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THE MAXIMAL SYSTOLE OF HYPERBOLIC SURFACES
WITH MAXIMAL S3-EXTENDABLE ABELIAN SYMMETRY

YUE GAO AND JIAJUN WANG

We study the maximal systole of hyperbolic surfaces with certain symmetries.
We give the formula for the maximal systole of the surfaces that admit the
largest S3-extendable abelian group symmetry. The result is obtained by
parametrizing such surfaces and enumerating all possible systoles.

1. Introduction

The systole is an important topic in the study of hyperbolic surfaces. The systole has
applications in various areas on surfaces, e.g, the Mumford’s classical compactness
criterion [Mumford 1971] and the Weil–Peterson metric [Wolpert 2017; Wu 2019]
in Teichmüller theory, and the spectrum of the Laplacian [Ballmann et al. 2016;
2018; Mondal 2014] and the optimal systolic ratio [Chen and Li 2015; Croke and
Katz 2003; Gromov 1983] in differential geometry. For a survey on the study of
the systole, see Parlier [2014].

We use the term “systole” to refer to either the minimal length of a closed geodesic
on a hyperbolic surface, or a closed geodesic realizing this length, by abuse of nota-
tion. The systole can also be regarded as a real-valued function on the moduli space
Mg of all closed hyperbolic surfaces of genus g or the Teichmüller space Tg. The
maximal value of the systole function on Mg is called the maximal systole in genus g.
The maximal systole can be realized by Mumford’s compactness criterion. It is quite
difficult to compute the exact value of the maximal systole. The only known case is
genus 2, for which the maximal systole is realized by the Bolza surface [Jenni 1984].

It is also interesting to study the maximal value of the systole function on certain
subspaces of Mg. Bavard [1992] obtained the maximal systole of genera 2 and 5
on hyperelliptic surfaces. Schmutz [1993] gave a necessary and sufficient condition
for the local maxima of the systole function and he gave some examples of local
maxima with polyhedral symmetry. Fortier Bourque and Rafi [2022] constructed
surfaces with locally maximal systoles and trivial symmetry.

Buser and Sarnak [1994] constructed surfaces with systoles larger than 4
3 log g

by arithmetic methods for infinitely many genera. Katz, Schaps, and Vishne [Katz
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et al. 2007] obtained more surfaces with this lower bound. Hurwitz surfaces are
among their examples. Petri and Walker [2018] and Petri [2018] gave concrete
examples with systoles larger than 4

7 log g − K .
Inspired by [Katz et al. 2007; Schmutz 1993], we are interested in the maximal

systole of hyperbolic surfaces with certain symmetries. We consider hyperbolic
surfaces with the largest S3-extendable abelian symmetry. The S3-extendable
symmetry on a topological surface was introduced in [Wang et al. 2013; 2015]. A
group action G on the genus-g topological surface 6g is S3-extendable if there
exist an embedding i : 6g → S3 and an injective homomorphism φ : G → SO(4)

such that for any g ∈ G, the following diagram commutes:

6g

i
��

g
// 6g

i
��

S3 φ(g)
// S3

When restricted to finite abelian groups, the maximal order of an S3-extendable
group action on 6g is 2g + 2 [Wang et al. 2013]. Such a group action can be
realized as an isometry group action on a hyperbolic surface, and we say such a
hyperbolic surface has the maximal S3-extendable abelian symmetry or call the
surface a hyperbolic 0(2, n) surface [Wang et al. 2013] where n = g + 1.

Hyperbolic surfaces that admit an isometric S3-extendable abelian group action
of maximal order form a 2-dimensional subset of Mg, and we consider the systole
function on this subspace. Our main result is the following:

Theorem 1. The maximal value of the systole function on hyperbolic 0(2, n)

surfaces is
2 arccosh K ,

where

K =
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 +

√
1

108 L(L2 + 18L + 27)

+
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 −

√
1

108 L(L2 + 18L + 27) +
1
6(L + 3),

and L = 4 cos2 π
n . The maximal value is obtained when

(c, t) =

(
arccosh K , 2 arccosh K +1

2 cos π
n

)
.

(The symbols c and t are defined in Section 2).

