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In the first part, we give a self-contained account of Tannakian fundamental
groups of extensions, generalizing a result of Hardouin (2008; 2011). In the
second part, we use Hardouin’s characterization of Tannakian groups of
extensions to give a characterization of the unipotent radical of the Mumford–
Tate group of an open complex curve. Consequently, we prove a formula that
relates the dimension of the unipotent radical of the Mumford–Tate group of
an open complex curve X \ S with X smooth and projective and S a finite set
of points to the rank of the subgroup of the Jacobian of X supported on S.

1. Introduction

Let X be a smooth complex projective curve and S ⊂ X (C) a finite nonempty set
of points. There is an exact sequence

(1) 0 → H 1(X) → H 1(X \ S)
residue

−−−−→ Q(−1)|S|−1
→ 0

of (rational) mixed Hodge structures, where the first arrow is induced by the
inclusion X \ S ⊂ X . In connection to a new proof of the Manin–Drinfeld theorem
for modular curves, Deligne proved in the 1970s that this sequence splits (or
equivalently, H 1(X \ S) is semisimple) if and only if the rank of the subgroup of the
Jacobian of X supported on S is zero (see [7, Section 10.3] and [8, Remarque 7.5],
and also [11] for another argument).

To any mixed Hodge structure H , one associates an algebraic group called the
Mumford–Tate group of H , which we denote by MT (H). This group can be
defined in at least two equivalent ways: In the original definition, due to Mumford
(and then refined by Serre) in the pure case, MT (H) is the subgroup of GL(HQ)

(where as usual, HQ denotes the underlying rational vector space of H ) which fixes
all Hodge classes of weight zero in finite direct sums of objects of the form

H⊗m
⊗ (H ∨)⊗n (m, n ∈ Z≥0).
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The second definition, which is somewhat more natural and more conceptual, is in
terms of Tannakian formalism: MT (H) is the fundamental group of the Tannakian
subcategory ⟨H⟩ of the category of mixed Hodge structures generated by H (see
Section 2 for a brief reminder on Tannakian fundamental groups; see [1] for the
equivalence of the two definitions). This means that one has a canonical equivalence
of categories between ⟨H⟩ and the category of finite-dimensional representations
of MT (H).

The unipotent radical of MT (H) measures how far H is from being semisimple.
In particular, H is semisimple if and only if the unipotent radical of MT (H) is
trivial. Thus Deligne’s result about H 1(X \ S) can be paraphrased as follows: the
unipotent radical of MT (H 1(X \S)) is trivial if and only if the rank of the subgroup
of the Jacobian of X supported on S is zero.

The unipotent radical of the Mumford–Tate group of a 1-motive (of which
the Mumford–Tate group of H 1(X \ S) is an example) has been studied in great
generality by Bertolin [3; 4] and Jossen [18]. On his path to prove the main theorem
of [18], Jossen gives a characterization of this unipotent radical in Theorem 6.2 of
the same article.

In the case of H 1(X \ S), Jossen’s characterization is the following: Suppose
S = {p0, . . . , pn}. Let P be the identity connected component of the Zariski closure
of the subgroup generated by

(p1 − p0, . . . , pn − p0)

in Jac(X)n , where Jac(X) is the Jacobian of X . Then P itself is an abelian subvariety
of Jac(X)n . Jossen’s theorem asserts that the Lie algebra of the unipotent radical of
MT (H 1(X \ S)) is canonically isomorphic to H1(P). In particular, the dimension
of the unipotent radical of MT (H 1(X \ S)) is twice the dimension of P .

To get a more concrete description (one that does not involve the Zariski closure)
of the dimension of the unipotent radical of MT (H 1(X \ S)), one can note that
linear relations between the points p1 − p0, . . . , pn − p0 with coefficients in the
endomorphism algebra of Jac(X) cut down the dimension of P .

One of the main results of this paper gives a more explicit description of the unipo-
tent radical of MT (H 1(X \ S)) that avoids the Zariski closure (see Theorem 4.9.1).
As a consequence, in the case where Jac(X) is simple, we get the following clean
formula for the dimension of the unipotent radical (see Theorem 4.9.2(b)):

Theorem A. Let X , S, and Jac(X) be as above. Let g, E , and U(H 1(X \ S)) be
respectively the genus of X , the endomorphism algebra End(Jac(X))⊗Q of Jac(X),
and the unipotent radical of the Mumford–Tate group of H 1(X \ S). Suppose that
Jac(X) is simple. Then the dimension of U(H 1(X \ S)) is equal to 2g times the
E-rank of the E-submodule of Jac(X)(C)⊗Q generated by the subgroup supported
on S.
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In the general case where Jac(X) is not necessarily simple, for every division al-
gebra in End(Jac(X))⊗Q we get an upper bound for the dimension of U(H 1(X\S))

(see Theorem 4.9.2(a)).
Let us put this discussion on hold for the moment and go to the abstract setting

of (neutral) Tannakian categories. Let T be a Tannakian category over a field K of
characteristic zero, and ω a fiber functor over K (the example relevant to the earlier
discussion being the category of mixed Hodge structures and the forgetful functor
H 7→ HQ). Suppose we have an extension

(2) 0 → L → M → N → 0

in T. Denoting the Tannakian fundamental groups of objects with respect to ω

by G(−), we have a natural surjection

G(M) → G(L ⊕ N ).

Let U(M) be the kernel of this map (if N and L are semisimple, then U(M) is the
unipotent radical of G(M)). By Tannakian formalism, there is an object

Lie(U(M)) ⊂ Hom(N , L),

whose image under ω is the Lie algebra of U(M). The question of characterization
of Lie(U(M)) has been studied and answered earlier by Hardouin and Bertrand in
the case where N = 1 and L is semisimple: A theorem of Hardouin [15, Theorem 2]
(see also [14]) asserts that in this case, Lie(U(M)) is the smallest subobject of

Hom(1, L) ∼= L

such that the pushforward of (2) along the quotient map

L → L/Lie(U(M))

splits. The result was earlier proved by Bertrand [5, Theorem 1.1] in the setting of
D-modules.

