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AND TORIC VECTOR BUNDLES

YAT-HIN SUEN

We introduce the notion of tropical Lagrangian multisections over a fan
and study its relation with toric vector bundles. We also introduce a “SYZ-
type” construction for toric vector bundles which gives a reinterpretation of
Kaneyama’s linear algebra data. In dimension 2, this “mirror-symmetric”
approach provides us a pure combinatorial condition for checking which
rank 2 tropical Lagrangian multisections arise from toric vector bundles.

1. Introduction

Toric geometry is an interaction between algebraic geometry and combinatorics.
Difficult problems in algebraic geometry can usually be simplified in the toric
world. Toric geometry also plays a key role in the current development of mirror
symmetry. It provides a huge source of computable examples for mathematicians
and physicists to understand mirror symmetry [1; 2; 4; 5; 6; 8; 12; 13; 14]. The
famous Gross–Siebert program [18; 19; 20] applies toric degenerations to solve
the reconstruction problem in mirror symmetry, which is often referred to as the
algebro-geometric SYZ program [27].

In this paper, we study the combinatorics of toric vector bundles. The study of
toric vector bundles can be dated back to Kaneyama’s classification [21] using linear
algebra data and also Klyachko’s classification [23] using filtrations indexed by rays
in the fan. Payne [25; 26] studied toric vector bundles and their moduli in terms
of piecewise linear functions defined on cone complexes. Motivated by the work
of Payne, the notion of tropical Lagrangian multisections was first introduced by
the author of this paper in [28] and generalized to arbitrary 2-dimensional integral
affine manifolds with singularities in a joint work with Chan and Ma [9].

We begin by recalling some elementary facts about toric varieties and toric vector
bundles in Section 2. In Section 3, we introduce the notion of tropical Lagrangian
multisections over a complete fan 6 on NR

∼=Rn . A tropical Lagrangian multisection
L over 6 is a branched covering map π : (L , 6L , µ) → (NR, 6) of connected cone
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complexes1 (µ : 6L → Z>0 is the weight or multiplicity map) together with a
piecewise linear function ϕ : L → R. We will introduce three more concepts,
namely, combinatorial union, combinatorial indecomposability and combinatorial
equivalence. These concepts allow us to break down a tropical Lagrangian multisec-
tion into “indecomposable” components. Moreover, these components enjoy some
nice properties, for instance, the ramification locus of a combinatorially indecom-
posable tropical Lagrangian multisection lies in the codimension 2 strata of (L , 6L )
(Proposition 3.23). Such indecomposability is also related to indecomposability of
toric vector bundles as we will see in Section 4 (Theorem 4.7).

In Section 3A, we follow [26] to associate a tropical Lagrangian multisection LE
to a toric vector bundle E on X6 . Section 4 will be devoted to the converse. Namely,
given a tropical Lagrangian multisection L over a complete fan 6, we would like
to construct a toric vector bundle on X6 . We call this the reconstruction problem.
One should not expect L to completely determine a toric vector bundle due to its
discrete nature, and Payne has already proved in [26] that LE only determines the
total equivariant Chern class of E . Therefore, we need to introduce some continuous
data (Definition 4.1), which are the linear algebra data given by Kaneyama [21].
The set of all such data on L modulo gauge equivalence will be denoted by K(L).

A fundamental question that this paper would like to answer is: When is
K(L) ̸= ∅? In Section 4B, we give a “SYZ-mirror-symmetric” approach to solve
this problem. First of all, SYZ mirror symmetry [27] suggests that if a symplec-
tic manifold admits a Lagrangian torus fibration, its complex mirror is obtained
by taking the dual torus fibration. Furthermore, the SYZ program also suggests
that holomorphic vector bundles are mirror to Lagrangian multisections. Given a
Lagrangian multisection whose underlying covering map is unbranched, its SYZ
transform was defined in [7; 24]. However, the covering map can be branched over
the base of the SYZ fibration. The SYZ program then suggests we first construct
the semiflat bundle, which is obtained by the usual SYZ transform with the branch
locus removed. However, the semiflat bundle would receive nontrivial monodromies
around those fibers above the branch locus and thus cannot be extended to the whole
mirror space. To perform extension, we need to cancel these monodromies by
remembering the ramification locus. The SYZ program suggests that the ramification
locus should be remembered by the holomorphic disks bounded by the multisection
and certain SYZ fibers. The exponentiation of the generating function of these
holomorphic disks is the so-called wall-crossing automorphism. A good local
example was given by Fukaya [15, Example 4.4]. Moreover, he also pointed out in
[15, Section 6.4] that, when the rank is 2, the semiflat bundle needs to be twisted by
a nontrivial local system in order to carry out the monodromy cancellation process.

1In [28], we assume the domain L is a topological manifold. We extend the definition here by
allowing L to be a cone complex, which is not necessarily a manifold.
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Going back to our tropical world, we restrict our attention to combinatorially
indecomposable tropical Lagrangian multisections. This assumption implies the
ramification locus is contained in the codimension 2 stratum L(n−2) of (L , 6L)

(Proposition 3.23). Following the idea of the SYZ program and Fukaya’s proposal,
the reconstruction program should consist of two steps. The first step is to equip
L\L(n−2) with a suitable C×-local system L. Then we construct in Section 4B1
the semiflat mirror bundle Esf(L,L) of (L,L), which is a rank r toric vector bundle
defined on the 1-skeleton

X (1)
6 :=

⋃
τ∈6(n−1)

Xτ

of X6 . In general, the semiflat mirror bundle cannot be extended to X6 due to
the presence of monodromies of π : L → NR around the branch locus S ⊂ NR.
In order to cancel these monodromies, we will introduce a set of local automor-
phisms 2 := {2τ (ω

′)}τ∈6(n−1),ω′⊂S in Section 4B2 to correct the transition maps
of Esf(L,L) so that it can be extended to X6 . If there exists a C×-local system L
on L\L(n−2) and a collection of factors 2 that satisfy the consistency condition
(Definition 4.15), the tropical Lagrangian multisection is called unobstructed
(Definition 4.17 and see Remark 4.18 for the terminology). Being unobstructed
allows us to define a 1-cocycle {Gσ1σ2}σ1,σ2∈6(n) and gives a toric vector bundle
E(L,L, 2) over X6 . It turns out that all Kaneyama data arise from this construction.

Theorem 4.21. Suppose L is combinatorially indecomposable and admits a
Kaneyama data g. Then there exists a C×-local system L on L\L(n−2) and
consistent 2 such that E(L,L, 2) = E(L, g).

The factors {2τ (ω
′)} should be thought of as wall-crossing automorphisms as

described above, which are responsible for Maslov index 0 holomorphic disks
bounded by a Lagrangian multisection and certain fibers of the torus fibration
T ∗NR/M → NR. Hence our reconstruction program can be regarded as a “tropical
SYZ transform”.

In the last section, Section 5, we apply our “SYZ construction” to study the
unobstructedness of combinatorially indecomposable tropical Lagrangian multi-
sections of rank 2 over a complete fan on NR

∼= R2. First of all, not all such
objects are unobstructed (Example 5.1). Therefore, we need extra conditions to
guarantee unobstructedness. We will define a slope condition (Definition 5.8), which
is completely determined by the combinatorics of the piecewise linear function
ϕ : L → R of L. It turns out this combinatorial condition completely determines
the obstruction of L.

Theorem 5.9. A combinatorially indecomposable rank 2 tropical Lagrangian multi-
section L over a 2-dimensional complete fan 6 is unobstructed if and only if it
satisfies the slope condition.
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From the proof of Theorem 5.9, we can deduce an interesting inequality, bounding
the dimension of moduli spaces of toric vector bundles with fixed equivariant Chern
classes by the number of rays in 6.

Corollary 5.10. If L is a combinatorially indecomposable rank 2 tropical La-
grangian multisection, then we have the inequality dimC(K(L)) ≤ #6(1) − 1.