The maximal value of systoles of the 0(2, n)-surfaces for small genera are shown
in Table 1. We remark that the 0(2, 3) surface is exactly the Bolza surface that
realizes the maximal systole in genus 2.
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genus 0(2, n) maximal systole

2 3.0571
3 3.6478
4 3.9078
5 4.0464
6 4.1291

Table 1. Maximal systole of surface with largest S3-extendable
abelian symmetry.

Compared with the work [Bai et al. 2021] on the systole of surfaces with large
cyclic symmetry for which the surfaces with large cyclic symmetry have a unique
geometric structure, the surfaces studied in this paper form a two-dimensional
subspace of Mg, and the methods in the papers are quite different. We obtain our
result by classifying the family of curves that are potentially the shortest geodesics on
surfaces admitting this symmetry, and then determine when the systole is maximal.

The paper is organized as follows. In Section 2 we describe how to construct all
hyperbolic 0(2, n) surfaces and determine their symmetry. In Section 3, we give a
useful lemma (Lemma 3) on the intersection properties of systoles. In Section 4,
we prove that for any 0(2, n) surface, there are only four closed geodesics in the
quotient orbifold of the surface by its symmetric group that can lift to systoles of
the 0(2, n) surface (Proposition 7). In the last section, by calculating the length of
these four curves and the differentials of these lengths, we get a condition for when
the 0(2, n) surface has the maximal systole (Proposition 9) and calculate its length.

2. The symmetry of 0(2, n) surfaces

In this section, we construct the hyperbolic 0(2, n) surface and describe the geom-
etry and topology of its quotient by its symmetry group.

Let 60,n be the surface of genus 0 with n boundaries, endowed with a hyper-
bolic structure so that its boundaries are geodesics and 60,n admits an isometric
rotation of order n, as indicated in Figure 1. Each boundary circle is called a cuff
of 6. The shortest geodesic connecting two adjacent boundary circles or its image
under the isometric rotation is called a seam. A seam is perpendicular to the two
boundary circles it connects. The n seams cut 60,n into two isometric right-angled
hyperbolic 2n-gons with geodesic boundary edges. The hyperbolic structure of
60,n is parametrized by the length of its cuffs, called the cuff length. We denote the
cuff length by 2c, where c ∈ R+ is called the half cuff length.

Two copies of 60,n with the same cuff length can be glued together along the
cuffs to form a closed surface, so that the two rotations on each copy can be extended
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Figure 1. 60,n and the right-angled 2n-gon.

to the glued surface. We call the resulting surface a hyperbolic 0(2, n)-surface. Two
seams on the surface are paired if they connect the same two cuffs. Similar to the
Fenchel–Nielsen coordinates on the Teichmüller space, a hyperbolic 0(2, n)-surface
can be parametrized by (c, t), where c is the half cuff length and t is the “twist
parameter”. The twist parameter t equals 0 if (any) two paired seams form a closed
geodesic. The hyperbolic 0(2, n) surface with parameter (c, t) is obtained from the
hyperbolic 0(2, n) surface with parameter (c, 0) by performing a Fenchel–Nielsen
deformation of length t simultaneously along each cuff. Here the Fenchel–Nielsen
deformation on a hyperbolic surface X along a simple closed geodesic α ⊂ X
with length t is constructed by cutting X along α and then regluing the boundary
curves with a left twist of length t . We may assume 0 ≤ t ≤ c since the surface
with parameter (c, t) is isometric to the surface with parameter (c, t + 2c) while
the surface with parameter (c, t) is the reflection of the surface with parameter
(c, 2c − t) when 0 ≤ t ≤ 2c.

The symmetry group of a hyperbolic 0(2, n) surface is Dn ⊕ (Z/2Z), where Dn

is the order n dihedral group. This symmetric group is generated by three rotations
σ , τ , and ρ. As illustrated in Figure 2, σ is the order n rotation that maps each
n-holed sphere to itself, τ is the order 2 rotation of each n-holed sphere, and ρ is
the order 2 rotation exchanging the two n-holed spheres.

