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SPIN KOSTKA POLYNOMIALS AND VERTEX OPERATORS

NAIHUAN JING AND NING LIU

An algebraic iterative formula for the spin Kostka–Foulkes polynomial
K−

ξµ
(t) is given using vertex operator realizations of Hall–Littlewood sym-

metric functions and Schur Q-functions. Based on the operational formula,
more favorable properties are obtained parallel to the Kostka polynomial. In
particular, we obtain some formulae for the number of (unshifted) marked
tableaux. As an application, we confirmed a conjecture of Aokage on the
expansion of the Schur P-function in terms of Schur functions. Tables of
K−

ξµ
(t) for |ξ | ≤ 6 are listed.

1. Introduction

The Hall–Littlewood symmetric functions Pµ(x; t) and the Kostka–Foulkes poly-
nomials Kλµ(t) both have played an active role in algebraic combinatorics and rep-
resentation theory. On one hand, the Hall–Littlewood symmetric functions Pµ(x; t)
are certain deformations of the Schur functions sλ(x), and the Kostka–Foulkes poly-
nomials Kλµ(t) are the transition coefficients between the two bases. On the other
hand, Kλµ(t) have the following representation theoretic interpretation. Let Bµ be
the variety of flags preserved by a nilpotent matrix with Jordan block of shape µ.
The cohomology group H•(Bµ) affords a graded Sn-module structure. Set

Cλµ(t) =

∑
i≥0

t i (dim HomSn (Sλ, H 2i (Bµ)),

where Sλ denotes the Specht module of Sn associated with λ. Garsia and Procesi
[1992] proved that

(1-1) Kλµ(t) = Cλµ(t−1)tn(µ),

which confirms geometrically the positivity of the Kostka–Foulkes polynomials
[Lascoux and Schützenberger 1978].

Recently, Wan and Wang [2013] have introduced the spin Kostka–Foulkes poly-
nomials K −

ξµ(t) as the transition coefficients between the Hall–Littlewood functions
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Pµ(x; t) and Schur Q-functions Qξ with interesting representation theoretic inter-
pretations. As is well-known, the Schur Q-functions are indexed by strict partitions
and were used by Schur [Stembridge 1989] in generalizing the Frobenius character
formula for projective irreducible characters of the symmetric group Sn . Schur Q-
functions form a distinguished basis in the subring of symmetric functions generated
by p1, p3, . . . . Yamaguchi [1999] has shown that the category of irreducible Sn-
supermodules is equivalent to that of supermodules of the Hecke–Clifford algebra
Hn = Cn ⋊CSn and the irreducible objects Dξ are parametrized by strict partitions
ξ ∈ SPn . Wan and Wang [2013] have shown that the spin Kostka polynomials
admit the interpretation

(1-2) K −

λµ(t) = 2[l(ξ)/2]Cξµ(t−1)tn(µ),

and
C−

ξµ(t) =

∑
i≥0

t i (dim HomHn (Dξ , Cn ⊗ H 2i (Bµ)).

Let q(n) be the queer Lie superalgebra containing the general linear Lie algebra
gl(n) as its even subalgebra. Sergeev [1984] has shown that the irreducible q(n)-
modules V (ξ) are also parametrized by strict partitions ξ ∈SPn . It turns out that the
q-weight multiplicity γ −

ξµ(t) associated with the weight space V (ξ)µ also appears
as the spin Kostka polynomial [Wan and Wang 2013]:

K −

λµ(t) = 2[l(ξ)/2]γ −

ξµ(t).(1-3)

The purpose of this paper is to give an operational algebraic formula for the
spin Kostka–Foulkes polynomials K −

ξµ(t). The method we adopt is similar to that
of [Bryan and Jing 2021], in which the vertex operator realizations of the Hall–
Littlewood polynomials and Schur functions were employed. However, there is
some subtlety in the spin situation.

In the usual vertex realization of Schur Q-functions [Jing 1991b], only the modes
of odd indices (of the twisted Heisenberg algebra) were used in the definition. Should
this vertex operator be employed, the commutation relations of its components with
those of the vertex operator for the Hall–Littlewood symmetric functions would
have infinitely many terms in the quadratic relations. To salvage the situation, we
introduce a new vertex operator realization of Schur Q-functions using a larger
Heisenberg algebra graded by all integers (see (2-8) and (2-9)). The new vertex
operator realization enables us to get a finite quadratic relation between the operators
realizing both the Hall–Littlewood and Schur Q-functions and then the matrix
coefficients express the spin Kostka polynomials.

As matrix coefficients, the spin Kostka–Foulkes polynomials can be computed in
general, and exact formulas are given in some special cases. We also prove a stability
formula for the spin Kostka polynomials. We have clarified some questions regarding
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them (in Example 3.11, we disproved the symmetric property) and obtained counting
formulas for the Stembridge coefficients [Stembridge 1989] between the Schur
P-functions and Schur functions. As applications, we answer a recent conjecture
of Aokage and are able to derive a tensor decomposition in the general situation.

The paper is organized as follows. In Section 2 we recall the vertex operator
realization of the Hall–Littlewood functions and give a new vertex operator con-
struction of the Schur Q-functions, which is specifically tailored for taming the
commutation relation between the two vertex operators. In Section 3 we express
the spin Hall–Littlewood polynomials as matrix coefficients of vertex operators
and derive an iterative formula (see Theorem 3.5). Finally in Section 4 we use the
iterative formulas to verify Aokage’s conjecture on multiplicities of tensor products
of spin modules, and a formula is also obtained for the general case.