2. Toric varieties and toric vector bundles

We first recall some basics in toric geometry. Standard references are [10; 11; 17].
Throughout, we denote by N a rank n lattice and M := HomZ(N , Z) the dual lattice.
We also set NR := N ⊗Z R and MR := M ⊗Z R. A fan 6 in NR is a collection of
rational strictly convex cones in NR such that

(1) if σ ∈ 6 and τ ⊂ σ is a face, then τ ∈ 6 and

(2) if σ1, σ2 ∈ 6, then σ1 ∩ σ2 ∈ 6.

Denote by 6(k) the collection of all k-dimensional cones in 6. For each cone
σ ∈6, one can associate the corresponding dual cone σ∨ in MR, which is defined by

σ∨
:= {x ∈ MR : ⟨x, ξ⟩ ≥ 0 ∀ξ ∈ σ }.

It is also a strictly convex rational cone. For τ ⊂ σ , we have σ∨
⊂ τ∨. Define

U (σ ) := Spec(C[σ∨
∩ M]).

There is a (C×)n-action on U (σ ), given by

λ · zm
:= λmzm,

for m ∈ σ∨
∩ M . For τ ⊂ σ , we have an open embedding U (τ ) → U (σ ). The toric

variety X6 associated to 6 is defined to be the direct limit

X6 := lim
−−→

U (σ ).

The (C×)n-actions on affine charts agree and so induce a (C×)n-action on X6 .

Definition 2.1. Let X6 be an n-dimensional toric variety. A vector bundle E on X6

is called toric if the (C×)n-action on X6 lifts to an action on E which is linear
on fibers. Equivalently (see [21]), for each λ ∈ (C×)n , there is a vector bundle
isomorphism λ∗E ∼= E covering the identity of X6 .

Given a toric vector bundle E on X6 , the (C×)n-action constrains the transition
maps of E . Let Gσ : E|U (σ ) → U (σ ) × Cr be an equivariant trivialization and

Gσ1σ2 := Gσ2 ◦ G−1
σ1

: U (σ1 ∩ σ2) × Cr
→ U (σ1 ∩ σ2) × Cr
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be the transition map from the affine chart U (σ1) to the chart U (σ2). We can always
choose the trivialization Gσ : E|U (σ ) → U (σ ) × Cr so that (C×)n acts diagonally
on fibers, that is, the action on C[σ∨

∩ M] ⊗C C[t1, . . . , tr ] is of form

λ · (zm, t1, . . . , tr ) = (λmzm, λm(1)(σ )t1, . . . , λm(r)(σ )tr )

for some m(1)(σ ), . . . , m(r)(σ ) ∈ M . Since this action extends to X6 , we must have

G(αβ)
σ1σ2

(z) = g(αβ)
σ1σ2

zm(α)(σ1)−m(β)(σ2)

for some g(αβ)
σ1σ2 ∈ C so that g(αβ)

σ1σ2 ̸= 0 only if m(α)(σ1)− m(β)(σ2) ∈ (σ1 ∩σ2)
∨

∩ M .

3. Tropical Lagrangian multisections

In this section, we introduce the notion of tropical Lagrangian multisections. We
begin by reviewing some basics about cone complexes. We follow [26] with some
small notational changes.

Definition 3.1 [26, Definition 2.1]. A cone complex consists of a topological
space X together with a finite collection 6 of closed subsets of X and for each
σ ∈ 6, a finitely generated subgroup M(σ ) of the group of continuous functions
on σ , satisfying the following conditions:

(1) The natural map φσ : σ → (M(σ ) ⊗Z R)∨ given by

x 7→ (u 7→ u(x))

maps σ homeomorphically onto a convex rational polyhedral cone.

(2) The preimage of any face of φσ (σ ) is an element of 6 and

M(τ ) = {m|τ | m ∈ M(σ )}.

(3) The topological space X admits the decomposition

X =
⊔

σ∈6

Int(σ ),

where Int(σ ) denotes the relative interior of σ .

A cone complex (X, 6) is said to be connected if the topological space X is
connected. The space of piecewise linear functions on (X, 6) is defined to be

PL(X, 6) := {ϕ : X → R | ϕ|σ ∈ M(σ ) ∀σ ∈ 6}.

Remark 3.2. The connected components of X are parametrized by minimal cones
in 6. See [26, Remark 2.6].
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Definition 3.3 [26, Definition 2.9]. A morphism of cone complexes f : (X ′, 6X ′)→

(X, 6X ) is a continuous map f : X ′
→ X such that for any σ ′

∈ 6X ′ , there exists
σ ∈ 6 such that f (σ ′) ⊂ σ and f ∗M(σ ) ⊂ M(σ ′).

Definition 3.4 [26, Definition 2.16]. A weighted cone complex consists of a cone
complex (X, 6) together with a function µ : X → Z>0 such that for any σ ∈ 6,
µ|Int(σ ) is constant. We simply write µ(σ) for µ|Int(σ ).

If (X ′, 6X ′) is weighted by µ, for a surjective morphism f : (X ′, 6X ′)→ (X, 6X ),
we can define Tr f (µ) : X → Z>0 by

Tr f (µ)(x) :=
∑

x ′∈ f −1(x)

µ(x ′),

called the trace of µ by f .

Definition 3.5 [26, Definition 2.17]. Let (B, 6) be a connected cone complex and
(L , 6L , µ) be a connected weighted cone complex. A branched covering map
π : (L , 6L , µ) → (B, 6) is a surjective morphism of cone complexes such that

(1) for each σ ′
∈ 6L , π maps σ homeomorphically to π(σ) ∈ 6,

(2) for any connected open set U ⊂ B and connected V ⊂ π−1(U ), the function
Trπ |V (µ) : U → Z>0 is constant.

The morphism π : (L , 6L , µ) → (B, 6) is said to be ramified along τ ′
∈ 6L if

µ(τ ′) > 1. The number Trπ (µ) is called the degree of π : (L , 6L , µ) → (B, 6).
The subset

S′
:= S′(L) :=

⋃
τ ′∈6L :µ(τ ′)>1

τ ′
⊂ L

is called the ramification locus of π and S := S(L) := π(S′) is called the branch
locus of π .

Definition 3.6. Let π1 : (L1, 6L1, µ1) → (B, 6), π2 : (L2, 6L2, µ2) → (B, 6)

be branched covering maps of the same degree. We write π1 ≤ π2 if there exists
a surjective morphism of cone complexes f : (L2, 6L2) → (L1, 6L1) such that
π1 ◦ f = π2 and Tr f (µ2) = µ1.

Definition 3.7 [26, Definition 2.26]. A branched covering map π : (L , 6L , µ) →

(B, 6) is called maximal if it is maximal with respective to the partial ordering
given in Definition 3.6.

Given a cone complex (L , 6L), we define

L(n−k)
:=

⋃
τ ′∈6L :codim(τ ′)=k

τ ′
⊂ L ,

the codimension k stratum of (L , 6L). Payne showed in [26, Proposition 2.30]
that if 6 is a complete fan in NR, the ramification locus of any maximal branched
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covering map π : (L , 6L , µ) → (NR, 6) lies in the codimension 2 stratum L(n−2)

of (L , 6L). Now we focus on B = NR
∼= Rn and 6 is a complete fan on NR. In this

case, B carries a natural affine structure and 6 turns (B, 6) into a cone complex.
If π : (L , 6L , µ) → (B, 6) is a branched covering map, then for any σ ′

∈ 6L(n),
we have π∗M = π∗M(σ ) = M(σ ′) as π |σ ′ : σ ′

→ σ is an isomorphism. Hence we
can identity M(σ ′) with M via π∗ naturally. We can then define

Lin(L) := { f ∈ C0(L , R) : ∃m ∈ M such that f |σ ′ = m ∀σ ′
∈ 6L},

to be the space of linear function on L . It is clear that Lin(L) ⊂ PL(L , 6L).
Moreover, as L is assumed to be connected, it is clear that Lin(L) = Lin(B) = M .