The case of arbitrary semisimple N (with L continued to be semisimple as well)
can be deduced from Hardouin’s result. In this case, the characterization becomes
as follows: If ν is the extension of 1 by Hom(N , L) corresponding to (2) under the
canonical isomorphism

Ext(N , L) ∼= Ext(1, Hom(N , L))

(where Ext means the Yoneda Ext1 group in T), then Lie(U(M)) is the smallest
subobject of Hom(N , L) such that the pushforward of ν under the quotient map

Hom(N , L) → Hom(N , L)/Lie(U(M))

splits.
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The goal of this paper is twofold. Our first goal, to which the first part of the paper
is devoted, is to give a self-contained and general treatment of Tannakian groups
of extensions in characteristic zero. More precisely, in the general setting of the
extension (2) in a Tannakian category, in Theorem 3.3.1 we give a characterization
of Lie(U(M)) as a subobject of Hom(N , L), without assuming that N or L is
semisimple. In the semisimple case, the result simplifies to Hardouin’s characteri-
zation (see Corollary 3.4.1). We also discuss a dual variant of the characterization
of Lie(U(M)) (Theorem 3.5.1 and in the semisimple case, Corollary 3.5.2), which
is more convenient in some settings.

We should point out that the generalization to the nonsemisimple situation is
indeed useful in practical applications: extensions as in (2) with nonsemisimple L
and N arise naturally, for example, in a nonsemisimple Tannakian category with
a weight filtration, e.g., the category of mixed motives. In fact, in [12] we build
on Theorem 3.3.1 to refine a result of Deligne from [18, Appendix] on unipotent
radicals of Tannakian fundamental groups in a Tannakian category with a weight
filtration, and then give applications to mixed motives which have “large” unipotent
radicals of motivic Galois groups (see the aforementioned paper for more details).

The second goal of the paper, to which the second part of the paper is devoted, is to
apply the method of the first part to study the unipotent radical of the Mumford–Tate
group of an open curve. Here we take T to be the category of mixed Hodge structures
and apply results about Tannakian groups of extensions to the extension (1). This
approach leads to a characterization of the unipotent radical of the Mumford–Tate
group of an open curve (see Theorem 4.9.1). The dimension formula and upper
bounds mentioned above follow from this characterization of the unipotent radical
(see Theorem 4.9.2).

The proof of Theorem 4.9.1 has two ingredients: The first ingredient is the
semisimple case of Theorem 3.3.1 due to Hardouin (or more precisely, its dual
variant given in Corollary 3.5.2). This gives a characterization of Lie

(
U(H 1(X\S))

)
as follows: if µ is the element of

Ext(H 1(X)|S|−1, 1)

corresponding to (1) under the canonical isomorphisms

Ext(Q(−1)|S|−1, H 1(X))

∼= Ext(H1(X) ⊗ Q(−1)|S|−1, 1)
Poincaré duality

∼= Ext(H 1(X)|S|−1, 1),

then the orthogonal complement (see Section 3.5) of Lie(U(H 1(X \ S)) is the
largest subobject of H 1(X)|S|−1 on which µ restricts to a split extension. The
second ingredient of the argument is now the calculation of the restrictions of the
extension µ along different maps H 1(X) → H 1(X)|S|−1.
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Theorem 4.9.1 can be deduced alternatively from Jossen’s general characteriza-
tion of the unipotent radical of the Mumford–Tate group of an arbitrary 1-motive
given in [18, Theorem 6.2]. Although Theorem 4.9.1 is weaker than Jossen’s [18,
Theorem 6.2], we hope that the reader might find some value in the simplicity
of our approach and exposition, which solely rely on the general material on
Tannakian groups and the calculation of the relevant extensions in the category of
mixed Hodge structures. This approach can be applied to any situation where the
relevant extensions can be calculated and described nicely. It is also hopefully more
accessible to some audiences.

The paper is organized as follows. In the next section, we recall some basic
generalities about Tannakian categories. In Section 3 we prove the characterizations
of Lie(U(M)) in a general Tannakian category and for general L and N (with
notation as above). A reader not familiar with the language of Tannakian categories
but familiar with properties of the category of mixed Hodge structures may assume
in Sections 2 and 3 that T is the latter category and ω is the forgetful functor. In
Section 4, we come back to the problem of studying the unipotent radical of the
Mumford–Tate group of an open curve, and prove Theorems 4.9.1 and 4.9.2.

2. Preliminaries

In this section we briefly recall a few facts and constructions about Tannakian
categories. For any commutative ring R, let ModR denote the category of R-
modules. Throughout, K is a field of characteristic zero. The categories of groups
and commutative K-algebras are respective denoted by Groups and AlgK . For an
affine group scheme G over K , let Rep(G) be the category of finite-dimensional
representations of G over K . We use the language of [10] for the theory of Tannakian
categories. Our Tannakian categories are all neutral.

2.1. Let T be a Tannakian category over K with unit object 1; thus T is a K-linear
rigid abelian tensor category with the identity 1 of the tensor structure satisfying
End(1) = K , for which there exists a fiber functor, i.e., a K-linear exact faithful
tensor functor

T → ModK .

Let ω be such a functor. Let

Aut⊗(ω) : AlgK → Groups

be the functor that sends a commutative K-algebra R to

Aut⊗(ω ⊗ 1R) := the group of automorphisms of the functor
ω ⊗ 1R : T → ModR

respecting the tensor structures.
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The fundamental theorem of the theory of Tannakian categories [10, Theorem 2.11]
asserts that Aut⊗(ω) is representable by an affine group scheme G(T, ω) over K
(so that Aut⊗(ω) is the functor of points of G(T, ω)), and that the functor

T → Rep(G(T, ω))

sending
M 7→ ωM

(with the natural action of G(T, ω) on ωM) is an equivalence of tensor categories.
We call G(T, ω) the fundamental (or the Tannakian) group of T with respect to ω.

If T′ is also a Tannakian category over K , a tensor functor φ : T′
→ T gives rise

to a morphism
φ#

: G(T, ω) → G(T′, ω ◦ φ)

of group schemes over K , sending an automorphism of ω⊗1R for any K-algebra R to
the obvious automorphism induced on (ω⊗1R)◦φ = (ω◦φ)⊗1R . The morphism φ#

is surjective (or faithfully flat) if and only if φ is fully faithful and moreover, satisfies
the following property: for every M ∈ T′, every subobject of φ(M) is isomorphic
to φ(L) for some subobject L of M (see [10, Proposition 2.21], for instance).
In particular, if T′ is a full Tannakian subcategory of T which is closed under
taking subobjects, then the inclusion T′

⊂ T gives rise to a surjective morphism
G(T, ω) → G(T′, ω|T′), where ω|T′ is the restriction of ω to T′.

