizet, “Adding handles to Riemann’s minimal surfaces”, J. Inst. Math. Jussieu
1:1 (2002), 145–174. MR Zbl

[Traizet 2002b] M. Traizet, “An embedded minimal surface with no symmetries”, J. Differential
Geom. 60:1 (2002), 103–153. MR Zbl

[Traizet 2008] M. Traizet, “On the genus of triply periodic minimal surfaces”, J. Differential Geom.
79:2 (2008), 243–275. MR Zbl

[Traizet 2013] M. Traizet, “Opening infinitely many nodes”, J. Reine Angew. Math. 684 (2013),
165–186. MR Zbl

[Traizet and Weber 2005] M. Traizet and M. Weber, “Hermite polynomials and helicoidal minimal
surfaces”, Invent. Math. 161:1 (2005), 113–149. MR Zbl

[Yucra Hancco et al. 2014] A. J. Yucra Hancco, G. A. Lobos, and V. Ramos Batista, “Explicit minimal
Scherk saddle towers of arbitrary even genera in R3”, Publ. Mat. 58:2 (2014), 445–468. MR Zbl

http://msp.org/idx/mr/3643431
http://msp.org/idx/zbl/1366.53005
http://msp.org/idx/mr/3647932
http://msp.org/idx/zbl/1369.53011
http://dx.doi.org/10.1353/ajm.2012.0035
http://dx.doi.org/10.1353/ajm.2012.0035
http://msp.org/idx/mr/2975236
http://msp.org/idx/zbl/1254.53012
http://dx.doi.org/10.1016/j.cam.2012.12.024
http://dx.doi.org/10.1016/j.cam.2012.12.024
http://msp.org/idx/mr/3023306
http://msp.org/idx/zbl/1264.33006
http://dx.doi.org/10.2140/pjm.2009.241.1
http://dx.doi.org/10.2140/pjm.2009.241.1
http://msp.org/idx/mr/2485458
http://msp.org/idx/zbl/1190.49047
http://msp.org/idx/zbl/10.0332.01
http://dx.doi.org/10.1007/BF01258269
http://msp.org/idx/mr/958255
http://msp.org/idx/zbl/0658.53006
https://www.proquest.com/docview/1095137445
http://msp.org/idx/mr/3093939
http://msp.org/idx/mr/0225972
http://msp.org/idx/zbl/0162.37101
http://dx.doi.org/10.1007/s00208-006-0778-z
http://dx.doi.org/10.1007/s00208-006-0778-z
http://msp.org/idx/mr/2242622
http://msp.org/idx/zbl/1103.53003
http://dx.doi.org/10.1090/S0894-0347-06-00537-6
http://dx.doi.org/10.1090/S0894-0347-06-00537-6
http://msp.org/idx/mr/2276776
http://msp.org/idx/zbl/1115.53008
http://dx.doi.org/10.1515/crll.1835.13.185
http://msp.org/idx/mr/1578041
http://msp.org/idx/zbl/013.0481cj
http://dx.doi.org/10.2307/1969991
http://dx.doi.org/10.2307/1969991
http://msp.org/idx/mr/74695
http://msp.org/idx/zbl/0070.16803
http://dx.doi.org/10.1007/s10711-010-9464-0
http://dx.doi.org/10.1007/s10711-010-9464-0
http://msp.org/idx/mr/2737678
http://msp.org/idx/zbl/1210.53013
http://dx.doi.org/10.5802/aif.1554
http://msp.org/idx/mr/1427131
http://msp.org/idx/zbl/0860.53004
http://dx.doi.org/10.1023/A:1010679705344
http://msp.org/idx/mr/1846898
http://msp.org/idx/zbl/1033.53008
http://dx.doi.org/10.1017/S147474800200004X
http://msp.org/idx/mr/1954942
http://msp.org/idx/zbl/1051.53006
http://projecteuclid.org/euclid.jdg/1090351085
http://msp.org/idx/mr/1924593
http://msp.org/idx/zbl/1054.53014
http://projecteuclid.org/euclid.jdg/1211512641
http://msp.org/idx/mr/2420019
http://msp.org/idx/zbl/1167.53013
http://dx.doi.org/10.1515/crelle-2011-0007
http://msp.org/idx/mr/3181559
http://msp.org/idx/zbl/1288.30041
http://dx.doi.org/10.1007/s00222-004-0420-1
http://dx.doi.org/10.1007/s00222-004-0420-1
http://msp.org/idx/mr/2178659
http://msp.org/idx/zbl/1075.53010
http://dx.doi.org/10.5565/PUBLMAT_58214_22
http://dx.doi.org/10.5565/PUBLMAT_58214_22
http://msp.org/idx/mr/3264506
http://msp.org/idx/zbl/1296.53026