2. Vertex operator realization of Hall–Littlewood and Schur Q-functions

A partition (resp. strict partition) λ = (λ1, λ2, . . .), denoted λ ⊢ n, is a weakly (resp.
strictly) decreasing sequence of positive integers such that

∑
i λi = n. The sum

|λ| =
∑

i λi is called the weight and the number l(λ) of nonzero parts is called the
length. We also define λ |H n if λ is a composition of n when the past λi are not
necessarily ordered. The set of partitions (resp. strict partitions) of weight n will
be denoted by Pn (resp. SPn). The dominance order λ ≥ µ is defined by |λ| = |µ|

and λ1 + · · · + λi ≥ µ1 + · · · +µi for each i .
Let mi be the multiplicity of i in λ and set zλ =

∏
i≥1 imi (λ)mi (λ)!; we define

the parity ελ = (−1)|λ|−l(λ) and

(2-1) zλ(t) =
zλ∏

i≥1(1 − tλi )
, n(λ) =

∑
i≥1

(i − 1)λi .

A partition λ can be visualized by its Young diagram when λ is identified with
{(i, j) ∈ Z2

| 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi }. To each cell (i, j) ∈ λ, we define its
content ci j = j − i and hook length hi j = λi + λ′

j − i − j + 1, where the partition
λ′

= (λ′

1, . . . , λ
′

λ1
) is the dual partition of λ obtained by reflecting the Young diagram

of λ along the diagonal.
In this paper, we use the t-integer [n] = tn−1

+ tn−2
+ · · · + t + 1. Similarly

[n]! = [n] · · · [1], and the Gauss t-binomial symbol
[ n

k

]
=

[n]!

[k]![n−k]!
.

Let 3F be the ring of symmetric functions over F = Q(t), the field of rational
functions in t . We also consider 3 over the ring of integers. The space 3F is
graded and decomposes into a direct sum:

(2-2) 3F =

∞⊕
n=0

3n
F ,
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where 3n
F is the subspace of degree n, spanned by the elements pλ = pλ1 pλ2 · · · pλl

with |λ| = n. Here pr is the degree r power sum symmetric function.
Let 0Q be the subring of 3Q generated by the p2r−1, r ∈ N. Then

(2-3) 0Q = Q[pr : r odd].

The Schur Q-functions Qξ , ξ strict, form a Q-basis of 0Q [Macdonald 1979]. Also,
0 is a graded ring 0 = ⊕n≥00

n , where 0n
= 0 ∩ 3n .

The space 3F is equipped with the bilinear form ⟨ · , · ⟩ defined by

⟨pλ, pµ⟩ = δλµzλ(t).(2-4)

As {zλ(t)−1 pλ} is the dual basis of the power sum basis, the adjoint operator of the
multiplication operator pn is the differential operator p∗

n = (n/(1 − tn)) ∂/∂pn of
degree −n.

We recall the vertex operator realization of the Hall–Littlewood symmetric
functions [Jing 1991a] and construct a variant vertex operator for the Schur Q-
function on the space 3F . The vertex operators H(z) and its adjoint H∗(z) are
t-parametrized linear maps, 3F −→ 3F [[z, z−1

]] = 3F ⊗ F[z, z−1
], defined by

(2-5) H(z) = exp
(∑

n≥1

1 − tn

n
pnzn

)
exp

(
−

∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

Hnzn,

and

(2-6) H∗(z) = exp
(

−

∑
n≥1

1 − tn

n
pnzn

)
exp

(∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

H∗

n z−n.

Note that * is Q(t)-linear and anti-involutive satisfying

(2-7) ⟨Hnu, v⟩ = ⟨u, H∗

n v⟩

for u, v ∈ 3F .
We now introduce the vertex operators Q(z) and its adjoint Q∗(z) as the linear

maps, 3F −→ 3F [[z, z−1
]], defined by

(2-8) Q(z) = exp
( ∑

n≥1,odd

2
n

pnzn
)

exp
(

−

∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

Qnzn,

and

(2-9) Q∗(z) = exp
(

−

∑
n≥1

1−tn

n
pnzn

)
exp

( ∑
n≥1,odd

2
1−tn

∂

∂pn
z−n

)
=

∑
n∈Z

Q∗

nz−n.

The components Hn, H∗
−n ∈ EndF (3) are of degree n, and so are the annihilation

operators for n > 0. Similarly Qn, Q∗
−n ∈ EndQ(3). We remark that the second

exponential factor of Q(z) is different from the usual construction in [Jing 1991b],
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and this will be crucial for our later discussion. In particular, note that Q(−z) ̸=

Q∗(z) in the current situation due to different inner product.
We collect the relations of the vertex operators as follows.

Proposition 2.1 [Jing 1991a; 1991b]. (1) The operators Hn and H∗
n satisfy the

relations

Hm Hn − t Hn Hm = t Hm+1 Hn−1 − Hn−1 Hm+1,(2-10)

H∗

m H∗

n − t H∗

n H∗

m = t H∗

m−1 H∗

n+1 − H∗

n+1 H∗

m−1,(2-11)

Hm H∗

n − t H∗

n Hm = t Hm−1 H∗

n−1 − H∗

n−1 Hm−1 + (1 − t)2δm,n,(2-12)

H−n.1 = Q−n.1 = δn,0, H∗

n .1 = Q∗

n.1 = δn,0,(2-13)

where δm,n is the Kronecker delta function.

(2) The operators Qn satisfy the Clifford algebra relations

(2-14) {Qm, Qn} = (−1)n2δm,−n,

where {A, B} = AB + B A.

Proof. Commutation relations (2-10)–(2-13) were from [Jing 1991a]. We focus
on (2). Define the normal ordering product by

:Q(z)Q(w): = exp
( ∑

n≥1,odd

2
n

pn(zn
+ wn)

)
exp

(
−

∑
n≥1

∂

∂pn
(z−n

+ w−n)

)
.