For a 0(2, n) surface X , the quotient X/⟨ρ⟩ is a spherical orbifold with 2n
singular points of order 2, denoted as S2(2, . . . , 2)X (Figure 3, top left). The quotient
X/⟨ρ, σ ⟩ is a spherical orbifold with four singular points of order 2, 2, n, n, respec-
tively, denoted as S2(2, 2, n, n)X (Figure 3, top right). The quotient X/⟨ρ, σ, τ ⟩ is a
spherical orbifold with four singular points of order 2, 2, 2, n, respectively, denoted
as S2(2, 2, 2, n)X (Figure 3, bottom). In Figure 3, top right, C and C ′ are the two
order 2 singular points and O and O ′ are the order n singular points. In Figure 3,
bottom, C, D, E are the order 2 singular points and O is the order n singular point.
We will abbreviate the subscript X when there is no confusion. Denote the quotient
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Figure 2. Generators for the isometry group of the hyperbolic
0(2, n) surface.

branched covering maps as

(2-1) X S2(2,2, . . . ,2)X S2(2,2,n,n)X S2(2,2,2,n)X
π

p

q

π ′ π ′′

For a cuff γi in X , let A and ρ(A) be the endpoints of two paired seams between
γi and γi−1 on the cuff γi . The Fenchel–Nielsen deformation gives a geodesic of
length t between A and ρ(A), and we let C be the midpoint. The other two paired

A

D

A′

C

C ′

O

O′

O′O

D
DD

A AC C ′

The orbifold S2(2, . . . , 2)X The orbifold S2(2, 2, n, n)X
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Figure 3. Orbifolds for the hyperbolic 0(2, n) surface.
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seams give another midpoint C ′. Then C and C ′ are fixed points of the rotation
ρ on γi and |AC | is half the twist parameter t . It follows that in S2(2, 2, n, n)X

(Figure 3, top right), we have

|CC ′
| = c, |AC | =

1
2 t

and in S2(2, 2, 2, n)X (Figure 3, bottom) we have

|CE | =
1
2 c, |AC | =

1
2 t.

3. The intersection properties of the systoles

In this section, we rule out curves on 0(2, n) surface that cannot be the systole.
The following lemma is classical and well known.

Lemma 2. Any systole on a closed hyperbolic surface is simple and any two
systoles intersect at most once. On the orbifold S2(2, 2, . . . , 2), S2(2, 2, n, n) or
S2(2, 2, 2, n), any simple closed curve is separating, and any two simple closed
curves are either disjoint or intersect at least twice.

The following lemma is used to rule out curves on 0(2, n) that cannot be the
systole.

Lemma 3. Given a hyperbolic 0(2, n) surface X , let π, π ′, π ′′ denote the branched
covering maps

X S2(2, 2, . . . , 2)X S2(2, 2, n, n)X S2(2, 2, 2, n)X
π π ′ π ′′

Then under the maps π , π ′
◦ π and π ′′

◦ π ′
◦π , the image of a systole on X has no

self-intersection at any regular point on the targeting orbifold, and the images of
two systoles do not intersect at any regular point on the targeting orbifold.

Proof. (1) If α is a simple closed curve in X , π(α) has a self-intersection point p.
Then π−1(p) consists of two points, both are the intersection points of π−1(π(α)).
By the definition of double branched cover, π−1(π(α)) consists of either one curve
or two curves with equal length. Since α is simple, π−1(π(α)) consists of two
curves. These two curves intersect at least twice, therefore cannot be systole.

We assume α and β are two simple closed curves with equal length on X , Hence
the shape of π(α) and π(β) has two possibilities: S1 or a segment whose endpoints

Figure 4. Case (a): π(α) ∪ π(β).
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Figure 5. Case (a): The double covers of π(α) ∪ π(β). The three
types are shown in the top, the bottom left, and the bottom right,
respectively.

are branched points of the branched cover π . We also assume p is the intersection
point of π(α) and π(β).

(a) If π(α) and π(β) are simple closed curves, then π(α) intersects π(β) at least
twice by Lemma 2. Recall that there are two types of double covers of S1, namely
S1 and S1 ∐

S1. Then there are three types of double covers of π(α)∪π(β), shown
in Figure 5.

In all the cases, α intersects β at least twice, which contradicts to Lemma 2.

(b) If π(α) is a segment while π(β) is a simple closed curve (Figure 6, left), then
there are two types of the double (branched) covers of π(α) ∪ π(β) shown in
Figure 6, middle and right.