Definition 3.8. Let 6 be a complete fan on NR. A tropical Lagrangian multisection
of rank r over 6 is a quintuple L := (L , 6L , µ, π, ϕ), where

(1) (L , 6L) is a connected cone complex weighted by µ,

(2) π : (L , 6L , µ) → (NR, 6) is a branched covering map such that Trπ (µ) = r ,

(3) ϕ is a piecewise linear function on (L , 6L).

The number r is called the rank of L and is denoted by rk(L). The underlying
branched covering map of L is denoted by L. A tropical Lagrangian multisection L

is said to be maximal if L is maximal.

Remark 3.9. In [28], the author provided a definition of tropical Lagrangian
multisections over integral affine manifolds with singularities whose domain of
the branched covering map is a topological manifold. While in [9], the authors
gave a definition of tropical Lagrangian multisections over 2-dimensional integral
affine manifolds with singularities equipped with polyhedral decomposition, where
they also assumed the domain is also a topological manifold equipped with a
polyhedral decomposition that is compatible with the covering map. Of course, if
we restrict our attention to the case where the affine manifold is R2 with polyhedral
decomposition being a fan 6, Definition 3.8 extends Definition 3.6 in [9] because
we don’t assume L is a topological manifold here.

Remark 3.10. In [2], Abouzaid used the terminology “tropical Lagrangian section”
to stand for an honest Lagrangian section of the torus fibration Log : (C×)n

→ Rn .
The term “tropical” in this paper stands for a combinatorial/discrete replacement
for Lagrangian multisections, which are supposed to be mirror to vector bundles
on X6 . However, it is not hard to show that a tropical Lagrangian section (r = 1)
in our combinatorial sense always produces a tropical Lagrangian section in the
sense of Abouzaid by smoothing the piecewise linear function ϕ : |6| → R suitably.
Thus our definition is somehow a generalization of Abouzaid’s one. Nevertheless,
we apologize for any possible confusion with the use of the terminology here.
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Definition 3.11. Let L1, L2 be tropical Lagrangian multisections of the same rank.
We write L1 ≤ L2 if L1 ≤ L2 via some f such that f ∗ϕ1 = ϕ2.

Definition 3.12. Let L1, L2 be tropical Lagrangian multisections over a fan 6. We
write L2 ∼c L1 if rk(L1)= rk(L2) and there exists a tropical Lagrangian multisection L

over 6 such that L ≤ Li for all i = 1, 2. We say L1 is combinatorially equivalent
to L2 if there exists a sequence of tropical Lagrangian multisections L′

1, L′

2, . . . , L′

k
such that L′

1 = L1, L′

k = L2 and L′

i+1 ∼c L′

i for all i = 1, . . . , k − 1.

Remark 3.13. The relation ∼c is only reflexive and symmetric. The notion of combi-
natorial equivalence is the transitive closure of ∼c and hence, an equivalence relation.

Now we define an important class of tropical Lagrangian multisections.

Definition 3.14. A tropical Lagrangian multisection L = (L , 6L , µ, π, ϕ) is said to
be k-separated if it satisfies the following condition: For any τ ∈ 6(k) and distinct
lifts τ (α), τ (β)

∈ 6L(k) of τ , we have ϕ|τ (α) ̸= ϕ|τ (β) . Note that k-separability
implies K -separability for all K ≥ k. A tropical Lagrangian multisection is said to
be separated if it is 1-separated.

Remark 3.15. Definition 3.14 holds vacuously for all rank 1 tropical Lagrangian
multisections.

We can always “separate” a tropical Lagrangian multisection in the following
sense.

Proposition 3.16. For any tropical Lagrangian multisection L over 6, there exists
a separated tropical Lagrangian multisection Lsep over 6 such that Lsep ≤ L. In
particular, every tropical Lagrangian multisection is combinatorially equivalent to
a separated one.

Proof. We define a cone complex (Lsep, 6
′
sep) as follows. Let σ ∈ 6. Two

lifts σ (α), σ (β)
∈ 6 of σ are identified if and only if ϕ|σ (α) = ϕ|σ (β) . We denote the

quotient map L → Lsep by q . The set of cones is given by

6′

sep := {q(σ ′) | σ ′
∈ 6L}.

The projection map π : L → NR factors through q and hence descends to a projection
πsep : Lsep → NR. Define µsep := Trq(µ). It is clear that πsep : (Lsep, 6

′
sep, µsep) →

(NR, 6) is a branched covering map. We define ϕsep : Lsep → R by

ϕsep|q(σ ′) = ϕ|σ ′ .

It is clear that ϕsep|q(σ ′) is independent of the choice of σ ′
∈6L and ϕsep is continuous.

It also follows from construction that q∗ϕsep = ϕ. Hence Lsep ≤ L. □

Example 3.17. Given a tropical Lagrangian multisection L as shown in Figure 1,
its canonical separation Lsep is given by gluing σ

(1)
0 , σ

(2)
0 over σ0.
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Figure 1. The canonical separation Lsep of L.

Definition 3.18. The tropical Lagrangian multisection Lsep constructed in the proof
of Proposition 3.16 is called the canonical separation of L.

Construction 3.19. There are three natural operations on tropical Lagrangian
multisections. As we will see in Proposition 3.26, they correspond to algebraic
operations of toric vector bundles.

(1) Given L = (L , 6L , µ, π, ϕ), we put −L := (L , 6L , µ, π, −ϕ), called the dual
of L.

(2) Given two tropical Lagrangian multisections L1, L2 with rank r1, r2, respec-
tively, we can construct another tropical Lagrangian multisection L1 ∪c L2 by
gluing τ ′

∈6′

1, τ
′′
∈6′

2 whenever π1(τ
′)=π(τ ′′)=τ and ϕ1|τ ′ =ϕ1|τ ′′ . The do-

main of L1∪cL2 is denoted by L1∪c L2 and the quotient map L1⊔L2 → L1∪c L2

is denoted by q . The set of cones is given by

6′

1 ∪c 6′

2 := {q(σ ′) | σ ′
∈ 6′

1 ⊔ 6′

2}

and the multiplicity map is given by

(µ1 ∪c µ2)(σ
′) :=

∑
σ ′

1∈6′

1:q(σ ′

1)=σ ′

µ1(σ
′

1) +
∑

σ ′

2∈6′

2:q(σ ′

2)=σ ′

µ2(σ
′

2).



308 YAT-HIN SUEN

In particular, the rank of L1 ∪c L2 is r1 + r2. Finally, the piecewise linear
function is given by

(ϕ1 ∪c ϕ2)|σ ′ =

{
ϕ1|σ ′

1
if q(σ ′

1) = σ ′
∈ q(6′

1),

ϕ2|σ ′ if q(σ ′

2) = σ ′
∈ q(6′

2).

It follows from the definition of q that ϕ1 ∪c ϕ2 is well-defined and continuous.
We call the tropical Lagrangian multisection L1 ∪c L2 the combinatorial union
of L1, L2.

(3) We define the tropical Lagrangian multisection L1 ×6 L2 of rank r1r2 with
domain L1 ×|6| L2, the set of cones 6′

1 ×6 6′

2, the multiplicity map

σ ′

1 × σ ′

2 7→ µ1(σ1)µ2(σ2)

and the projection σ1 ×σ σ2 7→ σ . The piecewise linear function is given by

(x1, x2) 7→ ϕ1(x1) + ϕ2(x2).

Finally, denote the canonical separation of L1 ×|6| L2 by L1 ×c L2, called the
combinatorial fiber product of L1, L2.

Note that L1 ∪c L2, L1 ×c L2 are always separated by construction.

Definition 3.20. Let L, L1, L2 be tropical Lagrangian multisections over 6. We
say L is combinatorially decomposable by L1, L2 if L is combinatorially equivalent
to L1 ∪c L2. A tropical Lagrangian multisection is said to be combinatorially
indecomposable if it is not combinatorially decomposable for all pairs of L1, L2.

Every tropical Lagrangian multisection can be combinatorially decomposed into
a union of indecomposable ones. However, such decomposition is not unique most
of the time.