Then we have for |z| < |w|

Q(z)Q(w) = :Q(z)Q(w): exp
(

−

∑
n≥1,odd

2
n

(
w

z

)n)
= :Q(z)Q(w):

z − w

z + w
.

The rest of the argument is similar to Proposition 4.15 in [Jing 1991b]. □

Note that the vacuum vector 1 is annihilated by p∗
n , so

(2-15) H(z).1 = exp
( ∞∑

n=1

1 − tn

n
pnzn

)
=

∞∑
n=0

qnzn
= q(z),

where qn is the Hall–Littlewood polynomial of one-row partition (n), and clearly

(2-16) qn = Hn.1 =

∑
λ⊢n

1
zλ(t)

pλ.

We also introduce a spin analogue h(z) by

(2-17) h̃(z) = exp
( ∞∑

n=1

tn
− (−1)n

n
pnzn

)
=

∑
n≥0

h̃nzn
;
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then

(2-18) h̃n =

∑
λ⊢n

ελ

zλ(−t)
pλ.

Moreover,

(2-19) h̃n(−t) =

∑
λ⊢n

ελuλqλ,

where ελ = (−1)|λ|−l(λ) and uλ = l(λ)!/
∏

i≥1 mi (λ)!.
As consequences of the proposition, one also has that

Hn Hn+1 = t Hn+1 Hn,(2-20)

H∗

n H∗

n−1 = t H∗

n−1 H∗

n ,(2-21)

⟨Hn.1, Hn.1⟩ =

∑
λ⊢n

1
zλ(t)

= 1 − t, n > 0,(2-22)

⟨Hn.1, H∗

−n.1⟩ =

∑
λ⊢n

(−1)l(λ)

zλ(t)
= tn

− tn−1, n > 0,(2-23)

where the last two identities follow from (2-12) and (2-10) by induction.
In general, expressing Hµ for any composition µ in terms of the basis ele-

ments Hλ, λ ∈ P , can be formulated as follows. Let Si,a be the transformation
(λ1, . . . , λi , λi+1, . . .) 7→ (λ1, . . . , λi+1 − a, λi + a, . . .), where λi+1 > λi . Define

(2-24) C(Si,a) =


t, a = 0,

ta+1
− ta−1, 1 ≤ a <

[
λi+1−λi

2

]
,

ta+ϵ
− ta−1, 1 ≤ a =

[
λi+1−λi

2

]
,

where ϵ ≡ λi+1 − λi (mod 2). For i = (i1, . . . , ir ) and a = (a1, . . . , ar ) let

(2-25) C(Si,a) = C(Si1,a1)C(Si2,a2) · · · C(Sir ,ar ),

where the product order follows that of Si1,a1 Si2,a2 · · · Sir ,ar λ, i.e., from the right
to the left. In particular, when t = 0, C(Si,a) = 0 unless all ai = 1; in that case,
C(Si,1) = (−1)r which is possible only when λi+1 − λi ≥ 2. When t = −1,
C(Si,a) = 0 unless all ai = 0 and C(Si,0) = (−1)r .

Let µ be a composition and λ be a partition. Define

B(λ, µ) ≜
∑
i,a

C(Si,a)(2-26)

summed over i = (i1, i2, . . . , ir ), a = (a1, a2, . . . , ar ) such that Si,aµ = λ.
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Proposition 2.2 [Jing and Liu 2022]. Suppose µ is a composition. Then

(2-27) Hµ =

∑
λ⊢|µ|

B(λ, µ)Hλ.

We remark that λ appears only when λ ≥ µ in (2-27). Let µ be a composition
and λ be a partition. If there exists i = (i1, i2, . . . , ir ), a = (a1, a2, . . . , ar ) such
that Si,aµ = λ, then

∑k
i=1 λi ≥

∑k
i=1 µi , k = 1, 2, . . . .

Proposition 2.3 [Jing 1991a; 1991b]. (1) Let λ = (λ1, . . . , λl) be a partition. The
vertex operator products Hλ1 · · · Hλl .1 is the Hall–Littlewood function Qλ(t):

(2-28) Hλ1 · · · Hλl .1 = Qλ(t) =

∏
i< j

1 − Ri j

1 − t Ri j
qλ1 · · · qλl ,

where the raising operator is given by Ri j qλ = q(λ1,...,λi +1,...,λ j −1,...,λl ).

(2) Let ξ = (ξ1, ξ2, . . . , ξl) be a strict partition. Then

(2-29) Qξ = Qξ1 Qξ2 · · · Qξl .1

is the Schur Q-function indexed by ξ . Moreover, Qξ .1, where ξ ranges over
strict partitions, form an orthogonal Z-base of 0 under the specialized inner
product ⟨ · , · ⟩t=−1, explicitly

(2-30) ⟨Qλ.1, Qξ .1⟩|t=−1 = 2l(λ)δλξ , λ, ξ ∈ SP.

Proof. Part (1) is from [Jing 1991a]. Since our vertex operator Q(z) is different
from that of [Jing 1991b], we explain why the new vertex operator also realizes
the Schur Q-functions. From the argument in proving (2-14) in Proposition 2.1 it
follows that

Q(z1)Q(z2) · · · Q(zl).1 =

∏
i< j

zi − z j

zi + z j
:Q(z1)Q(z2) · · · Q(zl): .1

=

∏
i< j

zi − z j

zi + z j
exp

( ∑
n≥1,odd

2pn

n
(zn

1 + · · · + zn
l )

)
.