If the double branched cover of π(α)∪π(β) is the case shown in Figure 6, middle,
then it is clear that the curve α and β have at least two intersections. Therefore, α

and β cannot be systoles.
If the double branched cover of π(α) ∪ π(β) is the case shown in Figure 6,

right, we assume p̃ is one of the branched point of π in Figure 6, right. Therefore
π∗([β̃]) = π∗([β̃ ′]) in π1(π(X), π( p̃)). Here [β̃] and [β̃ ′] are elements of π1(X, p̃)

represented by β̃ and β̃ ′. It contradicts the injectivity of π∗ (π is a covering map).

(c) If both π(α) and π(β) are segments (Figure 7), then |π−1(π(α))∩π−1(π(β))|≥

2 since the intersection point of π(α) and π(β) is a regular point. However, both
π−1(π(α)) and π−1(π(β)) are connected. Therefore |α ∩ β| ≥ 2, so that α and β

cannot be systole.

β̃

β̃′

p̃

Figure 6. Case (b): π(α) ∪ π(β) (left) and the double covers of
π(α) ∪ π(β) (middle and right).
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Figure 7. Case (c): π(α) ∪ π(β).

(2) Let α be a systole of X ; then by (1), π(α) has no self-intersection and won’t
intersect the image of another systole at regular points. Therefore, if π ′π(α) has
self-intersection at regular points, then it implies that either π(α) intersects itself or
it intersects another lift of π ′π(α). Therefore π ′

◦ π(α) has no self-intersections.
By exactly the same argument, we can prove that the images of two systoles of

X on S2(2, 2, n, n) do not intersect at any regular point of the orbifold.
The case for π ′′

◦ π ′
◦ π is similar to the case for π ′

◦ π . □

4. The image of systoles on S2(2, 2, 2, n)

For a 0(2, n) surface X , we find geodesics in S2(2, 2, 2, n)X that lift to the systoles
in X in this section.

Lemma 4. For a 0(2, n) surface X , a systole’s image in the orbifold S2(2, 2, 2, n)X

(Figure 3, bottom) has only two possibilities:

(1) A geodesic segment joining two order-two singular points (C and D, C and E
or D and E).

(2) A simple closed geodesic passing through C.

Proof. By Lemma 3, the image of a systole of X is a simple closed geodesic or a
geodesic segment joining two singular points.

(1) Image of a systole of X cannot be a simple closed curve not passing through any
singular point of the orbifold. Such a curve separates S2(2, 2, 2, n)X by Lemma 2.
On each side of the curve, there are two singular points; otherwise, the curve lifts to
null-homotopic curves in X . The order of both singular points on one side is two;
hence the geodesic homotopic to this curve is the geodesic joining these two points.

(2) No systole’s image passes through the order n singular point O . This point lifts
to a regular point in S2(2, 2, . . . , 2)X , and a segment through O lifts to n segments
intersecting at the preimage of O . Then by Lemma 3, this conclusion holds.

(3) The simple closed curve passing through D or E cannot lift to a systole of X ,
since D and E lift to regular points in S2(2, 2, n, n)X , and such curves lift to
nonsimple curves (Figure 8).

By (1), (2), (3), this lemma holds. □
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Figure 8. A simple closed curve passing through D in S2(2,2,2,n)

and its lift.

In order to obtain the systole of a 0(2, n) surface, the next step is to find the
geodesic in S2(2, 2, 2, n)X joining C and D (or C and E or D and E or the simple
closed geodesic through C), whose lift in X is the shortest one among all geodesics
joining C and D (or C and E or D and E or the simple closed geodesic through
C , respectively).

Lemma 5. For a 0(2, n) surface X , let l and l ′ be two geodesics in S2(2, 2, 2, n)X

joining C and D (or joining C and E or D and E or the simple closed geodesics
passing through C), and l̃ and l̃ ′ are their preimages in X , respectively. Then
the covering l̃ → l and l̃ ′ → l ′ are topologically equivalent. More precisely, a
homeomorphism f : l → l ′ can lift to f̃ : l̃ → l̃ ′, letting this diagram commute:

l̃

q
��

f̃
// l̃ ′

q
��

l
f
// l ′

Proof. We provide the proof for the geodesics joining C and D only, since the
proofs for other cases are exactly the same.