Example 3.21. Figure 2 shows a combinatorial indecomposable tropical multi-
section over the fan of P2. It is also separated as the piecewise linear function
has different slopes along distinct lifts of every ray. This tropical Lagrangian
multisection is in fact the associated branched covering map of cone complexes
of TP2 . See [26].

Example 3.22. Figure 3 shows a combinatorial indecomposable tropical Lagrangian
multisection over the fan 6F1 of the Hirzebruch surface F1. The notation ∪0 stands
for gluing the two cone complexes (both are (R2, 6F1), but decorated by two
different piecewise linear functions) on the left at the origin 0 ∈ NR. Again, it is
easy to see that this tropical Lagrangian multisection is also separated.

As Example 3.21 suggests, there is a relation between combinatorial indecom-
posability and separability.
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Figure 2. A combinatorially indecomposable tropical Lagrangian
multisection over the fan of P2
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Figure 3. A combinatorially decomposable tropical Lagrangian
multisection over the fan of F1

Proposition 3.23. Suppose L is combinatorially indecomposable. Then L is (n−1)-
separated and the ramification locus of π : L → NR lies in the codimension 2
strata L(n−2) of (L , 6L). When dim(NR) = 2, the converse is true with the stronger
assumption that L is maximal.

Proof. We first prove combinatorial indecomposability implies (n−1)-separability
under the assumption S′(L) ⊂ L(n−2). Suppose L is not (n−1)-separated, that is,
there exists τ ∈ 6(n − 1) and distinct lifts τ (α), τ (β)

∈ 6L such that ϕ|τ (α) = ϕ|τ (β) .
Choose a loop γ : [0, 1] → NR\S(L) so that γ (0) = γ (1) ∈ Int(τ ) and it goes into
the interior of each maximal cone once and transverse to the codimension 1 strata.
By concatenating γ with itself and using the path lifting lemma, we obtain a lift
γ ′

: [0, 1] → L\S′(L) of γ so that γ ′(0) ∈ Int(τ (α)) and γ ′(1) ∈ Int(τ (β)). Let

6
(1)
γ ′ := {σ ′

∈ 6L : Int(σ ′) ∩ γ ′
̸= ∅}, L̃(1)

γ ′ :=
⋃

σ ′∈6γ ′ (n)

σ ′
⊂ L .
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Then there is a cone complex (L(1)
γ ′ , 6L(1)

γ ′
) obtained by gluing τ (α), τ (β). Denote

the quotient map by q1 : L̃(1)
γ ′ → L(1)

γ ′ . By considering

6
(2)
γ ′ = (6L\6

(1)
γ ′ ) ∪ {τ (α), τ (β)

}

and gluing τ (α), τ (β), we obtain another cone complex (L(2)
γ ′ , 6L(2)

γ ′
) and a quotient

map q2. There are two obvious projections

π
(i)
γ ′ : L(i)

γ ′ → NR.

We take µL(i)
γ ′

:= Trqi (µ|L̃(i)
γ ′

) to make π
(i)
γ ′ ’s into branch covering maps. The function

ϕ|L̃(i)
γ ′

descends to L(i)
γ ′ and turn them into two tropical Lagrangian multisections L

(1)
γ ′

and L
(2)
γ ′ . It is then clear that L = L

(1)
γ ′ ∪c L

(2)
γ ′ .

Now we handle the general case. Suppose S′(L) ̸⊂ L(n−2). Then there is a
codimension 1 cone τ ∈ 6(n − 1) such that τ ⊂ S(L). Pass to a cover f : L′

→ L

such that S′(L′) lies in the codimension 2 strata of (L ′, 6L ′). Then τ has two distinct
lifts τ (α), τ (β)

∈ 6L ′(n − 1) such that f ∗ϕ|τ (α) = f ∗ϕ|τ (β) . Hence L′ is not (n−1)-
separated and hence combinatorially decomposable. But L′ is combinatorially
equivalent to L and so L is also combinatorially decomposable.

For the converse, note that 1-separability of L implies any covering morphism
of the form L → L′ is an isomorphism. Indeed, if f : L → L′ is not injective,
there exists distinct τ (α), τ (β)

∈ 6L(1) so that f (σ (α)) = f (σ (β)). This implies
ϕ|τ (α) = ϕ|τ (β) . As τ (α)

̸= τ (β), this contradicts separability. However, maximality
of L also implies all covering morphism of the form L′

→ L is an isomorphism.
Therefore, if L is combinatorially decomposable, say by L1, L2, then L ∼= L1 ∪c L2,
which violate maximality. □

Remark 3.24. The converse of Proposition 3.23 is not true without the maximality
assumption. For example, let 6 be the fan of P2 and ϕ0, ϕ1 be the piecewise
linear functions correspond to OP2,OP2(D1 + D2 − 2D0), where D0, D1, D2 are
invariant divisors. Then Li := (NR, 6, 1, idNR

, ϕi ), i = 0, 1 are tropical Lagrangian
multisections. Then it is easy to see that L0 ∪c L1 is separated with the zero cone
being the only ramification point. It is obvious that L0 ∪c L1 is combinatorially
decomposable by L0, L1.

3A. From toric vector bundles to tropical Lagrangian multisections. Let X6 be
the associated toric variety of 6. Given a rank r toric vector bundle E on X6 , we
can associate a rank r tropical Lagrangian multisection LE over 6 by following the
construction in [26].

Let σ ∈ 6 and U (σ ) be the affine toric variety corresponding to σ . The toric
vector bundle splits equivariantly on U (σ ) as

E|U (σ )
∼=

⊕
m(σ )∈m(σ )

Lm(σ ),
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where m(σ ) ⊂ M(σ ) := M/(σ⊥
∩ M) is a multiset and Lm(σ ) is the line bundle

corresponds to the linear function m(σ ) ∈ M(σ ). We define LE as follows. Let
|6| → 6 be the map given by mapping x ∈ |6| to the unique cone σ ∈ 6 such that
x ∈ Int(σ ). Equip 6 with the quotient topology. Define

6E := {(σ, m(σ )) | σ ∈ 6, m(σ ) ∈ m(σ )}

and let 6E → 6 be the projection

(σ, m(σ )) 7→ σ.

We emphasize that although m(σ ) is a multiset, 6E is not. Equip 6E a poset
structure

(σ1, m(σ1)) ≤ (σ2, m(σ2)) ⇐⇒ σ1 ⊂ σ2 and m(σ2)|σ1 = m(σ1)

and equip it with the poset topology, namely, a subset K ⊂6L is closed if and only if

{(σ1, m(σ1)) | (σ1, m(σ1)) ≤ (σ2, m(σ2))} ⊂ K

for all (σ2, m(σ2)) ∈ K . Define

LE := |6| ×6 6E .

Let the set of cones on LE be 6 ×6 6E ∼= 6E . The multiplicity µE : LE → Z>0 is
defined by

µE(σ, m(σ )) := number of times that m(σ ) appears in m(σ ).

The projection map πE : LE → |6| then induces a rank r branched covering map
of cone complexes πE : (LE , 6E , µE) → (NR, 6). The piecewise linear function
ϕE : LE → R is tautologically given by

ϕE |(σ,m(σ )) := π∗

Em(σ ).

This gives a tropical Lagrangian multisection LE := (LE , 6E , µE , πE , ϕE).

Proposition 3.25. The tropical Lagrangian multisection LE is separated.

Proof. By construction, if ω(α), ω(β)
∈ 6E are distinct lifts of some ω ∈ 6, then

ϕE |ω(α) ̸=ϕE |ω(α) . In particular, slopes on different codimension 1 cones are different.
□

Proposition 3.26. Let E, E1, E2 be toric vector bundles on X6 . Then

(1) LE∗ = −LE ,

(2) LE1⊕E2 = LE1 ∪c LE2 ,

(3) LE1⊗E2 = LE1 ×c LE2 .
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Proof. They follow from the induced equivariant structure

λ · f := f (λ−1
· v),

λ · (v1 ⊕ v2) := (λ · v1) ⊕ (λ · v2),

λ · (v1 ⊗ v2) := (λ · v1) ⊗ (λ · v2),

where f ∈ E∗, v ∈ E, v1 ∈ E1, v2 ∈ E2. □

The assignment E 7→ LE is not injective as the following example shows.