2.2. Let M be an object of T. Let ⟨M⟩ denote the full Tannakian subcategory
of T generated by M , that is, the smallest full Tannakian subcategory of T that
contains M , and is closed under taking subobjects (or subquotients). Set

G(M, ω) := G(⟨M⟩, ω|⟨M⟩) = Aut⊗(ω|⟨M⟩);

we refer to this group as the fundamental (or the Tannakian) group of M with
respect to ω. Starting with M and 1, we can obtain every object of ⟨M⟩ by finitely
many iterations of taking direct sums, duals, tensor products, and subquotients. It
follows that the natural map

G(M, ω) → GLωM , σ 7→ σM

(restricting to the action on ωM) is injective, so that, indeed, G(M, ω) is an al-
gebraic group over K . (Here, complying with the standard notation for natural
transformations, σM : ωM → ωM is how σ acts on ωM .) Often we will identify
G(M, ω) as a subgroup of GLωM via the injection above.

Since ⟨M⟩ is closed under taking subobjects, the natural map G(T, ω)→G(M, ω)

(induced by the inclusion ⟨M⟩ ⊂ T) is surjective. The kernel of this map consists of
all σ ∈ G(T, ω) such that σM is identity (then by functoriality, σN is also identity
for every N ∈ ⟨M⟩).
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2.3. For any algebraic group G, let Lie(G) be the Lie algebra of G. Let N be a
normal subgroup of G(M, ω). Consider the adjoint representation

(3) Ad : G(M, ω) → GLLie(N ) .

In view of the equivalence of categories

(4) ⟨M⟩ → Rep(G(M, ω)), A 7→ ωA,

there is a canonical object Lie(N ) in ⟨M⟩ with

ωLie(N ) = Lie(N ),

such that the natural action of G(M, ω) on ωLie(N ) (through the definition of
G(M, ω) as the group of tensor automorphisms of the functor ω) coincides with
the adjoint representation (3).

3. The fundamental group of an extension

The goal of this section is to study the fundamental group of an extension in a
Tannakian category. As before, let T be a Tannakian category over a field K of
characteristic zero. Fix a fiber functor ω : T → ModK . We shall drop ω from the
notation for fundamental groups, and simply write G(M) (for M an object of T).
We use the notation IA for the identity map on an object A of a given category. We
use an unadorned Hom to denote a Hom group in a category of modules, with the
coefficient ring understood from the context. In T or any category of modules, the
dual of an object A is denoted by A∨.

3.1. Let L , M and N be objects of T given in an exact sequence

(5) 0 → L i
−→ M q

−→ N → 0,

where (as indicated in the diagram) the morphisms L → M and M → N are
respectively denoted by i and q.

The inclusion ι : ⟨L ⊕ N ⟩ ⊂ ⟨M⟩ induces a surjective morphism

ι# : G(M) → G(L ⊕ N ).

Let U(M) be the kernel of this map; it consists of those σ ∈ G(M) which act
trivially on ωL ⊕ ωN , or equivalently, on both ωL and ωN (i.e., σL = IωL and
σN = IωN ). Note that while for simplicity we did not incorporate L and N in the
notation for U(M), in general, U(M) will also depend on L and N . Our goal in
this section is to study the group U(M).

First, let us describe the map ι# more concretely. Use the map i (see (5)) to
identify ωL as a subspace of ωM . Moreover, once and for all, choose a section of
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the surjection ωq : ωM → ωN to identify

ωM = ωL ⊕ ωN

(as vector spaces). Then the functor ω applied to the sequence (5) gives

(6) 0 → ωL → ωL ⊕ ωN → ωN → 0,

where the second and third arrows are the inclusion and projection maps.
Let σ be an element of G(M). Since σ is an automorphism of the functor ω, we

have a commutative diagram

0 ωL ωL ⊕ ωN ωN 0

0 ωL ωL ⊕ ωN ωN 0

σL σM σN

It follows that
σM =

(
σL f
0 σN

)
∈ GLωL⊕ωN

for some f ∈ Hom(ωN , ωL). Let

G(M) ⊂ GLωL⊕ωN

be the subgroup consisting of the elements which stabilize ωL . Regarding G(M)

as a subgroup of GLωM = GLωL⊕ωN (via σ 7→ σM ), we have

G(M) ⊂ G(M).

Similarly, for any σ in G(L ⊕ N ),

σL⊕N =

(
σL 0
0 σN

)
∈ GLωL⊕ωN .

Thinking of G(L ⊕ N ) (resp. GLωL × GLωN ) as a subgroup of GLωL⊕ωN via
σ 7→ σL⊕N (resp. the diagonal embedding), we have

G(L ⊕ N ) ⊂ GLωL × GLωN .

The map ι# is then the restriction of

ϕ : G(M) → GLωL × GLωN(
g ∗

0 g′

)
7→

(
g 0
0 g′

)
(g ∈ GLωL , g′

∈ GLωN ).

Let
U (M) := ker(ϕ).
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Thus U (M) is the subgroup of GLωL⊕ωN consisting of the elements of the form(
IωL ∗

0 IωN

)
,

and in particular, is an abelian unipotent group. We have a commutative diagram

(7)
1 U(M) G(M) G(L ⊕ N ) 1

1 U (M) G(M) GLωL × GLωN 1

ι#

ϕ

where the injective arrows are inclusion maps and the rows are exact. Thus

U(M) ⊂ U (M).

Being a subgroup of an abelian unipotent group, U(M) is abelian and unipotent.
As discussed in Section 2.3, the adjoint representation of G(M) gives a canonical

object Lie(U(M)) of ⟨M⟩ whose image under ω is Lie(U(M)). Since U(M) is
abelian, the action of G(M) on Lie(U(M)) factors through an action of G(L ⊕ N ),
so that indeed, the object Lie(U(M)) belongs to the subcategory ⟨L ⊕ N ⟩.

The Lie algebra of U (M) can be identified with

Hom(ωN , ωL)

(with trivial Lie bracket). The exponential map

exp : Lie(U (M)) = Hom(ωN , ωL) → U (M)(K )

(with its inverse denoted by log) is given by

(8) exp( f ) =

(
IωL f
0 IωN

)
.

Let Hom(N , L) denote the internal hom object in the category T. We identify

ω(Hom(N , L)) = Hom(ωN , ωL)

via the canonical isomorphism between the two.
The following observation is standard.

Proposition 3.1.1. The inclusion map

Lie(U(M)) → Hom(ωN , ωL)

is ω of a morphism
Lie(U(M)) → Hom(N , L).