For any l ⊂ S2(2, 2, 2, n)X joining C and D, there is a curve l ′′ joining D and E ,
intersecting l only at D. The double branched cover π ′′

: S2(2, 2, n, n)X →

S2(2, 2, 2, n)X can be constructed by gluing two copies of S2(2, 2, 2, n)X\l ′′ along
their boundaries. Hence the preimage of l in S2(2, 2, n, n)X is a segment (denoted
as l̃1) joining C and C ′ for any l. Therefore the coverings of any two segments
joining C and D are equivalent (Figure 9).

Similarly, for any l̃1 ⊂ S2(2, 2, n, n)X joining C and C ′, there is a segment l ′′1 join-
ing O and O ′, intersecting l̃1 at exactly one point. Thus we can construct the n-fold
cyclic branched cover of S2(2, 2, n, n)X by gluing n-copies of S2(2, 2, n, n)X\l ′′1 .
Since for any l̃1, we always choose a curve l ′′1 intersecting l̃1 once, the covering
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Figure 9. l and its lifts.

of l̃1 by its preimage in S2(2, 2, . . . , 2)X (denoted by l̃2) is topologically unique
(Figure 9).

The multicurve l̃2 ⊂ S2(2, 2, . . . , 2)X consists of segments joining the singular
points. Therefore its preimage in the 0(2, n) surface X (a manifold with no singular
points) is topologically unique. □

Corollary 6. Let l, l ′ ⊂ S2(2, 2, 2, n)X be geodesic segments joining C and D, and
α, α′

⊂ X be simple closed geodesics lifted from l and l ′, respectively. If |l| < |l ′|,
then |α| < |α′

|.
This conclusion also holds for geodesics joining C and E , geodesics joining

D and E , or simple closed geodesics passing through C.

Proof. By Lemma 5,
|α|

|l|
=

|α′
|

|l ′|
. □

Proposition 7. For a 0(2, n) surface X , there are only four possible geodesics in
S2(2, 2, 2, n)X that lift to systoles in X. They are the shortest geodesics joining
C and D, joining C and E and joining D and E , and the shortest simple closed
geodesic passing through C , denoted as lCD , lCE , lDE and lC , respectively. Figure 10
describes the geometry of these four curves.
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C E

D1D

A A1

O

C E

D1D

A A1

O

C E

D1D

A A1

O

C E

Figure 10. The four geodesics that possibly lift to systoles of X .
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Figure 11. Looking for the shortest geodesic joining C and D
(top) and looking for the shortest simple closed geodesic passing
through C (bottom).

Proof. By Corollary 6, the goal of this proposition is to describe the shortest
geodesics in S2(2, 2, 2, n)X joining C and D, joining C and E , joining D and E
and the simple closed geodesic passing through C .

(1) The shortest geodesic joining C and D: Let’s consider the pentagon shown in
Figure 11, a fundamental domain of S2(2, 2, 2, n)X . If a geodesic l ⊂ S2(2, 2, 2, n)X

joining C and D consists of more than one segment in the pentagon (Figure 11,
top left), then by reflecting some of its segments, we obtain a bending geodesic
segment joining C and D or C and D1 with equal length to l and show that l is
longer than the segment CD or CD1.
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Figure 12. Looking for the shortest geodesic joining C and D (I)
(top) and looking for the shortest geodesic joining C and D (II)
(bottom).
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The segment CD is shorter than CD1, because

|AD| = |AD1| and |AC | <
c
2

< |A1C |,

and it follows by the hyperbolic cosine law [Buser 2010, p. 454, 2.2.2 (i)]. Therefore,
the shortest geodesic joining C and D is the segment lCD shown in Figure 10, top
left.

(2) The shortest geodesic joining D and E is the segment lDE shown in Figure 10,
top right, by the same argument.

(3) The shortest simple closed geodesic passing through C is the geodesic lC shown
in Figure 10, bottom right, by the same argument; see Figure 11.

(4) The shortest geodesic joining C and E : By reflecting some segments, we get
the shortest geodesic is either the geodesic in Figure 12, top right, (denoted by lCE )
or the geodesic in Figure 12, bottom right (denoted by l ′CE ). By the cut-and-paste
shown in Figure 13, we see that lCE is shorter than l ′CE , hence the shortest geodesic
joining C and E is lCE in Figure 10, bottom left. □

5. Calculations

In this section, we represent the length of the curves in Figure 10 by the parameters
c and t . Then by these formulae, we give a condition of the 0(2, n) surface having
the longest systole. For convenience, we call this surface a maximal surface. Finally,
we calculate the systole length of this surface.