Example 3.27. Consider the toric vector bundles

E1 :=

2⊕
i=1

OP2(Di ) and E2 := TP2 ⊕OP2 .

Via the Euler sequence

0 → OP2 →

2⊕
i=1

OP2(Di ) → TP2 → 0,

E1, E2 share the same equivariant Chern class and hence LE1 = LE2 by Proposition 3.4
of [26]. This example also shows that combinatorially indecomposable components
are not unique. Indeed, LE1 = LO

P2 (D0) ∪c LO
P2 (D1) ∪c LO

P2 (D2), LE2 = LO
P2 ∪c LT

P2 ,
and it is easy to see that LT

P2 is maximal and separated, hence combinatorially
indecomposable.

4. Kaneyama’s classification via SYZ-type construction

4A. Kaneyama’s classification. We first rewrite Kaneyama’s classification result
in terms of the language of tropical Lagrangian multisections. By doing so, some
properties of toric vector bundles can be read off from the tropical Lagrangian
multisections.

In [21], Kaneyama classified toric vector bundles by both combinatorial and linear
algebra data. We can rewrite and refine these data in terms of the language of tropical
Lagrangian multisections. Let L = (L , 6L , µ, π, ϕ) be a tropical Lagrangian multi-
section over 6. For a maximal cone σ ′

∈ 6L , we use the notation m(σ ′) to denote
the slope of ϕ on σ ′, which is an element in M . We also count lifts of a maximal
cone with multiplicities (recall that each cone σ ′

∈ 6L has a multiplicity µ(σ ′)).

Definition 4.1. Let L be a tropical Lagrangian multisection of rank r over 6. A
Kaneyama data of L is a collection g := {gσ1σ2}σ1,σ2∈6L (n) ⊂ GL(r, C) such that

(G1) for any σ ∈ 6(n), we have gσσ = Id,
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(G2) for any σ1, σ2 ∈ 6(n), the (α, β)-entry g
σ

(α)
1 σ

(β)

2
of gσ1σ2 is nonzero only if

σ
(α)
1 ∩ σ

(β)

2 ̸= ∅ and

m(σ
(α)
1 ) − m(σ

(β)

2 ) ∈ (σ1 ∩ σ2)
∨

∩ M,

(G3) for any σ1, σ2, σ3 ∈ 6(n), we have

gσ1σ2 gσ2σ3 = gσ1σ3 .

We denote by K̃(L) the set of Kaneyama data on L. Two Kaneyama data
g, g′

∈ K̃(L) are said to be equivalent if for any σ ∈ 6(n), there exists hσ :=

(hσ (α)σ (β)) ∈ GL(r, C) such that

(H1) hσ (α)σ (β) ̸= 0 only if

m(σ (α)) − m(σ (β)) ∈ σ∨
∩ M,

(H2) for any σ1, σ2 ∈ 6(n),

hσ2 gσ1σ2 = g′

σ1σ2
hσ1 .

We denote by K(L) the set of equivalence classes of Kaneyama data on L.

Remark 4.2. In Kaneyama’s work [21, pages 74–75], conditions (i) and (i’) there
are equivalent to continuity of ϕ, condition (ii) is equivalent to (G1), (G2), (G3)
and condition (iii) is equivalent to (H1), (H2).

Theorem 4.3 (a reformulation of [21, Theorem 4.2]). Let L be a tropical Lagrangian
multisection over 6. If L admits a Kaneyama data g, then there is a toric vector
bundle E(L, g) over X6 such that LE(L,g) ≤ L. Two Kaneyama data g, g′

∈ K̃(L)

are equivalent if and only if E(L, g) ∼= E(L, g′) as toric vector bundles.

Proof. The (C×)n-action on the toric vector bundle Eσ =
⊕r

α=1 Lm(σ (α)) on U (σ )

is given by

(1) λ · (p, 1(σ (α))) := (λ · p, λm(σ (α))1(σ (α))),

where p ∈ U (σ ) and 1(σ (α)) is an equivariant holomorphic frame of Lm(σ (α)). It is
straightforward to check that this action is compatible with the transition maps

Gσ1σ2 : 1(σ
(α)
1 ) 7→

r∑
β=1

g
σ

(α)
1 σ

(β)

2
zm(σ

(α)
1 )−m(σ

(β)

2 )1(σ
(β)

2 ).

To prove that LE(L,g) ≤ L, we define

fσ ′ : σ ′
→ π(σ ′) × {m(σ ′)}.
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By continuity of ϕ, { fσ ′}σ ′∈6L can be glued to a continuous map f : L → LE(L,g)

which maps cones in 6L to cones in 6E(L,g) homeomorphically. By definition,
f ∗ϕE(L,g) = ϕ and for any σ × {m(σ )}, we have

Tr f (µ)(σ × {m(σ )}) =
∑

σ ′:ϕ|σ ′=m(σ )

µ(σ ′) = #{m ∈ m(σ ) : m = m(σ )}

= µE(L,g)(σ × {m(σ )}).

Hence LE(L,g) ≤ L via f . The last assertion follows from condition (iii) in [21]. □

Suppose L admits a Kaneyama data g. The composition

L 7→ E(L, g) 7→ LE(L,g)

may not be the identity map. For instance, suppose π : L → NR is a 2-fold cover
conjugate to the square map z 7→ z2 on C. Let 6 be the fan of P2. Then there
is a natural collection of cones 6′ on L . Equip L with the 0 function. Then, the
Kaneyama data g there gives a rank 2 toric vector bundle, which is just O⊕2

P2 with the
trivial equivariant structure. But it is clear that the associated tropical Lagrangian
multisection of O⊕2

P2 is given by (NR, 6,µ, idNR
, 0), with µ(σ) = 2. Nevertheless,

the map π : L → NR gives a branched covering of cone complexes that preserve
the function. More generally, we have the following:

Theorem 4.4. Let L1, L2 be tropical Lagrangian multisections of the same rank r.
If L1, L2 are combinatorially equivalent, then there exists a bijection f∗ : K(L1) →

K(L2) such that E(L1, g1) ∼= E(L2, f∗(g1)) as toric vector bundles. Conversely,
if E(L1, g1) ∼= E(L2, g2) for some Kaneyama data, then L1 is combinatorially
equivalent to L2.

Proof. It suffices to prove that if L2 ≤ L1 via some f , then any Kaneyama data of L1

gives a Kaneyama data of L2 such that their associated toric vector bundles are the
same and vice versa. Let σ ′

1, σ
′

2 ∈ 6′

1(n) be maximal cones. By the assumption
f ∗ϕ2 = ϕ1, we have

m( f (σ ′

1)) − m( f (σ ′

2)) = m(σ ′

1) − m(σ ′

2).

Moreover, counting with multiplicity, f induces a permutation of the index set
{1, . . . , r}, which parametrizes lifts of a maximal cell. Thus if g is a Kaneyama
data of L1, then we can simply define

( f∗g) f (σ
(α)
1 ) f (σ

(β)

2 )
:= g

σ
(α)
1 σ

(β)

2
,

where σ
(α)
1 , σ

(β)

2 are preimages of f (σ
(α)
1 ), f (σ

(β)

2 ) such that

m( f (σ
(α)
1 )) = m(σ

(α)
1 ), m( f (σ

(β)

2 )) = m(σ
(β)

2 ).
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Although the lifts σ
(α)
1 , σ

(β)

2 are not unique, the slopes are and hence f∗g is well-
defined. It is straightforward to check that f∗(g) := {( f∗g)σ1σ2} is a Kaneyama
data for L2 and any two choices of preimages above differ by a permutation of
the equivariant frame {1(σ (α))}r

α=1 and the torus action is preserved. It is then
easy to see that there is an isomorphism E(L1, g) ∼= E(L2, f∗(g)) of toric vector
bundles. By pulling back, Kaneyama data on L2 induces a Kaneyama data on L1.
Modulo equivalence, we obtain the desired bijection. The converse follows from
Theorem 4.3. □

Remark 4.5. Theorem 4.4 has the following analog in mirror symmetry. Non-
Hamiltonian equivalent Lagrangian branes in a symplectic manifold may give rise
to the same mirror object as they can still be isomorphic in the derived Fukaya
category. For example, in [7, Example 5.5] gives a Lagrangian immersion and a
Lagrangian embedding in a symplectic 2-torus that shares the same mirror sheaf.