Taking coefficients of zξ1
1 · · · zξl

l , we obtain that Qξ is exactly the Schur Q-function
indexed by ξ (cf. [Jing 1991b]). □

3. Spin Hall–Littlewood polynomials and vertex operators

Wan and Wang [2013] have introduced an extremely interesting spin analogue of
Kostka(–Foulkes) polynomials and shown that these polynomials enjoy favorable
properties parallel to those of the Kostka polynomials.
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Definition 3.1 [Wan and Wang 2013]. The spin Kostka polynomials K −

ξµ(t) for
ξ ∈ SP and µ ∈ P are defined by

(3-1) Qξ (x) =

∑
µ

K −

ξµ(t)Pµ(x; t),

where Qξ (x) (resp. Pµ(x; t)) are Schur Q-functions (resp. Hall–Littlewood func-
tions).

From the above discussion and Proposition 2.3, it is clear that the spin Kostka
polynomials can be expressed as matrix coefficients:

K −

ξµ(t) = ⟨Qµ(x; t), Qξ (x)⟩

= ⟨Hµ1 Hµ2 · · · Hµl .1, Qξ1 Qξ2 · · · Qξk .1⟩.

To compute the matrix coefficients, we first get the commutation relations by
usual techniques of vertex operators:

H∗(z)Q(w)(w − t z) + Q(w)H∗(z)(z + w) = 2(1 − t)zδ
(
w

z

)
h̃(z),(3-2)

h̃∗(z)H(w) = H(w)h̃∗(z) w+z
w−t z

,(3-3)

Q(z)h̃(w) = h̃(w)Q(z) z−tw
z+w

.(3-4)

We remark that if the old vertex operator Q̃(w) from [Jing 1991b] were used,
then the commutation relations between H∗(z) and Q̃(w) would have been an
infinite quadratic relation.

Taking coefficients we obtain the following commutation relations.

Proposition 3.2. The commutation relations between the Hall–Littlewood vertex
operators and Schur Q-function operators are

H∗

n Qm = t−1 H∗

n−1 Qm−1+t−1 Qm H∗

n +t−1 Qm−1 H∗

n−1+2(1−t−1)h̃m−n,(3-5)

h̃∗

m Hn = Hn h̃∗

m +(1+t)
m−1∑
k=0

tm−k−1 Hn−m+k h̃∗

k ,(3-6)

Qn h̃m = h̃m Qn +(1+t)
m−1∑
k=0

(−1)m−k h̃k Qn−k+m .(3-7)

Now we can state our formulas to compute the spin Kostka polynomials. To
this end, we prepare some necessary notation. Let λ = (λ1, λ2, . . . , λl) and
µ = (µ1, µ2, . . . , µm) be (strict) partitions. We define λ[i]

= (λi+1, . . . , λl),
λî

= (λ1, . . . , λi−1, λi+1, . . . , λl), and λ − µ = (λ1 − µ1, λ2 − µ2, . . .).
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Theorem 3.3. For an integer k, strict partition ξ = (ξ1, ξ2, . . . , ξl) and partition
µ = (µ1, µ2, . . . , µm),

H∗

k Qξ =

l∑
i=1

(−1)i−12h̃ξi −k Q
ξ î ,(3-8)

h̃∗

k Hµ =

∑
τ |Hk

tk−l(τ )(1 + t)l(τ )Hµ−τ .(3-9)

Proof. We show the first relation by induction on k +|ξ |. The case of k +|ξ | = 1 is
clear. Assume that (3-8) holds for k + |ξ | = n − 1. Using the induction hypothesis
and (3-5) we have that

H∗

k Qξ1 Qξ2 · · · Qξl

= t−1 H∗

k−1 Qξ1−1 Qξ2 · · · Qξl + t−1 Qξ1 H∗

k Qξ2 · · · Qξl + t−1 Qξ1−1 H∗

k−1 Qξ2 · · · Qξl

+ 2(1 − t−1)h̃ξ1−k Qξ2 · · · Qξl

= t−1(2h̃ξ1−k Qξ2 · · · Qξl − 2h̃ξ2−k+1 Qξ1−1 Qξ3 · · · Qξl

+ 2h̃ξ3−k+1 Qξ1−1 Qξ2 Qξ4 · · · Qξl + · · · + (−1)l+12h̃ξl−k+1 Qξ1−1 Qξ2 · · · Qξl−1

)
+ t−1 Qξ1

(
2h̃ξ2−k Qξ3 · · · Qξl − 2h̃ξ3−k Qξ2 Qξ4 · · · Qξl

+ 2h̃ξ4−k Qξ2 Qξ3 Qξ5 · · · Qξl + · · · + (−1)l2h̃ξl−k Qξ2 Qξ3 · · · Qξl−1

)
+ t−1 Qξ1−1

(
2h̃ξ2−k+1 Qξ3 · · · Qξl − 2h̃ξ3−k+1 Qξ2 Qξ4 · · · Qξl

+ 2h̃ξ4−k+1 Qξ2 Qξ3 Qξ5 · · · Qξl

+ · · · + (−1)l2h̃ξl−k+1 Qξ2 Qξ3 · · · Qξl−1

)
+ 2(1 − t−1)h̃ξ1−k Qξ2 Qξ3 · · · Qξl .

Simplifying the expression, we see the above is

t−1(2h̃ξ1−k Qξ2 · · · Qξl − 2h̃ξ2−k+1 Qξ1−1 Qξ3 · · · Qξl

+ 2h̃ξ3−k+1 Qξ1−1 Qξ2 Qξ4 · · · Qξl

+ · · · + (−1)l+12h̃ξl−k+1 Qξ1−1 Qξ2 · · · Qξl−1

)
+ 2t−1(h̃ξ2−k+1 Qξ1−1 Qξ3 · · · Qξl − h̃ξ3−k+1 Qξ1−1 Qξ2 Qξ4 · · · Qξl

+ h̃ξ4−k+1 Qξ1−1 · · · Qξl

+ · · · + (−1)l h̃ξl−k+1 Qξ1−1 Qξ2 Qξ3 · · · Qξl−1

)
− 2

(
h̃ξ2−k Qξ1 Qξ3 · · · Qξl − h̃ξ3−k Qξ1 Qξ2 Qξ4 · · · Qξl

+ h̃ξ4−k Qξ1 Qξ2 Qξ3 Qξ5 · · · Qξl

+ · · · + (−1)l h̃ξl−k Qξ1 Qξ2 Qξ3 · · · Qξl−1

)
+ 2(1 − t−1)h̃ξ1−k Qξ2 Qξ3 · · · Qξl (by (3-7))