(In other words, Lie(U(M)) can be identified as a subobject of Hom(N , L).)
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Proof. In view of the equivalence of categories (4), it is enough to show that the
natural actions of G(M) on Lie(U(M)) and Hom(ωN , ωL) are compatible. In other
words, we need to show that for any commutative K-algebra R and σ ∈ G(M)(R),
we have

σLie(U(M)) = σHom(N ,L)|Lie(U(M))R ,

where for any vector space V over K , we denote VR := V ⊗ R. We may identify

(ωHom(N , L))R = Hom((ωN )R, (ωL)R))

(Hom in R-modules). Considering the evaluation map N ⊗ N ∨
→ 1 and the

canonical isomorphism Hom(N , L) ∼= N ∨
⊗ L (which after applying ω, are the

corresponding maps in linear algebra), one easily sees that the map σHom(N ,L) is
given by

f 7→ σL ◦ f ◦ σ−1
N ( f ∈ Hom((ωN )R, (ωL)R)).

We now calculate the map σLie(U(M)). By definition, the action of G(M) on
Lie(U(M)) is the restriction of the adjoint representation of G(M) to Lie(U(M)).
Let

f ∈ Lie(U(M))R ⊂ Lie(U (M))R = Hom((ωN )R, (ωL)R).

Then σLie(U(M))( f ) is characterized by

exp(σLie(U(M))( f )) = σM exp( f )σ−1
M ,

where exp is the isomorphism between Lie(U(M)) and U(M) as varieties over K ,
and via the inclusion U(M) ⊂ U (M), is given by (8) (with coefficients extended
to R). Writing

σM =

(
σL h
0 σN

)
,

where h ∈ Hom((ωN )R, (ωL)R), we have

σM exp( f )σ−1
M =

(
σL h
0 σN

) (
I(ωL)R f

0 I(ωN )R

) (
σ−1

L −σ−1
L ◦ h ◦ σ−1

N
0 σ−1

N

)
=

(
I(ωL)R σL ◦ f ◦ σ−1

N
0 I(ωN )R

)
= exp(σL ◦ f ◦ σ−1

N ).

Thus
σLie(U(M))( f ) = σL ◦ f ◦ σ−1

N ,

as desired. □

Remark 3.1.2. (1) The embedding

Lie(U(M)) ⊂ Hom(ωN , ωL)

is independent of the section of ωq used to identify ωM = ωL ⊕ ωN . Indeed, if
we had chosen a different section of ωq and hence a different identification of ωM
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as ωL ⊕ωN , then the resulting embedding G(M) ↪→ GLωL⊕ωN would differ from
the previous one by conjugation by an element of U (M). Since U (M) is abelian,
the two embeddings agree on U(M). Thus our identification of Lie(U(M)) as a
subobject of Hom(N , L) is independent of the choice of the section of ωq .

(2) If L and N are semisimple, then U(M) is the unipotent radical of G(M), and
in particular will only depend on M (and not on the choices of L or N ). (Recall
that L and N are semisimple if and only if the category ⟨L ⊕ N ⟩ is semisimple if
and only if G(L ⊕ N ) is reductive.)

3.2. Before we proceed any further, let us recall a categorical construction. The
extension (5) gives an element of

Ext(N , L),

where Ext denotes the Yoneda Ext1 group in T. Recall that one has a canonical
isomorphism

(9) Ext(N , L) ∼= Ext(1, Hom(N , L)).

Let
ν ∈ Ext(1, Hom(N , L))

be the extension class corresponding to (5) under the canonical isomorphism (9).
Then ν is the class of the extension obtained by first applying Hom(N , −) to the
sequence (5):

0 → Hom(N , L) → Hom(N , M) → Hom(N , N ) → 0,

and then pulling back along the canonical morphism

e : 1 → Hom(N , N )

characterized by the fact that

ωe(1) ∈ ωHom(N , N ) = Hom(ωN , ωN )

is the identity map. Going through this procedure, assuming N ̸= 0, we see that ν

is the class of the extension

(10) 0 → Hom(N , L) → Hom(N , M)†
→ 1 → 0,

where

• Hom(N , M)† is the subobject of Hom(N , M) characterized by

ωHom(N , M)†

= Hom(ωN , ωM)†

:=
{

f ∈ Hom(ωN , ωM) : (ωq) ◦ f = λ( f ) IdωN for some λ( f ) ∈ K
}
,

• after applying ω, the injective arrow is f 7→ (ωi) ◦ f , and
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• after applying ω, the surjective arrow is the map f 7→ λ( f ), where λ( f ) ∈ K is
as in the definition of Hom(N , M)† above.

If N (and hence Hom(N , L)) is zero, then ν is the trivial extension

0 → 0 → 1 → 1 → 0.

For convenience, we set Hom(N , M)†
:= 1 in this case.

3.3. We are ready to give the characterization of the subobject Lie(U(M)) of
Hom(N , L). To simplify the notation, we identify Hom(N , L) with its image under
the injection Hom(N , L) → Hom(N , M)†.

Theorem 3.3.1. Let A be a subobject of Hom(N , L). Then A contains Lie(U(M))

if and only if the quotient
Hom(N , M)†/A

belongs to the subcategory ⟨L ⊕ N ⟩. (Thus Lie(U(M)) is the smallest subobject of
Hom(N , L) with this property.)

Proof. The theorem is trivial if N =0, so we may assume N ̸=0. An object X of ⟨M⟩

belongs to the subcategory ⟨L ⊕ N ⟩ if and only if the subgroup U(M) of G(M)

acts trivially on ωX . Thus the assertion in the theorem can be paraphrased as that
A contains Lie(U(M)) if and only if the action of U(M) on ω(Hom(N , M)†/A) is
trivial.

Let σ ∈ G(M)(K ). Let A ⊂ Hom(N , L). The morphism

Hom(N , M)†
→ Hom(N , M)†/A

gives rise to a commutative diagram

Hom(ωN , ωM)† Hom(ωN , ωM)†/ωA

Hom(ωN , ωM)† Hom(ωN , ωM)†/ωA

σHom(N ,M)† σHom(N ,M)†/A

Thus
σHom(N ,M)†/A( f + ωA) = σHom(N ,M)†( f ) + ωA

for every f ∈ Hom(ωN , ωM)†.
As before, we use our fixed section of ωq :ωM →ωN to identify ωM =ωL⊕ωN .

Then we have

(11)
Hom(ωN , ωM) Hom(ωN , ωL) ⊕ Hom(ωN , ωN )

Hom(ωN , ωM)† Hom(ωN , ωL) ⊕ K · IωN
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Suppose σ ∈ U(M)(K ). Then σL and σN are both identity, and the action of σ on
the G(M)-invariant subspace Hom(ωN , ωL) of Hom(ωN , ωM)† is trivial. Thus

σHom(N ,M)†/A = IHom(ωN ,ωM)†/ωA

if and only if
σHom(N ,M)†/A(IωN + ωA) = IωN + ωA,

where here, as well as in the rest of this argument except in (12) below, IωN is
considered as an element of Hom(ωN , ωM)† via the decomposition (11). This is
equivalent to

σHom(N ,M)†(IωN ) − IωN ∈ ωA.