Proposition 4.6. Suppose that L = L1 ∪c L2. Then there exists an embedding
K(L1) ×K(L2) → K(L).

Proof. The embedding is given by taking the direct sum of matrices. □

Every tropical Lagrangian multisection can be combinatorially decomposed into
combinatorially indecomposable ones. By Proposition 4.6, to obtain Kaneyama
data on a general tropical Lagrangian multisection, it suffices to consider its combi-
natorially indecomposable components.

Theorem 4.7. If L is combinatorially indecomposable, then E(L, g) is indecom-
posable for any Kaneyama data g of L. The converse is also true if L can be
decomposed into a combinatorial union of two tropical Lagrangian multisections
L1, L2 that admits Kaneyama data.

Proof. If E(L, g) is decomposable for some g, say by E1, E2, then LE(L,g) =

LE1 ∪c LE2 . Since LE(L,g) ≤ L by Theorem 4.3, L is also combinatorially de-
composable. Conversely, suppose L = L1 ∪c L2 for some unobstructed L1, L2.
Let g1, g2 be some Kaneyama data of L1, L2, respectively. Denote the image
of (g1, g2) under the embedding K(L1) × K(L2) → K(L) by g. Then we have
E(L, g) = E(L1, g1) ⊕ E(L2, g2). □

Since sections (r = 1) always admit Kaneyama data, we have the following:

Corollary 4.8. A rank 2 tropical Lagrangian multisection L is combinatorially
indecomposable if and only if E(L, g) is indecomposable for any Kaneyama data g
of L.

Remark 4.9. The converse of Theorem 4.7 or Corollary 4.8 is not true if we
just ask for E(L, g) to be indecomposable for some g. For instance, take any
indecomposable toric vector bundle E that contains a toric subbundle. Then LE is
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combinatorially decomposable since E fits into an exact sequence of toric vector
bundles. A concrete example is given by the tangent bundle of the Hirzebruch
surface F1, which is indecomposable. But it contains a line bundle as a toric
subbundle. See Corollary 4.1.2 of [22].

4B. A mirror symmetric approach. Now we go into one of the main themes
of this paper. We would like to interpret Kaneyama’s result in terms of mirror
symmetry. We assume from now on all tropical Lagrangian multisections are
combinatorially indecomposable and hence by Proposition 3.23, they are separated
and the ramification locus S′ always lies in the codimension 2 strata of (L , 6L).

4B1. The semiflat bundle. For a tropical multisection L = (L , 6L , µ, π, ϕ), we
have denoted the ramification locus by S′ and the branch locus by S. Both of them
are assumed to be contained in the codimension 2 strata. We define the 1-skeleton
of X6:

X (1)
6 :=

⋃
τ∈6(n−1)

Xτ = X6

∖ ⋃
dim(ω)≤n−1

U (ω).

The semiflat bundle is a locally free sheaf on X (1)
6 . To construct it, we first provide a

good open cover for L\L(n−2). For each σ ′
∈ 6L(n), choose a small neighborhood

Vσ ′ ⊂ L\L(n−2) contains σ ′
\L(n−2) such that Vσ ′

1
∩ Vσ ′

2
̸=∅ if and only if σ ′

1 ∩σ ′

2 ∈

6L(n − 1). See Figure 4. Choose any C×-local system L on L\L(n−2). Denote the
transition map on Vσ ′

1
∩ Vσ ′

2
by

1σ ′

1
7→ gsf

σ ′

1σ
′

2
1σ ′

2
,

where σ ′

2 ∈ 6L(n) is the unique lift of σ2 such that σ ′

1 ∩ σ ′

2 ∈ 6L(n − 1). For
a cone σ ∈ 6, let V (σ ) := U (σ ) ∩ X (1)

6 . If ω ⊂ S, then V (ω) = ∅. Thus,
{V (σ )}σ∈6(n) forms an open cover of X (1)

6 such that if σ1 ∩σ2 ∈ 6(n −1), we have
∅ ̸= V (σ1 ∩ σ2) ⊂ X (1)

6 . For a maximal cone σ ∈ 6(n), we put

Eσ :=

r⊕
α=1

Lm(σ (α)),

which is a toric vector bundle defined on U (σ ). For σ1, σ2 ∈ 6(n) such that
σ1 ∩ σ2 ∈ 6(n − 1), we define Gsf

σ1σ2
: Eσ1 |V (σ1∩σ2) → Eσ2 |V (σ1∩σ2) by

Gsf
σ1σ2

: 1(σ
(α)
1 ) 7→ gsf

σ
(α)
1 σ

(β)

2
zm(σ

(α)
1 )−m(σ

(β)

2 )1(σ
(β)

2 ),

where σ
(β)

2 is uniquely determined by the conditions ∅ ̸= σ
(α)
1 ∩ σ

(β)

2 ∈ 6L(n − 1)

and π(σ
(β)

2 ) = σ2. Since we have no triple intersections, {gsf
σ ′

1σ
′

2
} immediately

satisfies the cocycle condition.
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Definition 4.10. Let L = (L , 6′, µ, π, ϕ) be a tropical Lagrangian multisection
over 6. Equip L\L(n−2) with a C×-local system L. The vector bundle Esf(L,L) is
called the semiflat bundle of (L,L).

4B2. Wall-crossing factors. After constructing the semiflat bundle Esf(L,L) of
(L,L), we would like to extend Esf(L,L) to the whole space X6 . To do this, we
may need to correct Gsf

σ1σ2
by certain factors. Let τ ∈ 6(n − 1) and σ1, σ2 ∈ 6(n)

be the unique maximal cones so that σ1 ∩ σ2 = τ . For each ω′
∈ 6L , we define

a bundle map Nτ (ω
′) : Eσ1 |U (τ ) → Eσ1 |U (τ ) so that with respective to the frame

{1(σ
(α)
1 )}, the (α, β)-entry is given by

N (αβ)
τ,σ1

(ω′) :=


n(αβ)

τ,σ1 (ω′)zm(σ
(α)
1 )−m(σ

(β)

1 ) if ω′
⊂ σ

(α)
1 ∩ σ

(β)

1 , α ̸= β

and m(σ
(α)
1 ) − m(σ

(β)

1 ) ∈ τ∨
∩ M,

0 otherwise

for some n(αβ)
τ,σ1 (ω′) ∈ C. Note that Nτ,σ1(ω

′) = 0 if ω′
̸⊂ S′. Put

S′

τ (σ1) := {σ
(α)
1 ∩ σ

(β)

1 | m(σ
(α)
1 ) − m(σ

(β)

1 ) ∈ (σ1 ∩ σ2)
∨

∩ M}.

By assumption, cones in S′
τ are of codimension ≥ 2. Furthermore, there is a

natural bijection S′
τ (σ1) ∼= S′

τ (σ2). Indeed, for σ (α)
1 ∩ σ (β)

1 ∈ S′
τ , there exists unique

σ (α′)
2 , σ (β ′)

2 ∈ 6L(n) such that σ (α)
1 ∩ σ (α′)

2 , σ (β)
1 ∩ σ (β ′)

2 ∈ 6L(n − 1). Then

m(σ
(α′)
2 ) − m(σ

(β ′)

2 )

= (m(σ
(α′)
2 ) − m(σ

(α)
1 )) − (m(σ

(β ′)

2 ) − m(σ
(β)

1 )) + (m(σ
(α)
1 ) − m(σ

(β)

1 )).