= 2h̃ξ1−k Qξ2 · · · Qξl − 2h̃ξ2−k Qξ1 Qξ3 · · · Qξl + · · · + 2(−1)l−1h̃ξl−k Qξ1 · · · Qξl−1,
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which has proved (3-8). The second relation is similarly shown by (3-6) and
induction on l(µ). □

Example 3.4. Let µ = (2, 2) and ξ = (3, 1). Then by Theorem 3.3

K −

ξµ(t) = ⟨H2 H2.1, Q3 Q1.1⟩

= ⟨H2.1, 2h1 Q1.1⟩

= 2⟨t (1 + t−1)H1.1, Q1.1⟩

= 4t + 4.

By Theorem 3.3, we now obtain an algebraic formula for K −

ξµ(t).

Theorem 3.5. For ξ = (ξ1, . . . , ξl) ∈ SPn and µ = (µ1, . . . , µm) ∈ Pn , K −

ξµ(t) is
given by the iterative formula

(3-10) K −

ξµ(t) =

l∑
i=1

∑
τ |Hξi −µ1

∑
λ⊢n−ξi

(−1)i−12tξi −µ1(1+t−1)l(τ )B(λ, µ[1]
−τ)K −

ξ î λ
(t).

Proof. It follows readily from (3-8), (3-9) and (2-27). □

Equation (3-10) shows that all spin Kostka polynomials are integral polynomials,
and it also gives an effective recurrence of K −

ξµ(t) as shown by the following
example.

Example 3.6. Let ξ = (4, 3, 1) and µ = (3, 3, 2). Then

K −

ξµ(t) = ⟨H3 H3 H2.1, Q4 Q3 Q1.1⟩

= ⟨H3 H2.1, 2h̃1 Q3 Q1.1⟩ − ⟨H3 H2.1, 2h̃0 Q4 Q1.1⟩

= 2⟨t (1 + t−1)(H2 H2.1 + H3 H1.1), Q3 Q1.1⟩ − 2⟨H3 H2.1, Q4 Q1.1⟩

= 2(t + 1)(K −

(3,1)(2,2)(t) + K −

(3,1)(3,1)(t)) − 2K −

(4,1)(3,2)(t).

The spin Kostka polynomials have quite a few remarkable properties resembling
those of the Kostka–Foulkes polynomials. As a consequence of the recurrence we
have the following.

Corollary 3.7. Let ξ be a strict partition and µ be a partition. We have:

(1) If there exists k ∈ N, such that ξi = µi , i = 1, 2, . . . , k, then

K −

ξµ(t) = 2k K −

ξ [k]µ[k](t).(3-11)

In particular, K −

ξξ (t) = 2l(ξ).

(2) 2l(ξ)
| K −

ξµ(t).

(3) K −

ξµ(−1) = 2l(ξ)δξµ.

Proof. They are immediate consequences of Theorem 3.5. □
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Some special cases of Theorem 3.5 are listed as follows.

Example 3.8. Suppose ξ ∈ SPn , µ ∈ Pn . We have

K −

ξ(n)(t) = 2δξ,(n),(3-12)

K −

(n)µ(t) = 2tn−µ1
∑

τ |Hn−µ1

(1 + t−1)l(τ )B(∅, µ(1)
− τ),(3-13)

K −

ξ(µ1,µ2)
(t) =


22−δ0,ξ2 tξ1−µ1(1 + t−1) if ξ > (µ1, µ2),

4 if ξ = (µ1, µ2),

0 otherwise.
(3-14)

There is a compact formula of K −

(n)µ(t) [Wan and Wang 2013] by using a result
of [Macdonald 1979]. We will come back to the Wan–Wang formula using the
iteration in the next section.

The following result was first proved in [Wan and Wang 2013] using the similar
property of the Kostka–Foulkes polynomials. Using our iterative formula, one can
give an independent proof from that of the Kostka–Foulkes polynomials. We remark
that the method can also be used to show this property for the Kostka–Foulkes
polynomial by the iterative formula in [Bryan and Jing 2021].

Corollary 3.9. Let ξ = (ξ1, ξ2, . . .)∈SPn , µ= (µ1, µ2, . . .)∈Pn . Then K −

ξµ(t)=0,
unless ξ ≥ µ.

Proof. It is equivalent to prove K −

ξµ(t) = 0, if ξ ≱µ. We argue it by induction on n.
The initial step is obvious. Suppose it holds for weight < n. There exists a smallest
k ≥ 1, such that ξ1 + ξ2 + · · · + ξk < µ1 + µ2 + · · · +µk .

If k = 1, then it’s evident that K −

ξµ(t) = 0 by the iterative formula (3-10).