Note that σHom(N ,M) (and hence σHom(N ,M)†) is given by

f 7→ σM ◦ f ◦ σ−1
N = σM ◦ f ( f ∈ Hom(ωN , ωM)).

We have

(12) σM =

(
IωL log(σM)

0 IωN

)
∈ GLωL⊕ωN (K ),

where log(σM) ∈ Hom(ωN , ωL). Then

σHom(N ,M)†(IωN ) = σM ◦ IωN = log(σM) + IωN ,

so that
σHom(N ,M)†(IωN ) − IωN = log(σM).

We have shown that any element σ ∈U(M)(K ) acts trivially on ω(Hom(N , M)†/A)

if and only if log(σM) is in ωA. The group U(M) is unipotent and hence U(M)(K )

is dense in U(M). It follows that U(M) acts trivially on ω(Hom(N , M)†/A) if
and only if for every σ ∈ U(M)(K ), we have log(σM) ∈ ωA, i.e., if and only if
Lie(U(M) ⊂ ωA. This completes the proof. □

3.4. For every subobject A of Hom(N , L), pushing extensions forward along the
natural map Hom(N , L) → Hom(N , L)/A we have a map

Ext(1, Hom(N , L)) → Ext(1, Hom(N , L)/A).

We denote the image of ν under this map by ν/A. Theorem 3.3.1 has the following
corollary:

Corollary 3.4.1. (a) If A is a subobject of Hom(N , L) such that ν/A is trivial,
then Lie(U(M)) ⊂ A.

(b) Suppose L and N are semisimple. Then ν/Lie(U(M)) is trivial (and hence
Lie(U(M)) is the smallest subobject of Hom(N , L) with this property).
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Proof. We may assume N ̸= 0. Suppose ν/A is trivial. Then

Hom(N , M)†/A ≃ Hom(N , L)/A ⊕ 1,

and hence Hom(N , M)†/A belongs to the subcategory generated by L and N . Thus
(a) follows from Theorem 3.3.1.

As for (b), the theorem implies that Hom(N , M)†/Lie(U(M)) is in ⟨L ⊕ N ⟩,
which is a semisimple category by the hypothesis of semisimplicity of L and N .
Thus ν/Lie(U(M)) splits. □

Remark 3.4.2. The semisimple case of Corollary 3.4.1 is originally due to Hardouin
(see Theorem 2 of [15] as well as Théorème 2.1 of [14]). Hardouin shows that when
L and N are semisimple, Lie(U(M)) is the smallest subobject of Hom(N , L) such
that ν/Lie(U(M)) is trivial. The same statement was earlier proved by Bertrand
[5, Theorem 1.1] in the special case where T is the category of D-modules over a
differential field of characteristic zero. (Both Hardouin and Bertrand take N = 1,
but one can deduce the case of arbitrary (semisimple) N from that.)

3.5. Consider the canonical nondegenerate pairing

(13) (L∨
⊗ N ) ⊗ Hom(N , L) → 1

given (after applying ω) by

(γ ⊗ x) ⊗ f 7→ γ ( f (x)).

For any subobject A of Hom(N , L) (resp. L∨
⊗ N ), we denote by A⊥ the subobject

of L∨
⊗ N (resp. Hom(N , L)) orthogonal to A with respect to the above pairing.

It is clear that A can be recovered from A⊥ by A⊥⊥
= A.

In particular, we have a subobject

Lie(U(M))⊥ ⊂ L∨
⊗ N .

In this subsection we shall give a dual variant of Theorem 3.3.1 which characterizes
this object. In some situations (such as the application in Section 4), this variant
might be more convenient to use than the original version.

Let
µ ∈ Ext(L∨

⊗ N , 1)

be the extension class corresponding to the defining extension of M (i.e., (5)) under
the canonical isomorphism

(14) Ext(N , L) ∼= Ext(L∨
⊗ N , 1).

The extension class µ is obtained as follows. Let

ev : L∨
⊗ L → 1
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be the evaluation pairing between L and its dual. Then µ is the class of the
pushforward of the extension

0 → L∨
⊗ L

IL∨⊗i
−−−→ L∨

⊗ M
IL∨⊗q
−−−→ L∨

⊗ N → 0

(obtained by tensoring (5) by L∨) through the morphism ev. More explicitly, when
L is not zero, µ is given by the extension

(15) 0 → 1 → (L∨
⊗ M)†

→ L∨
⊗ N → 0,

where

• (L∨
⊗ M)† is the quotient of L∨

⊗ M by (IL∨ ⊗ i)(ker(ev)),

• the injective arrow is the composition

1
≃, induced by ev
−−−−−−−−−→ (L∨

⊗ L)
/

ker(ev)
induced by IL∨ ⊗ i
−−−−−−−−−−→ (L∨

⊗ M)†, and

• the surjective arrow is induced by IL∨ ⊗ q .

If L = 0, then µ is given by the extension

0 → 1 → 1 → 0 → 0.

For convenience, in this case we set (L∨
⊗ M)†

:= 1.
We shall use the following notation for restrictions of extensions. For every

subobject B of L∨
⊗ N , let µ|B be the restriction of µ to B (i.e., the pullback of µ

along the inclusion map B → L∨
⊗ N ).

We can now state the dual variants of Theorem 3.3.1 and Corollary 3.4.1.

Theorem 3.5.1. Let B be a subobject of L∨
⊗ N. Then

B ⊂ Lie(U(M))⊥

if and only if the preimage of B under the surjective arrow in (15) belongs to the
subcategory ⟨L ⊕ N ⟩.

Proof. One can prove this directly, similar to the proof of Theorem 3.3.1, by
calculating the action of U(M) on (L∨

⊗ M)† (and its subobjects) explicitly. We
shall instead use a few categorical considerations to show that the statement is
equivalent to Theorem 3.3.1. Let T be an object of T. For any subobject A of T ,
denote by A⊥ the orthogonal complement of A with respect to the evaluation pairing

T ∨
⊗ T → 1.

Dualizing the exact sequence

0 → A → T → T/A → 0,

we get
0 → (T/A)∨

→ T ∨
→ A∨

→ 0.
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Use this to identify

A⊥ (by definition)
= ker(T ∨

→ A∨) ∼= (T/A)∨.