The first two terms of the right-hand side are in τ⊥
∩ M by continuity and the last

term is in τ∨
∩M by definition. Hence σ

(α′)
2 ∩σ

(β ′)
2 ∈ S′

τ . As σ
(α′)
2 , σ

(β ′)
2 are uniquely

determined by σ
(α)
1 , σ

(β)
1 and vice versa, the assignment σ

(α)
1 ∩σ

(β)
1 7→ σ

(α′)
2 ∩σ

(β ′)
2
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gives the desired bijection. Now we define

Nτ,σ1 :=
∑

ω′∈S′
τ (σ1)

Nτ,σ1(ω
′).

Remark 4.11. Note that the change of frame from {1(σ
(α)
1 )} to {1(σ

(α)
2 )} is com-

patible with the bijection S′
τ (σ1) ∼= S′

τ (σ2), namely, by choosing suitable n(αβ)
τ,σ2 (ω′),

we have Gsf
σ1σ2

◦ Nτ,σ1(ω
′) ◦ Gsf

σ2σ1
= Nτ,σ2 . As Nτ,σ1, Nτ,σ2 are related by a change

of frame, to simplify our notation, we simply write Nτ (ω
′) for Nτ,σ1(ω

′) and Nτ

for Nτ,σ1 . We will also write Nσ1σ2 for Nτ when we want to emphasize the maximal
cones σ1, σ2 so that σ1 ∩ σ2 = τ .

Lemma 4.12. For any τ ∈ 6(n − 1) and ω′
∈ 6L , Nτ (ω

′) is nilpotent and
for any distinct lifts ω′, ω′′

∈ 6L of ω ∈ 6, Nτ (ω
′)Nτ (ω

′′) = 0. In particular,
[Nτ (ω

′), Nτ (ω
′′)] = 0 for any lifts ω′, ω′′

∈ 6L of ω.

Proof. We show that Nτ (ω
′)k

= 0 has zero diagonal entries, for all k ≥ 1. The case
k = 1 is by definition. Assume Nτ (ω

′)k has zero diagonal entries for some k ≥ 1.
If there exists α such that

r∑
β=1

(Nτ (ω
′)k)(αβ)N (βα)

τ (ω′) ̸= 0,

there must exist β ̸= α such that

(Nτ (ω
′)k)(αβ)N (βα)

τ (ω′) ̸= 0,

as both Nτ (ω
′)k, Nτ(ω

′) have zero diagonal entries. This implies both zm(σ
(α)
1 )−m(σ

(β)

1 )

and zm(σ
(β)

1 )−m(σ
(α)
1 ) are regular functions on the affine chart U (τ ). Therefore

zm(σ
(α)
1 )−m(σ

(β)

1 ) must be invertible on U (τ ) and so m(σ
(α)
1 )− m(σ

(β)

1 ) ∈ τ⊥, which
means m(σ

(α)
1 )|τ = m(σ

(β)

1 )|τ . This violates (n−1)-separability. Hence Nτ (ω
′)k+1

has zero diagonal entries too. By induction, we are done.
For the last part, we have

r∑
β=1

n(αβ)
τ (ω′)n(βγ )

τ (ω′′)zm(σ
(α)
1 )−m(σ

(γ )

1 ).

This sum is nonzero only if ω′
⊂ σ

(α)
1 ∩σ

(β)

1 and ω′′
⊂ σ

(β)

1 ∩σ
(γ )

1 for some β. Then
we must have ω′′

= ω′ as σ
(β)

1 can only contain one lift of ω. □

Once a choice of {n(αβ)
τ,σ (ω′)} is fixed, Lemma 4.12 allows us to define the product

of matrices

(2) 2τ :=
∏

ω′∈S′
τ

2τ (ω
′) :=

∏
ω′∈S′

τ

exp(Nτ (ω
′))
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unambiguously. Moreover, we have det(2τ ) = 1 and so 2τ is invertible over
C[τ∨

∩ M].

Definition 4.13. For ω′
∈6L , the factors {2τ (ω

′)}τ∈6(n−1) are called wall-crossing
automorphisms associated to ω′.

Remark 4.14. Similar to the notation Nσ1σ2 , we write 2σ1σ2 for 2τ when we want
to emphasize the unique maximal cones σ1, σ2 so that σ1 ∩ σ2 = τ .

Now for τ ∈ 6(n − 1), put

Gσ1σ2 := Gsf
σ1σ2

◦ 2σ1σ2,

where σ1, σ2 ∈ 6(n) are uniquely determined by τ = σ1 ∩ σ2. If we express Gσ1σ2

in terms of the frames {1(σ
(α)
1 )}, {1(σ

(γ )

2 )}, we have

Gσ1σ2 : 1(σ
(α)
1 ) 7→

r∑
β=1

θ (αβ)
τ gsf

σ
(β)

1 σ
(γ )

2
zm(σ

(α)
1 )−m(σ

(γ )

2 )1(σ
(γ )

2 ).

In particular, it is easy to choose n(αβ)
σ1σ2’s such that

Gσ2σ1 = G−1
σ1σ2

.

We haven’t defined Gσ1σ2 for general σ1, σ2 ∈ 6(n). To do this, given any σ1, σ2 ∈

6(n) such that τ := σ1 ∩ σ2, we consider a sequence of maximal cones σ1 =

σ1′, σ2′, . . . , σl ′ = σ2 ∈ 6(n) such that τ ⊂ σi ′ and σi ′ ∩σ(i+1)′ ∈ 6(n − 1) for all i .
Such a sequence always exists since the branch locus S is of codimension at least 2.
Then we put

Gσ1σ2 := Gσ(l−1)′σl′
|U (τ ) ◦ · · · ◦ Gσ1′σ2′ |U (τ ),

which is defined on U (τ ). We need to ensure Gσ1σ2 is independent of the choice of
such a sequence of maximal cones.

Definition 4.15. Given a combinatorially indecomposable tropical Lagrangian
multisection L and a C×-local system L on L\L(n−2), a collection of wall-crossing
automorphisms 2 :={2τ (ω

′)}τ∈6(n−1),ω′⊂S′ defined by (2) is said to be ω-consistent
if for any cycle of maximal cones

σ1, σ2, . . . , σl, σl+1 = σ1

such that ω ⊂ σi and σi ∩ σi+1 ∈ 6(n − 1) for all i , the composition

(3) Gσlσl+1 |U (ω) ◦ · · · ◦ Gσ1σ2 |U (ω) : Eσ1 |U (ω) → Eσ1 |U (ω)

equals to the identity map on Eσ1 |U (ω). A collection of automorphisms 2 is said to
be consistent if it is ω-consistent for all ω ∈ 6.

Proposition 4.16. A collection of wall-crossing automorphisms 2 is consistent if
and only if it is ω-consistent for all ω ∈ 6(n − 2).
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Proof. Fix ω ∈ 6. For each cycle of maximal cones

σ1, σ2, . . . , σl, σl+1 = σ1

that satisfy the condition in Definition 4.15, there is a loop γ : [0, 1]→ NR\|6(n−2)|

such that γ (0)=γ(1) ∈ Int(σ1), intersecting the codimension 1 cones Int(σi ∩ σi+1)

transversely for all i . Note that the corresponding composition defined by (3)
only depends on the homotopy class of γ . As π1(NR\|6(n − 2)|) is generated by
loops around codimension 2 strata of (NR, 6), we may write γ in terms of these
generators

γ = γ1 ∗ · · · ∗ γk .

By choosing sufficiently generic γi ’s, each of them determines a cycle of maximal
cones that satisfies the condition stated in Definition 4.15. As the compositions
correspond to γi ’s equal to the identity, the composition corresponds to γ also equal
to the identity. Hence codimension 2 consistency implies consistency. The converse
is trivial. □

It is clear that if 2 is consistent, then Gσ1σ2 is well-defined for all σ1, σ2 ∈ 6(n)

and the cocycle condition holds on arbitrary triple intersections. Let’s make the
following definition.

Definition 4.17. A combinatorially indecomposable tropical Lagrangian multi-
section L is called unobstructed if there exists a C×-local system L on L\L(n−2)

and a collection of consistent wall-crossing automorphisms 2. If L is unobstructed,
we denote by E(L,L, 2) the vector bundle associated to the data (L,L, 2).