If k > 1, then there exists k > j ≥ 1, such that ξ j+1 < µ1 ≤ ξ j . We have

K −

ξµ(t) =

j∑
i=1

(−1)i−1
⟨Hµ2 Hµ3 · · · , 2h̃ξi −µ1 Qξ1 · · · Q̂ξi · · · ⟩

=

j∑
i=1

(−1)i−1
∑

τ |Hξi −µ1

2tξi −µ1(1 + t−1)l(τ )
⟨Hµ[1]−τ , Q

ξ î ⟩

=

j∑
i=1

(−1)i−1
∑

τ |Hξi −µ1

2tξi −µ1(1 + t−1)l(τ )
∑

ν⊢n−ξi

B(ν, µ[1]
− τ)⟨Hν, Q

ξ î ⟩

=

j∑
i=1

(−1)i−1
∑

τ |Hξi −µ1

2tξi −µ1(1 + t−1)l(τ )
∑

ν⊢n−ξi

B(ν, µ[1]
− τ)K −

ξ î ν
(t).
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By the remark below Proposition 2.2, for each 1 ≤ i ≤ j , we have ν1 +· · ·+νk−1 ≥

µ2+· · ·+µk−τ1−· · ·−τk−1 ≥µ2+· · ·+µk+µ1−ξi >ξ1+· · ·+ξi−1+ξi+1+· · · ξk .
By induction, we have K −

ξµ(t) = 0. □

The Kostka–Foulkes polynomials have the stability property [Bryan and Jing
2021], which says that if µ1 ≥ λ2, then Kλ+(r),µ+(r)(t) = Kλµ(t) for all r ≥ 1. Here,
λ+(r)= (λ1+r, λ2, . . .). The spin Kostka polynomials also enjoy the same stability.

Proposition 3.10. Let ξ = (ξ1, . . . , ξl) ∈ SP , µ = (µ1, . . . , µm) ∈ P , and µ1 > ξ2.
Then for any r ≥ 1, we have

K −

ξ+(r)µ+(r)(t) = K −

ξµ(t).(3-15)

Proof. By Theorem 3.3, it follows that

K −

ξ+(r)µ+(r)(t) = ⟨Hµ2 Hµ3 · · · Hµm .1, 2h̃ξ1−µ1 Qξ2 · · · Qξl .1⟩ = K −

ξµ(t). □

The spin Kostka–Foulkes polynomials Kλµ(t) were conjecturally symmetric
[Wan and Wang 2013, Question 4.10] in the sense that

K −

λµ(t) = tmλµ K −

λµ(t−1)

for some mλµ ∈ Z. However, the following is a counterexample.

Example 3.11. Given ξ = (3, 2) and µ = (2, 13), we have

K −

ξµ(t) = ⟨H2 H1 H1 H1.1, Q3 Q2.1⟩

= ⟨H1 H1 H1.1, 2h̃1 Q2.1⟩ − ⟨H1 H1 H1.1, 2h̃0 Q3.1⟩

= 2⟨t (1 + t−1)[3]H1 H1.1, Q2.1⟩ − 2K −

(3)(13)
(t)

= 4t (t3
+ 2t2

+ 3t + 2).

4. Marked tableaux

To study projective representations of the symmetric group, Stembridge [1989]
introduced the number gξλ as follows:

Qξ (x) =

∑
λ

bξλsλ(x), gξλ = 2−l(ξ)bξλ.(4-1)

Note that bξλ = K −

ξλ(0), but we will see that gξλ can be extended to any partition ξ ,
so we reserve this notation in this section.

Let ξ, λ be partitions with ξ strict. The coefficient gξλ of sλ in the expansion of
the Schur Q-function 2−l(ξ)Qξ counts the number of (unshifted) marked tableaux T
of shape λ and weight ξ such that

(a) w(T ) has the lattice property;
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(b) for each k ≥ 1, the last occurrence of k ′ in w(T ) precedes the last occurrence
of k.

Here w(T ) is the word of T by reading the symbols in T from right to left in
successive rows, starting with the top row.

The combinatorial interpretation and the representation-theoretic interpretation
of gξλ are known [Sagan 1987; Stembridge 1989; Wan and Wang 2013; Worley
1984]. However, no effective formula for gξµ is available. As an application of the
preceding section, we give an algebraic formula for gξλ.

The ring 3Q of symmetric functions has the canonical bilinear form ⟨ · , · ⟩0 =

⟨ · , · ⟩t=0 under which Schur functions are orthonormal:

(4-2) ⟨pλ, pµ⟩0 = δλ,µzλ.

Thus the adjoint operator of the multiplication operator pn is the differential operator
p−

n = n(∂/(∂pn)).
With respect to ⟨ · , · ⟩0, the vertex operators and their adjoint operators for Schur

functions and Schur Q-functions are given by [Jing 1991b; 2000]

S±(z) = exp
(

±

∑
n≥1

1
n

pnzn
)

exp
(

∓

∑
n≥1

∂

∂pn
z−n

)
=

∑
n∈Z

S±

n z±n,(4-3)

Q+(z) = Q(z) =

∑
n∈Z

Q+

n zn,(4-4)

Q−(z) = exp
(

−

∑
n≥1

1
n

pnzn
)

exp
( ∑

n≥1,odd

2
∂

∂pn
z−n

)
=

∑
n∈Z

Q−

n z−n.(4-5)

Note that Q−(z) is the specialized vertex operator Q∗(z)|t=0. Here we denote the
adjoint operators by S+

n and Q+
n , respectively, to distinguish from the preceding

section.
Therefore gξλ can be expressed in terms of this inner product:

(4-6) gξλ = 2−l(ξ)bξλ = 2−l(ξ)
⟨sλ, Qξ ⟩0 = 2−l(ξ)

⟨Sλ.1, Qξ .1⟩0.

Recall that the involution ω : 3 → 3 defined by ω(pλ) = ελ pλ [Macdonald
1979] is an isometry with respect to the canonical inner product ⟨ · , · ⟩0 such that

ω(sλ) = sλ′, ω(Qξ ) = Qξ .