There is a commutative diagram

Ext(1, T ) Ext(T ∨, 1)

Ext(1, T/A) Ext(A⊥, 1)

pushforward

dualizing,≃

pullback

dualizing,≃

where the horizontal maps dualize extensions. Apply this with T = Hom(N , L),
and use the pairing (13) to identify L∨

⊗ N as T ∨ (so that (13) becomes simply the
evaluation pairing between T and T ∨). It is easy to see that ν and µ are duals of one
another, with the isomorphism between (L∨

⊗ M)† and the dual of Hom(N , M)†

defined by the pairing

(L∨
⊗ M)†

⊗ Hom(N , M)†
→ 1,

which after applying ω is given by

g ⊗ x ⊗ f 7→ g
(
λ( f )x − f ((ωq)(x))

)
.

(Here g ⊗ x is the image of g ⊗ x ∈ ω(L∨) ⊗ ωM in ω(L∨
⊗ M)†, and f is in

Hom(ωN , ωM)†.) Thus by the above diagram, for any subobject A of Hom(N , L),
we have an isomorphism between

(Hom(N , M)†/A)∨

and the preimage of A⊥ under the surjective arrow in (15). The equivalence of
Theorems 3.3.1 and 3.5.1 is clear from this. □

The argument also gives the following dual variant of Corollary 3.4.1:

Corollary 3.5.2. (a) If B is a subobject of L∨
⊗ N such that µ|B is trivial, then

B ⊂ Lie(U(M))⊥.

(b) Suppose L and N are semisimple. Then the restriction of µ to Lie(U(M))⊥

is trivial. (Hence Lie(U(M))⊥ is the largest subobject of L∨
⊗ N with this

property.)

4. The unipotent radical of the Mumford–Tate group of H1 of an
algebraic curve

Let MHS be the category of rational mixed Hodge structures. The category MHS
is a neutral Tannakian category over Q. The forgetful functor ωB : MHS → ModQ

sending an object to its underlying rational vector space is a fiber functor. For any
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rational mixed Hodge structure M , the group G(M) with (T, ω) = (MHS, ωB) is
called the Mumford–Tate group of M . In this section, we will use the results of the
previous section to study the unipotent radical of the Mumford–Tate group of the
degree one cohomology of a smooth complex projective curve minus a finite set of
points.

4.1. Notation. By a mixed Hodge structure we always mean a rational one. As
usual, Q(−n) denotes the Hodge structure of weight 2n with underlying rational
vector space (2π i)−nQ, with its complexification identified with C via

(2π i)−n
⊗ 1 7→ (2π i)−n.

The unit object 1 is Q(0). For any object M of MHS, we denote by MQ the
underlying rational vector space of M . If R is a commutative Q-algebra, MR

denotes MQ ⊗ R.
Given a pure Hodge structure H of weight −1, we denote by JH the intermediate

Jacobian
JH :=

HC

F0 HC + HQ

,

where F · is the Hodge filtration.
Given any smooth complex variety X , by H i (X) we mean the mixed Hodge

structure on the degree i Betti cohomology of X (with underlying rational vector
space H i (X, Q)). We shall identify H i (X)C = H i (X, C) with H i

d R(X) (= smooth
complex de Rham cohomology) via the isomorphism of de Rham. By Hi (X) we
mean the dual of H i (X); it is a mixed Hodge structure with underlying rational
vector space Hi (X, Q).

All the Ext (= Yoneda Ext1) groups in this section are in MHS.

4.2. Carlson [6] gives an explicit description of Ext groups in MHS. We briefly
recall this description here in a special case that is of interest to us.

Let A be a pure Hodge structure of weight 1. Carlson gives a canonical isomor-
phism

Ext(A, 1) → J (A∨),

where A∨ is the dual Hodge structure to A. The isomorphism is functorial in A.
See [6] for details. (Carlson [6] proves the analogous result for integral mixed
Hodge structures. The proof of the rational case is identical.)

4.3. From this point on, let X be a smooth complex projective curve. We denote the
Jacobian variety of X by Jac(X). Let CH hom

0 (X) be the group of divisors of degree 0
on X modulo the subgroup of principal divisors. (In other words, CH hom

0 (X) is the
homologically trivial subgroup of the Chow group CH0(X).) The group CH hom

0 (X)

is the group of complex points of Jac(X).
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Set CH hom
0 (X)Q := CH hom

0 (X) ⊗ Q. The Abel–Jacobi map on X gives an
isomorphism

AJX : CH hom
0 (X)Q → JH1(X),

sending the class of p − q, with p, q ∈ X , to the class of the functional
∫ p

q on the
space of harmonic 1-forms on X . (See, for instance, [2, Chapter 1]. Note that here,
said integral means the integral over any path from q to p. The choice of the path
will not matter in JH1(X).)

Composing AJX with Carlson’s isomorphism we get an isomorphism

(16) Ext(H 1(X), 1) ∼= CH hom
0 (X)Q.

We shall identify these two groups to simplify the notation.

4.4. Let S be a finite nonempty set of (complex) points of X . We identify H 1(X)

as a subobject of H 1(X \ S) via the map induced by the inclusion (X \ S) ⊂ X . The
reader can refer to Deligne’s [7, Section 10.3] for a thorough study of the mixed
Hodge structure H 1(X \ S).

Since X \ S is affine, every element of H 1(X \ S)C can be represented by a
meromorphic differential form on X with possible singularities only along S, and has
a well-defined residue at every p ∈ X . Indeed, if c =[ω] with ω a meromorphic form,
set resp(c) := resp(ω) (= the residue of ω at p, which is 1/(2π i) times the integral
of ω along a small positively oriented loop around p). The subspace H 1(X)C of
H 1(X \ S)C consists of the cohomology classes with zero residue everywhere (in
other words, classes of differentials of the second kind).

For any vector space or mixed Hodge structure V , we denote by (V S)′ the kernel
of the map

V S
→ V, (vp)p∈S 7→

∑
p∈S

vp

(where the vp are in V ).
One has a short exact sequence of mixed Hodge structures

(17) 0 → H 1(X) → H 1(X \ S)
resS
−−→ (Q(−1)S)′ → 0,

where the injective arrow is inclusion and resS : H 1(X \ S)C → (CS)′ is the map
c 7→ (resp(c))p∈S .

4.5. We shall apply the results of Section 3.3 to the exact sequence (17). The
Hodge structure H 1(X) is polarizable and hence semisimple (see, for instance, [19,
Section 7.1.2] and [9, Proposition 3.6]). Thus the group

U(H 1(X \ S)) := ker
(
G(H 1(X \ S)) → G(H 1(X) ⊕ Q(−1))

)
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is the unipotent radical of the Mumford–Tate group of H 1(X \ S). In view of
Section 3.5, the determination of the group U(H 1(X \ S)) amounts to finding

Lie
(
U(H 1(X \ S))

)⊥
⊂ H 1(X)

∨

⊗ (Q(−1)S)′.