46 HAO CHEN, PETER CONNOR AND KEVIN LI

Received July 12, 2022. Revised May 17, 2023.

HAO CHEN

INSTITUTE OF MATHEMATICAL SCIENCES

SHANGHAITECH UNIVERSITY

PUDONG, SHANGHAI

CHINA

chenhao5@shanghaitech.edu.cn

PETER CONNOR

DEPARTMENT OF MATHEMATICAL SCIENCES

INDIANA UNIVERSITY SOUTH BEND

SOUTH BEND, IN
UNITED STATES

pconnor@iusb.edu

KEVIN LI

SCHOOL OF SCIENCE, ENGINEERING, AND TECHNOLOGY

PENN STATE HARRISBURG

HARRISBURG, PA
UNITED STATES

khl3@psu.edu

mailto:chenhao5@shanghaitech.edu.cn
mailto:pconnor@iusb.edu
mailto:khl3@psu.edu


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik

Universität Wien
Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Robert Lipshitz
Department of Mathematics

University of Oregon
Eugene, OR 97403

lipshitz@uoregon.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2023 is US $605/year for the electronic version, and $820/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:lipshitz@uoregon.edu
mailto:balmer@math.ucla.edu
mailto:liu@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:popa@math.ucla.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 325 No. 1 July 2023

1Estimate for the first fourth Steklov eigenvalue of a minimal
hypersurface with free boundary

RONDINELLE BATISTA, BARNABÉ LIMA, PAULO SOUSA and
BRUNO VIEIRA

11Catenoid limits of singly periodic minimal surfaces with Scherk-type
ends

HAO CHEN, PETER CONNOR and KEVIN LI

47The strong homotopy structure of BRST reduction
CHIARA ESPOSITO, ANDREAS KRAFT and JONAS SCHNITZER

85The maximal systole of hyperbolic surfaces with maximal
S3-extendable abelian symmetry

YUE GAO and JIAJUN WANG

105Stable systoles of higher rank in Riemannian manifolds
JAMES J. HEBDA

127Spin Kostka polynomials and vertex operators
NAIHUAN JING and NING LIU

147The structure of groups with all proper quotients virtually nilpotent
BENJAMIN KLOPSCH and MARTYN QUICK

Pacific
JournalofM

athem
atics

2023
Vol.325,N

o.1


	Introduction
	1. Main result
	1.1. Configuration
	1.2. Force
	1.3. Main result

	2. Examples
	2.1. Surfaces of genus zero
	2.2. Surfaces with four ends
	2.3. Gluing two saddle towers of different periods
	2.4. Surfaces with six ends of type (n, 1)
	2.5. Surfaces with eight ends of type (1, n, 1)
	2.6. Concatenating surfaces of type (1, n, 1)
	2.7. Numerical examples

	3. Construction
	3.1. Opening nodes
	3.2. Weierstrass data
	3.2.1. A-periods
	3.2.2. Balance of ends
	3.2.3. B-periods
	3.2.4. Conformality

	3.3. Using the implicit function theorem
	3.3.1. Solving conformality problems
	3.3.2. Solving B-period problems
	3.3.3. Balancing conditions

	3.4. Embeddedness

	Acknowledgements
	References
	
	