Proposition 4.1. If λ ∈ Pn , ξ ∈ SPn , then gξλ or bξλ has the property

(4-7) gξλ = gξλ′ .
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We introduce the operators for the elementary symmetric functions en

(4-8) e±(z) = exp
( ∑

n≥1

(−1)n+1

n
p±

n z±n
)

=

∑
n≥0

e±

n z±n,

where p+
n = pn , p−

n = n(∂/(∂pn)), and e+(z) = h(z)|t=0.
Then by Theorem 3.3 we have:

Proposition 4.2. For any strict partition ξ = (ξ1, ξ2, . . . , ξl), any partition λ =

(λ1, λ2, . . .) and integer k,

S−

k Qξ =

l∑
i=1

(−1)i−12eξi −k Qξ1 Qξ2 · · · Q̂ξi · · · Qξl ,(4-9)

e−

k Sλ =

∑
ρ

Sρ,(4-10)

where ρ runs through the partitions such that λ/ρ are vertical k-strips.

The algebraic iterative formula for bξλ is then natural:

Theorem 4.3. Let ξ ∈ SPn , λ ∈ Pn . Then

bξλ =

l(ξ)∑
i=1

2(−1)i−1
∑
ρi

bξ (i)ρi ,(4-11)

where ρi runs through the partitions such that λ[1]/ρi are vertical ξi−λ1-strips.

Example 4.4. Let λ ∈ Pn . We have

b(n)λ =

{
2 if λ is a hook,

0 if λ is not a hook.
(4-12)

Combining (3-1) and (4-1), we have

(4-13) K −

ξµ(t) =

∑
λ

bξλKλµ(t),

where Kλµ(t) are the Kostka–Foulkes polynomials.
By (4-12), we have

(4-14) K −

(n)µ(t) =

∑
λ hook

2Kλµ(t).

Recall that a compact formula for the Kostka–Foulkes polynomials Kλµ(t) is
known for λ being hook-shaped [Kirillov 2001; Bryan and Jing 2021]:

(4-15) K(n−k,1k)µ(t) = tn(µ)+
k(k+1−2l)

2

[
l−1

k

]
,
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where n = |µ|, l = l(µ). Therefore, we have that for any partition µ ⊢ n

K −

(n)µ(t) =

l(µ)−1∑
k=0

2tn(µ)+
k(k+1−2l(µ))

2

[
l(µ)−1

k

]
,(4-16)

= tn(µ)

l(µ)∏
i=1

(1 + t1−i ).(4-17)

Here the second equation follows from the t-binomial expansion [Andrews 1986,
(2.9)] or an easy induction on l(µ) from (4-16). We remark that (4-17) was first
given by Wan and Wang [2013] using identities of Hall–Littlewood polynomials.

For a given partition λ, we define

{λ}s
.
= {ρ ⊂ λ[1]

| ρ is a hook and λ[1]/ρ is a vertical s-strip}.

Set N (s)(λ) = Card{λ}s . It is clear that N (s)(λ) = 0 when s < 0 or s > |λ[1]
|. Now

we can give a two-row formula by the iterative formula for bξλ.

Theorem 4.5. Let 1 ≤ m < n
2 , λ ∈ Pn . We have

(4-18) b(n−m,m)λ = 4(N (n−m−λ1)(λ) − N (m−λ1)(λ)).

To compute N (s)(λ), we denote all hook (resp. double hook) partitions of n by
HP(n) (resp. DHP(n)). That is, HP(n)

.
= {(λ1, 1m1) | λ1 + m1 = n}, DHP(n)

.
=

{(λ1, λ2, 2m2, 1m1) |λ1+λ2+2m2+m1 =n}. Clearly, HP(n)⊂DHP(n). We remark
that N (s)(λ) = 0 unless λ ∈ DHP(n). Now let’s consider N (s)(λ), for 0 ≤ s ≤ |λ[1]

|

and λ ∈ DHP(n), case by case.

Case 1: If λ ∈ HP(n), then N (s)(λ) = 1.
Before considering the case λ∈ DHP(n)\ HP(n), we look at the following special

case.

Case 2: If λ = (λ1, λ2, 1m1) and λ /∈ HP(n), then we have

N (s)(λ) =


0 if s ≥ m1 + 2,
1 if s = 0 or s = m1 + 1,
2 if 1 ≤ s ≤ m1.

(4-19)

Case 3: If λ= (λ1, λ2, 2m2, 1m1)∈DHP(n)\ HP(n), then it follows from case 2 that

(4-20) N (s)(λ) = N (s−m2)((λ1, λ2, 1m1))

=


0 if 0 ≤ s ≤ m2 − 1 or s ≥ m1 + m2 + 2,

1 if s = m2 or s = m1 + m2 + 1,

2 if 1 + m2 ≤ s ≤ m1 + m2.



142 NAIHUAN JING AND NING LIU

Example 4.6. Given ξ = (4, 3), λ= (2, 2, 2, 1), we have λ1 = λ2 = 2, m1 = m2 = 1,
and

b(4,3)(2,2,2,1) = 4(N (2)(λ) − N (1)(λ)) = 4 × (2 − 1) = 4.

The symmetric group Sn has a two-valued representation, known as the spin
representation studied by Schur, and this is actually a representation of the double
covering group S̃n of Sn [Schur 1911]. It is known that the irreducible spin
representations of Sn are parametrized by strict partitions of n. Let ζ λ be the
irreducible spin character of the Schur double covering group S̃n afforded by the
module V λ, λ ∈ SPn . Stembridge [1989] obtained the irreducible decomposition
for the twisted tensor product of S̃n [Kleshchev 2005]

ch(ζ (n)
⊗ ζ λ) = Pλ(x; −1),

where ch is the characteristic map (cf. [Jing 1991b]).