We use the Poincaré duality isomorphism

P D : H 1(X)(1) → H 1(X)
∨

, [η] 7→
1

2π i

∫
X
η ∧ −,

where η is a closed smooth 1-form on X and the isomorphism

H 1(X)(1) ⊗ (Q(−1)S)′ → (H 1(X)
S
)′, c ⊗ (ap)p∈S 7→ (apc)p∈S

to identify
H 1(X)

∨

⊗ (Q(−1)S)′ ∼= (H 1(X)
S
)′.

Following the notation of Section 3.5, we let

µ ∈ Ext
(
(H 1(X)

S
)′, 1

)
be the element corresponding to the sequence (17) under the canonical isomorphism

(18) Ext
(
(Q(−1)S)′, H 1(X)

)
∼= Ext

(
H 1(X)∨

⊗ (Q(−1)S)′, 1
)

= Ext
(
(H 1(X)

S
)′, 1

)
.

By Corollary 3.5.2 (and on recalling that H 1(X) is semisimple), we have that
Lie

(
U(H 1(X \ S))

)⊥ is the largest subobject of (H 1(X)
S
)′ with the property that

the restriction of µ to it is trivial.

4.6. Let us consider the restrictions of µ to some obvious subobjects of (H 1(X)
S
)′.

For each p ∈ S, let ιp : H 1(X) → H 1(X)
S be the embedding into the p-coordinate.

Given p, q ∈ S, we have a morphism

ιp − ιq : H 1(X) → (H 1(X)
S
)′

(which is an embedding if p ̸= q).

Proposition 4.6.1. Let p, q ∈ S. Via the identification (16), we have

(ιp − ιq)∗(µ) = p − q

(where (ιp − ιq)∗(µ) is the pullback of µ along ιp − ιq , and with abuse of notation
the class of p − q in CH hom

0 (X)Q is also denoted by p − q).

Proof. This is a reformulation of a well-known result about Hodge theory of open
curves, which in turn is a special case of general results about equivalence of various
definitions of the Abel–Jacobi map (see the remark below). With abuse of notation,
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let ιp also denote the embedding of Q(−1) as the p-coordinate of Q(−1)S . Then
we have a commutative diagram

Ext
(
(Q(−1)S)′, H 1(X)

)
Ext(Q(−1), H 1(X))

Ext
(
(H 1(X)

S
)′, 1

)
Ext(H 1(X), 1)

(ιp−ιq )∗

∼= ∼=

(ιp−ιq )∗

where the vertical isomorphisms are given by (14) and Poincaré duality. Under
the isomorphism on the left (i.e., (18)), µ and (17) correspond to each other. The
pullback of the extension (17) along ιp − ιq : Q(−1) → (Q(−1)S)′ is the extension

(19)
0 → H 1(X) → (resS)

−1
(
(ιp − ιq)(Q(−1))

) resp
−−→ Q(−1) → 0

H 1(X \ {p, q})

This extension corresponds to p − q under

(20) Ext(Q(−1), H 1(X)) ∼= Ext(H 1(X), 1) ∼= JH1(X) ∼= CH hom
0 (X)Q.

See, for example, Sections 9.0–9.2 of Jannsen [17]. □

Remark 4.6.2. The fact that the extension (19) corresponds to p − q under (20)
is already stated in Section 4.3 of Deligne’s [8]. The same paragraph outlines a
motivically inspired definition of the Abel–Jacobi map, which naturally takes values
in Ext groups in any suitable cohomology theory. Via this approach and in the
case of Hodge theory (or more precisely, cohomology with values in MHS), the
Abel–Jacobi image of p−q is by definition the extension (19) (in other cohomology
theories, by definition the Abel–Jacobi image is the analogous extension). A detailed
description of this motivic approach towards the Abel–Jacobi map for any smooth
complex variety can be found in Sections 9.0 and 9.1 of Jannsen’s book [17]. The
fact that for Hodge theory the Abel–Jacobi map defined in terms of extensions
coincides with the classical (Griffiths) Abel–Jacobi map with values in intermediate
Jacobians is asserted in Lemma 9.2 of [17] and follows from the works [16] and [13]
of Jannsen and Esnault–Viehweg. (See Section 9.2 of [17] for more details.)

4.7. We now calculate the slightly more complicated restrictions of µ. Let

E = End0(Jac(X)) := End(Jac(X)) ⊗ Q

be the endomorphism algebra of the Jacobian of X . We have an (anti-) isomorphism

E → End(H 1(X)), f 7→ f ⋆,
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where for any element f of the endomorphism algebra of Jac(X), by f ⋆ we mean
the pullback map on cohomology.1 This induces an isomorphism

(21) (E S)′ → Hom
(
H 1(X), (H 1(X)

S
)′
)
, ( f p)p∈S 7→

∑
p∈S

ιp f ⋆
p .

Consider the composition

(22) Hom
(
H 1(X), (H 1(X)

S
)′
)

φ 7→φ∗µ
−−−−−→ Ext(H 1(X), 1)

(16)
∼= CH hom

0 (X)Q = Jac(X)(C) ⊗ Q.

Since every simple subobject of (H 1(X)
S
)′ is the image of a morphism

H 1(X) → (H 1(X)
S
)′

(because ⟨H 1(X)⟩ is semisimple), the following corollary of Proposition 4.6.1 can
be used to describe all restrictions of µ.

Corollary 4.7.1. Let ( f p)p∈S ∈ (E S)′. Then( ∑
p∈S

ιp f ⋆
p

)∗

µ =
∑
p∈S

f p(p − e),

where e is any point in X.

Proof. Let ( f p)p∈S ∈ (E S)′ and e ∈ S. Since
∑

p∈S f p = 0, we have∑
p∈S

ιp f ⋆
p =

∑
p∈S

(ιp − ιe) f ⋆
p .

Thus( ∑
p∈S

ιp f ⋆
p

)∗

µ =
∑
p∈S

((ιp − ιe) f ⋆
p)∗µ =

∑
p∈S

( f ⋆
p)∗(ιp − ιe)

∗µ =
∑
p∈S

f p(p − e),

where in the last line we used Proposition 4.6.1 together with the commutativity of
the diagram

Ext(H 1(X), 1) ∼= JH1(X) CH hom
0 (X)Q = Jac(X)(C) ⊗ Q

Ext(H 1(X), 1) ∼= JH1(X) CH hom
0 (X)Q = Jac(X)(C) ⊗ Q

( f ⋆)∗

≃,AJX

f

≃,AJX
□

For any ( f p)p∈S ∈ (E S)′, the value of
∑

p∈S f p(p − e) does not depend on the
choice of e ∈ X . To simplify the notation, let us denote this common value by∑

p∈S
f p(p).