Recall that in the pentagons in Figure 10, |CE | = c/2, |AC | = t/2, |A1 E | =

(c − t)/2 and ̸ DOD1 = 2π/n. We assume AD = A1 D1 = s/2. Then in one of
the two half pieces of the pentagon (Figure 14), by hyperbolic trigonometry [Buser
2010, p. 454, 2.3.1 (i)],

(5-1) sinh c
2

sinh s
2

= cos π

n
.

Therefore, directly, for the lengths of the geodesics in Figure 10, we have

(5-2) |lCE | =
c
2
,
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Figure 14. The pentagon.

and by the hyperbolic cosine law in right-angled triangles [Buser 2010, p. 454,
2.2.2 (i)]

cosh|lCD| = cosh|CD| = cosh t
2

cosh s
2
;(5-3)

cosh|lDE | = cosh|D1 E | = cosh c−t
2

cosh s
2
.(5-4)

To calculate the length of lC (Figure 10, bottom right), we treat the pentagon as
a fundamental domain for the orbifold S2(2, 2, 2, n) in H2. Then in the joining of
two pentagons shown in Figure 15, left, lC is realized by the segment CC ′. Hence
its length is

(5-5) cosh|lC | = cosh|CC ′
|

= cosh|AA′

1| cosh|AC | cosh|A′

1C ′
| − sinh|AC | sinh|A′

1C ′
|

= cosh s cosh t
2

cosh
(

c −
t
2

)
− sinh t

2
sinh

(
c −

t
2

)
by a trigonometric formula [Buser 2010, p. 38, 2.3.2].

Now we are ready to prove the following:

Proposition 8. In the 0(2, n) surface X0 with maximal systole among all the
0(2, n) surfaces, lDE in S2(2, 2, 2, n)X0 cannot lift to a systole of this surface.

Proof. Recall that by Proposition 7, in S2(2, 2, 2, n)X0 , there are only four geodesics
that can lift to systoles of X0, namely lCD , lDE , lCE and lC in Figure 10.

If lDE lifts to a systole, then lCD and lCE cannot lift to systoles. This is because,
when lifting to S2(2, 2, n, n), lDE intersects lCD and lCE at regular points D and E
of the orbifold (Figure 15, right), therefore by Lemma 3, they cannot simultaneously
become systoles.

Then we calculate the differentials of |lDE | and |lC |, showing that there is vector
(A(c, t), B(c, t)) such that d|lC |(A, B) > 0 and d|lDE |(A, B) > 0 simultaneously.
Since only lDE and lC can lift to systoles, a surface with a systole lifted from lDE

cannot be a maximal surface.
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D1D

A A1

O

C E

C ′

E′

A′
1

E

D

CC ′

lDE

lCE

lCD

Figure 15. The geodesic lC (left) and the lift of lDE , lCD and lCE (right).

As a preparation, we differentiate both sides of (5-1) and get

(5-6)
ds
dc

= −
cosh c

2 sinh s
2

cosh s
2 sinh c

2
.

Then for lDE

∂|lDE |

∂t
=

∂

∂t

(
cosh s

2
cosh c−t

2

)
= −

1
2

cosh s
2

sinh c−t
2

,

∂|lDE |

∂c
=

∂

∂c

(
cosh s

2
cosh c−t

2

)
=

1
2

(
sinh s

2
ds
dc

cosh c−t
2

+ cosh s
2

sinh c−t
2

)
,

d|lDE | =
∂|lDE |

∂t
dt +

∂|lDE |

∂c
dc.

For lC

(5-7) ∂|lC |

∂t
=

∂

∂t

(
cosh s cosh t

2
cosh

(
c −

t
2

)
− sinh t

2
sinh

(
c −

t
2

))
=

1
2
(cosh s + 1) sinh(t − c),

and

∂|lC |

∂c
=

∂

∂c

(
cosh s cosh t

2
cosh

(
c −

t
2

)
− sinh t

2
sinh

(
c −

t
2

))
= −

cosh c
2 sinh s

2
cosh s

2 sinh c
2

sinh s cosh t
2

cosh
(

c −
t
2

)
+ cosh s cosh t

2
sinh

(
c −

t
2

)
− sinh t

2
cosh

(
c −

t
2

)
,

d|lC | =
∂|lC |

∂t
dt +

∂|lC |

∂c
dc.