Corollary 4.7. Let Sλ be the Specht module corresponding to partition λ ⊢ n and
1 ≤ m < n

2 . Then we have the irreducible decomposition as Sn-modules

V (n)
⊗ V (n−m,m)

≃

⊕
λ∈DHP(n)

(N (n−m−λ1)(λ) − N (m−λ1)(λ))Sλ.(4-21)

Aokage [2021b] obtained the explicit irreducible decomposition of (V (n))⊗2

when n is even, so (4-21) offers the formula for a general tensor product. Recall
that the symmetric functions Pµ(x; −1) are well defined for all partitions µ, so gµλ

are defined similarly as (4-1) for any partitions λ, µ:

Pµ(x; −1) =

∑
λ

gµλsλ(x).(4-22)

Note that the following identities between the Schur P-functions and the Schur
functions hold by using the tensor product of the spin representations of the sym-
metric group [Aokage 2021a]:

(4-23)

∑
λ∈HP(n)\ HOP(n)

sλ(x) =

∑
l(µ)≤2

(−1)µ2 Pµ(x; −1),

∑
λ∈HOP(n)

sλ(x) =

∑
l(µ)=2

(−1)µ2+1 Pµ(x; −1),

where HOP(n)
.
= {λ ∈ HP(n) | λ1 is odd} and n = 2r is even.

Aokage [2021a] has this conjecture at the end of his paper:

Theorem 4.8. For λ = (n − j, 1 j ) ∈ HP(n),

(4-24) g(r2)λ =

{
0 if j < r ,

(−1)r+ j if j ≥ r .
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As an application of our two-row formula for bξλ, we will present a proof of
Aokage’s conjecture.

Combining with the above two identities in (4-23), we have

Pn(x; −1) + 2
r∑

i≥1

(−1)i P(n−i,i)(x; −1) =

n∑
j=0

(−1) j s(n− j,1 j )(x).

Thus,

P(r2)(x; −1) =
1
4

r−1∑
i≥0

(−1)i+r+1 Q(n−i,i)(x; −1) +
1
2

n∑
j=0

(−1)r+ j s(n− j,1 j )(x).

By the orthonormality of sλ,

g(r2)λ =
1
4

r−1∑
i≥0

(−1)i+r+1b(n−i,i)λ +
1
2
(−1)r+ jδ(n− j,1 j )λ.

It follows from the remark below Theorem 4.5, we have g(r2)λ =0 unless λ∈DHP(n).
Now let’s show Theorem 4.8.

Proof. Let λ = (n − j, 1 j ) ∈ HP(n). We have

g(r2)λ =
1
2
(−1)r+1

+

r−1∑
i=1

(−1)i+r+1(N ( j−i)(λ) − N (i+ j−n)(λ)) +
1
2
(−1)r+ j

=
1
2
(−1)r+1

+ (−1)r+1
( min{r−1, j}∑

i=1

(−1)i
−

r−1∑
i=n− j

(−1)i
)

+
1
2
(−1)r+ j .

Then the result follows immediately by a careful analysis of j and direct computa-
tion. □

We remark that there exists a quadratic expression of the P-function in terms of
Schur functions [Lascoux et al. 1993]. Explicit and direct linear expansion (4-22)
in general is thus needed. Indeed, we can give a compact formula of g(r2)λ for any
partition λ.

Theorem 4.9. For λ = (λ1, λ2, 2m2, 1m1) ∈ DHP(n)\ HP(n), we have that

(4-25) g(r2)λ =

r−1∑
i=1

(−1)i+r+1(N (n−i−λ1)(λ) − N (i−λ1)(λ)).

By considering λ case by case, we have that

g(r2)λ =

{
1 if λ2 + m1 − 1 ≤ λ1 ≤ λ2 + m1 + 1,
0 otherwise.
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Tables for K−

ξµ
(t), 2 ≤ n ≤ 6

Here

[n] = tn−1
+ · · · + t + 1, [n]!! = [n][n − 2] · · · .

For completeness, we include n = 2, 3, 4 from [Wan and Wang 2013].

µ ξ = (2)

(2) 2
(12) 2[2]

Table 1. n = 2.

µ ξ = (3) (2, 1)

(3) 2 0
(2, 1) 2[2] 4
(13) 2[4] 4t[2]

Table 2. n = 3.

µ ξ = (4) (3, 1)

(4) 2 0
(3, 1) 2[2] 4
(22) 2t[2] 4[2]

(2, 12) 2[4] 4[2]
2

(14) 2[6]!!/[3]! 4t[4]!!

Table 3. n = 4.

µ ξ = (5) (4, 1) (3, 2)

(5) 2 0 0
(4, 1) 2[2] 4 0
(3, 2) 2t[2] 4[2] 4
(3, 12) 2[4] 4[2]

2 4[2]

(22, 1) 2t[4] 4[2][3] 4[2]
2

(2, 13) 2[6]!!/[3]! 4[4][3] 4t[2]([3] + 1)

(15) 2[8]!!/[4]! 4t[6]!!/[2] 4t2
[4]

2

Table 4. n = 5.
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µ ξ = (6) (5, 1) (4, 2) (3, 2, 1)

(6) 2 0 0 0
(5, 1) 2[2] 4 0 0
(4, 2) 2t[2] 4[2] 4 0
(4, 12) 2[4] 4[2]

2 4[2] 0
(3, 3) 2t2

[2] 4t[2] 4[2] 0
(3, 2, 1) 2t[4] 4[2][3] 4[2](t + 2) 8
(3, 13) 2[6]!!/[3]! 4[4][3] 4[2]

2
[3] 8t[2]

(23) 2t3
[4] 4t[4]!! 4[2]([4] + t2) 8t[2]

(22, 12) 2t[6]!!/[3]! 4[4]
2 4[2]

2([4] + t) 8t[2]
2

(2, 14) 2[8]!!/[4]! 4[4][6]!! 4t[4]!!([4] + 1) 8t2
[4]!!

(16) 2[10]!!/[5]! 4t[8]!!/[3]! 4t2
[5][6]!!/[3] 8t4

[6]!!/[3]

Table 5. n = 6.
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