1We use the symbol ∗ for pullback of extensions and the symbol ⋆ for pullback of cohomology
induced by morphisms of varieties.



276 PAYMAN ESKANDARI AND V. KUMAR MURTY

Note that if
( f p)p∈S ∈ (QS)′ ⊂ (E S)′,

then
∑

p∈S f p(p) defined above agrees with the other possible interpretation of the
notation (i.e., the image of the divisor

∑
p∈S f p p of degree zero with coefficients

in Q in CH hom
0 (X)Q).

4.8. Having computed the restrictions of µ, we return to the problem of determina-
tion of U(H 1(X \ S)).

Proposition 4.8.1. Let ( f p)p∈S ∈ (E S)′. The following statements are equivalent:

(i) The restriction of µ to the image of
∑

p∈S ιp f ⋆
p splits.

(ii)
∑

p∈S f p(p) is zero in CH hom
0 (X)Q.

(iii) The image of
∑

p∈S ιp f ⋆
p is contained in Lie

(
U(H 1(X \ S))

)⊥.

Proof. Recall that by Corollary 3.5.2, Lie
(
U(H 1(X \ S))

)⊥ is the largest subobject
of (H 1(X)

S
)′ with the property that the restriction of µ to it splits (see Section 4.5).

This gives the equivalence of statements (i) and (iii) of the proposition. The
equivalence of (i) and (ii) follows from Corollary 4.7.1, on noting (by weight
considerations) that for any quotient B of H 1(X), the canonical map

Ext(B, 1) → Ext(H 1(X), 1)

is injective. □

In particular, the proposition recovers the following well-known result, originally
due to Deligne (see the remark below), which gives an arithmetic criterion for when
U(H 1(X \ S)) is trivial (or equivalently, for when the sequence (17) splits):

Corollary 4.8.2. The group U(H 1(X \ S)) is trivial if and only if the subgroup of
the Jacobian of X supported on S has zero rank.

Proof. Note that Lie
(
U(H 1(X \ S))

)⊥
= (H 1(X)

S
)′ if and only if Im(ιp − ιq) is

contained in Lie
(
U(H 1(X \ S))

)⊥ for every p, q ∈ S, which in turn is equivalent
to p − q being zero in CH hom

0 (X)Q for every p, q ∈ S. □

Remark 4.8.3. Corollary 4.8.2 is originally due to Deligne, implicit in [7] and
announced explicitly in [8, Remarque 7.5], in relation to a new proof of the Manin–
Drinfeld theorem on modular curves. See [11] for a more detailed discussion of this.

4.9. We are ready to give the main result of this part of the paper. The results gives
a characterization of Lie

(
U(H 1(X \ S))

)⊥ (and hence U(H 1(X \ S))).

Theorem 4.9.1. Let A be the subobject of (H 1(X)
S
)′ which is the sum of the images

of all the maps of the form∑
p∈S

ιp f ⋆
p ∈ Hom

(
H 1(X), (H 1(X)

S
)′
)
,
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with ( f p)p∈S ∈ (E S)′ and
∑

p∈S f p(p) = 0 (see Section 4.7). Then

A = Lie
(
U(H 1(X \ S))

)⊥
.

Proof. The inclusion
A ⊂ Lie

(
U(H 1(X \ S))

)⊥

is immediate from Proposition 4.8.1. To see the reverse inclusion, first note that since
⟨H 1(X)⟩ is semisimple, Lie

(
U(H 1(X \ S))

)⊥ is a direct sum of simple subobjects.
Let B be a simple subobject of Lie

(
U(H 1(X \ S))

)⊥. Then B is the image of a
map H 1(X) → (H 1(X)

S
)′. Any such map is of the form

∑
p∈S ιp f ⋆

p for some
( f p)p∈S ∈ (E S)′. By Proposition 4.8.1, for the image of such a map to be in
Lie

(
U(H 1(X \ S))

)⊥ we must have∑
p∈S

f p(p) = 0

in CH hom
0 (X)Q. Thus B ⊂ A. □

We end the paper by deducing the following result about the dimension of
U(H 1(X \ S)) (note that part (b) is Theorem A of the introduction).

Theorem 4.9.2. Let g be the genus of X. Recall that E is the endomorphism
algebra of the Jacobian Jac(X).

(a) Suppose D is any division algebra contained in E. Then the dimension
of U(H 1(X \ S)) is at most 2g times the D-rank of the D-submodule of
Jac(X)(C) ⊗ Q generated by the subgroup supported on S.

(b) Suppose H 1(X) is simple. Then the dimension of U(H 1(X \ S)) is equal to
2g times the E-rank of the E-submodule of Jac(X)(C)⊗ Q generated by the
subgroup supported on S.

Proof. Let A be as in Theorem 4.9.1.

(a) For any subalgebra R of E , let 3R be the composition

(RS)′ ↪→ (E S)′
(21)
−−→ Hom

(
H 1(X), (H 1(X)

S
)′
) (22)
−−→ Jac(X)(C) ⊗ Q.

This is R-linear by Corollary 4.7.1. The image of 3R is the R-submodule of
Jac(X)(C)⊗Q generated by the subgroup supported on S. Let AR be the subobject
of (H 1(X)S)′ which is the sum of the images of the maps

∑
p∈S ιp f ⋆

p with ( f p)p∈S

in ker(3R), so that AR ⊂ A and AE = A. If β = {( f (r)
p )p∈S}1≤r≤d is an R-spanning

set for ker(3R), then AR is the sum of the images of
∑

p∈S ιp( f (r)
p )⋆ for 1 ≤ r ≤ d .

Moreover, if R = D is a division algebra and β is D-linearly independent, then
AD is the direct sum of the images of the previous d maps. Since each of these
images is then a copy of H 1(X) (because D is a division algebra), we have

dim Lie
(
U(H 1(X \ S))

)⊥
= dim(A) ≥ dim(AD) = 2g · dimD(ker(3D))

= 2g(|S| − 1 − dimD Im(3D)).
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Taking orthogonal complements we get the desired bound.

(b) Since H 1(X) is simple, E is a division algebra. Taking D = E , by the proof of
part (b) we have

dim(A) = dim(AE) = 2g(|S| − 1 − dimE Im(3E)).

The claimed formula follows. □
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