The two tangent vectors d|lDE |, d|lC | are nonzero vectors. When c > 0, 0 ≤ t ≤ c,

∂|lDE |

∂t
< 0,

∂|lC |

∂t
< 0.

For any k ≤ 0, d|lDE | ̸= kd|lC |. Then there is a vector (A(c, t), B(c, t)) such that

d|lDE |(A(c, t), B(c, t)) > 0, d|lC |(A(c, t), B(c, t)) > 0.
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By the assumption that lDE lifts to a systole of X0, only lDE and lC can lift to a
systole of the surface. Then there is another surface with systole bigger than X0.
Therefore X0 is not maximal. □

From Propositions 7 and 8, we know that only lCE , lCD and lC in the orbifold
S2(2, 2, 2, n) can lift to a systole of the maximal surface.

By the symmetry of 0(2, n) surfaces and Lemma 3, the preimage of the geodesic
lCE ⊂ S2(2, 2, 2, n) (lCD , lC , respectively) on the 0(2, n) surface consists of pairwise
disjoint geodesics with equal length.

Proposition 9. On the maximal 0(2, n) surface X0, a simple closed geodesic is a
systole if and only if it is lifted from lCE , lCD or lC .

Proof. It is sufficient to prove that in X0, every geodesic lifted from lCE , lCD or lC

is a systole.
The proof is divided into two steps.

(1) If there is only one curve among lCE , lCD and lC that lifts to the systoles of X0,
then X0 is not maximal.

Without loss of generality, we assume that lCE lifts to the systole of X0, while
lCD and lC do not lift to systoles of X0. On the orbifold S2(2, 2, 2, n)X0 , there are
deformations increasing or decreasing the length of the curve lCE . A deformation
increasing the length of lCE increases the length of geodesics lifted from lCE in X0.
If the deformation is small enough, then we get a new 0(2, n) surface, whose
systoles are lifted from lCE and the length of these curves are longer than the
corresponding curves in X0. Hence X0 is not maximal.

(2) If there are exactly two curves among lCE , lCD and lC lifting to the systole of
the 0(2, n) surface, then the surface is not maximal.

(2a) We assume lCE and lCD lift to the systoles of X0, while lC does not lift to
systoles of X0. Then in the Fenchel–Nielsen coordinate (c, t), the length |lCD|(c, t)
is monotonely increasing with respect to t by (5-3), while lCE = c/2. We pick a
sufficiently small ε > 0 and deform the Fenchel–Nielsen coordinate from (c, t)
to (c, t + ε); then we get a new surface X ′. The systoles of X ′ are exactly the
geodesics lifted from lCE , and this surface has the same systole length to X0. Then
by (1), there exists a surface with longer systole than these two surfaces.

(2b) If lCE and lC lift to the systoles of X0, while lCD does not lift to systoles of X0,
the proof is similar. By (5-7), lC is decreasing with respect to t when t ≤ c. Thus
using the deformation (c, t) 7→ (c, t − ε), we get a surface whose systoles are all
lifted from lCE and whose systole length is equal to X0’s. Thus by (1), we know
X0 is not maximal.

(2c) The last case is that lCD and lC lift to the systoles of X0, while lCE does not
lift to systoles of X0. Similarly, some of the Fenchel–Nielsen deformations along
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Figure 16. Cutting off a subsurface with signature (1, 2).

lCD increase the length of lC and let lCD become the unique geodesic that can lift
to systoles of X0. Then by (1), this surface is not maximal.

By (1) and (2), all three curves lCD , lCE and lC lift to the systoles of the maximal
0(2, n) surface. □

We are now ready to calculate the maximal systole on hyperbolic 0(2, n) surfaces.

Proof of Theorem 1. First we describe the lift of lCE , lCD and lC in the 0(2, n)

surface, respectively.
In the 0(2, n) surface shown in Figure 16, Ci and C ′

i (i = 1, . . . , n) are the fixed
points of the order-two involution τ (recall its definition in Section 2) and are the
lifts of the singular point C in S2(2, 2, 2, n); Di and D′

i are the mid-points of the
seams, and the lifts of the point D in S2(2, 2, 2, n); Ei and E ′

i are the mid-points
of Ci C ′

i and the lifts of the point E in S2(2, 2, 2, n).
The curve lCE lifts to cuffs of the surface, denoted as γi (i = 1, . . . , 5 ); lCD

lifts to geodesics passing through Ci Di C ′

i+1 D′

i denoted as αi ; lC lifts to geodesics
passing through Ci Ci+1, denoted as βi .

To calculate the systole length, we cut off a subsurface with signature (1, 2) from
the 0(2, n) surface containing γ1, γ2 and α1 (Figures 16 and 17), the boundary
length of this surface is given by [Buser 2010, p. 454, 2.4.1 (i)]. We take common
perpendiculars between cuffs and boundary components as in Figure 17. Then in
the hexagon H1 H2 A1 A2 A3 A4, we have

(5-8) cosh|H1 H2| = sinh|A1 A2| sinh|A3 A4| cosh|A2 A3| − cosh|A1 A2| cosh|A3 A4|

= sinh2 c cosh s − cosh2 c.

In this subsurface, C1, C ′

1, C2, C ′

2 are branched points of the hyperelliptic involution
and α1, β1, γ1, γ2 are the systoles of the 0(2, n) surface (Figure 18). To calculate
the systole length, we redraw the (1, 2)-subsurface as Figure 19. When the systole
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A1A′
1

A2

A3

A4 A′
4

H1 H ′
1

H2 H ′
2

Figure 17. The red curves are cuffs. The blue curves are seams.

is maximal, the lengths of γ1 and β1 are the same, namely |C1C ′

1| = |C1C2|. In this
case, the subsurface is shown in Figure 20.

When the surface is maximal, |H5 H6| =
1
2 |α1| = c, |C1C ′

1| =
1
2γ1 = c. We

assume |H3 H4| = l and |H5C ′

1| = h. Then in the hexagon H4 H3C ′

2 H6 H5C1, by
the symmetry of this hexagon, |H6C ′

2| = |H5C ′

1| = h, and by [Buser 2010, p. 454,
2.4.1(i)] we have

cosh|H3 H4| = sinh|C1 H5| sinh|C ′

2 H6| cosh|H5 H6| − cosh|C1 H5| cosh|C ′

2 H6|

and

(5-9) cosh l = sinh2 h cosh c − cosh2 h.

In the triangle △C1 H5C ′

1, by [Buser 2010, p. 454, 2.2.2 (i)], we have

(5-10) cosh|C1C ′

1| = cosh|C1 H5| cosh|C ′

1 H5| cosh c = cosh h cosh c
2
.

H4

H3

C1

γ1

α1

β1

γ2

C ′

1
C2

C ′

2

H ′

3

H ′

4

Figure 18. Systoles of X in the (1, 2)-subsurface.
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3 H ′

4

C1 C ′

2 C1

C ′

1
H5

C2 H6

C ′

1
C1 C ′

2 C1

H4 H3 H ′

3 H ′

4

Figure 19. Redrawing the (1, 2)-subsurface.

For convenience, we denote cosh c by K . Then combining (5-9) and (5-10), we
eliminate h and get

(5-11) 2K 2

K +1
=

K +cosh l
K −1

.

Recall that l = |H3 H4|. Then combining (5-11), (5-8) and (5-1), we eliminate l
and s, and get

2K 3
− 3K 2

+ 1 − 4 cos2 π

n
(K + 1)2

= 0.

The unique real solution of this equation is

K =
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 +

√
1

108 L(L2 + 18L + 27)

+
3

√
1

216 L3 +
1
8 L2 +

5
8 L −

1
8 −

√
1

108 L(L2 + 18L + 27) +
1
6(L + 3),

where L = 4 cos2 π
n .

At last, we calculate the twist parameter t of the maximal surface, using (5-1)
and (5-3):

cosh t
2

=
cosh c

2
cosh s

2

=
cosh2 c

2
cos π

n

=
cosh c+1
2 cos π

n

=
K +1

2 cos π
n

.

Theorem 1 follows. □
H4 H3 H ′

3 H ′

4

C1 C ′

2 C1

H5

C ′

1 H6 C2 C ′

1 H6

C1 C ′

2 C1

H4 H3 H ′

3 H ′

4

Figure 20. When |C1C ′

1| = |C1C2|.
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