Remark 4.18. The notion of (weakly) unobstructed Lagrangian submanifolds
was introduced in [16] and [3] for the immersed case. The main feature of an
unobstructed Lagrangian submanifolds is that its Floer cohomology is well-defined
and hence defines an object in the Fukaya category. In particular, unobstructed
Lagrangian submanifolds should have the corresponding mirror objects. As the
existence of Kaneyama’s data or the data (L, 2) are equivalent to the existence of
toric vector bundles, we should think of the tropical Lagrangian multisection can be
“realized” by an unobstructed Lagrangian. Thus, we borrow the terminology here.

In defining Gsf
σ1σ2

, we have chosen a 1-cocycle to represent the local system L.
When L is unobstructed, E(L,L, 2) is independent of such choice as the following
proposition shows.

Proposition 4.19. For any isomorphism L′ ∼= L of local system on L\L(n−2), there
is an isomorphism E(L,L, 2) ∼= E(L,L′, 2′) of toric vector bundles, for some
consistent 2′.
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Proof. Let f : L → L′ be an isomorphism of local systems. It induces an iso-
morphism F : π∗L → π∗L′ of rank r local systems. Locally, F is given by a
constant matrix and thus can be regarded as a toric automorphism on a chart
U (σ ) ⊂ X6 . We also have

Fσ2 ◦ Gsf
σ1σ2

= G ′sf
σ1σ2

◦ Fσ1 .

If 2 is a consistent data, we simply define 2′ by conjugation by F , that is,

2′

σ1σ2
:= Fσ1 ◦ 2σ1σ2 ◦ F−1

σ1
.

Then it is by definition that

Fσ2 ◦ Gσ1σ2 = G ′

σ1σ2
◦ Fσ1,

which means E(L,L, 2) ∼= E(L,L′, 2′) as toric vector bundles. □

Combinatorial indecomposability implies the following relation between Esf(L,L)

and E(L,L, 2).

Theorem 4.20. If L is combinatorially indecomposable, then 2σ1σ2 |X (1)
6

= Id, for
any σ1, σ2 ∈ 6(n) so that σ1 ∩ σ2 ̸⊂ S. In particular, if L is unobstructed, then
E(L,L, 2)|X (1)

6
= Esf(L,L).

Proof. Let τ := σ1 ∩ σ2 ∈ 6(n − 1). For m(σ
(α)
1 ) − m(σ

(β)

1 ) ∈ τ∨
∩ M , (n−1)-

separability implies that there exists a ray ρ ⊂ τ so that

(m(σ
(α)
1 ) − m(σ

(β)

1 ))(vρ) > 0,

where vρ is a generator of ρ. Hence zm(σ
(α)
1 )−m(σ

(β)

1 ) vanishes along the divisor
U (τ ) ∩ Xρ and in particular, vanishes on U (τ ) ∩ Xτ . Hence 2τ |U (τ )∩Xτ

= Id and
this proves E(L,L, 2)|X (1)

6
= Esf(L,L). □

By definition, unobstructedness implies the existence of Kaneyama data. It turns
out all Kaneyama data arise from our construction.

Theorem 4.21. Suppose L is combinatorially indecomposable and admits a
Kaneyama data g. Then there exists a C×-local system L on L\L(n−2) and
consistent 2 such that E(L,L, 2) = E(L, g).

Proof. The transition maps of E(L, g) are of form

1(σ
(α)
1 ) 7→

r∑
β=1

g
σ

(α)
1 σ

(β)

2
zm(σ

(α)
1 )−m(σ

(β)

2 )1(σ
(β)

2 ).
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Consider two distinct maximal cones σ1, σ2 ∈6(n) such that τ :=σ1∩σ2 ∈6(n−1).
For each lift σ

(β)

2 of σ2, let σ
(α′)
1 be the unique lift of σ1 such that σ

(α′)
1 ∩ σ

(β)

2 ∈

6L(n − 1). If σ
(α)
1 ∩ σ

(β)

2 ⊂ S′ then α ̸= α′ and

zm(σ
(α)
1 )−m(σ

(α′)
1 )

= zm(σ
(α)
1 )−m(σ

(β)

2 )zm(σ
(β)

2 )−m(σ
(α′)
1 )

is a regular function since zm(σ
(β)

2 )−m(σ
(α′)
1 ) is nowhere vanishing on U (τ ). As be-

fore (n−1)-separability implies the monomial zm(σ
(α)
1 )−m(σ

(α′)
1 ) vanishes completely

on V (τ ). Hence the transition map of E(L, g)|X (1)
6

on V (τ ) is given by

Gsf
σ1σ2

:= Gσ1σ2 |V (τ ) : 1(σ
(α)
1 ) 7→ g

σ
(α)
1 σ

(β)

2
zm(σ

(α)
1 )−m(σ

(β)

2 )1(σ
(β)

2 ),

where β is determined by α as before. Then with respect to the cover {Vσ ′}σ ′∈6L (n)

of L\L(n−2), {g
σ

(α)
1 σ

(β)

2
} gives a C×-local system L on L\L(n−2). For σ1 ∩ σ2 ̸⊂ S,

we define
2σ1σ2 := (Gsf

σ1σ2
)−1

◦ Gσ1σ2 .

The diagonal entries of 2σ1σ2 are all equal to 1 and (n − 1)-separability implies
2σ1σ2 − Id is nilpotent (see Lemma 4.12). This allows us to define

Nσ1σ2 := log(2σ1σ2) = log(Id +(2σ1σ2 − Id)) =

∞∑
k=1

(−1)k−1 (2σ1σ2 − Id)k

k
.

With respect to the frame {1(σ
(α)
1 )}, the (α, β)-entry of Nσ1σ2 is given by

N (αβ)
σ1σ2

=

{
n(αβ)

σ1σ2 zm(σ
(α)
1 )−m(σ

(β)

1 ) if α ̸= β and m(σ
(α)
1 )−m(σ

(β)

1 ) ∈ (σ1∩σ2)
∨
∩M,

0 otherwise,

which can be decomposed as

Nσ1σ2 =
∑

ω′∈S′
σ1σ2

Nσ1σ2(ω
′).

The collection {2σ1σ2} is obviously consistent so that E(L,L, 2) = E(L, g). □

Example 4.22. We look at the 2-fold tropical Lagrangian multisection La,b,c over
the fan of P2. Here a, b, c > 0. See Figure 5. Choose L to be the local system
on L\π−1(0) ∼= R2

\{0} that has monodromy −1 around the minimal cone. Let
zi

j := Zi/Z j be the inhomogeneous coordinates on U (σi )∩U (σ j )⊂P2. The semiflat
mirror bundle E0(La,b,c,L) on the P1-skeleton of P2 is given by the transition maps

τ sf
01 :=

−
1

(z1
0)

a+b 0

0 1
(z1

0)
c

, τ sf
12 :=

 1
(z2

1)
a 0

0 −
1

(z2
1)

b+c

, τ sf
20 :=

 0 1
(z0

2)
b

−
1

(z0
2)

a+c 0

.
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Figure 5. The tropical Lagrangian multisection La,b,c over 6P2 .

We choose the wall-crossing factors to be

201 :=

 1 0

−
(z2

0)
c

(z1
0)

b 1

, 212 :=

1 −
(z0

1)
a

(z2
1)

c

0 1

, 220 :=

 1 0

−
(z1

2)
b

(z0
2)

a 1

.

One can see that the resulting toric vector bundle E(La,b,c,L, 2) is actually isomor-
phic to Ea,b,c, the toric vector bundle introduced by Kaneyama in [21] using the
exact sequence

0 → OP2 → O(aD0) ⊕O(bD1) ⊕O(cD2) → Ea,b,c → 0.

Remark 4.23. From the symplectic point of view, we may think of 2τ (ω
′) as the

exponentiation of the generating function of holomorphic disks emitted from the
ramification locus ω′, bounded by the Lagrangian multisection and certain SYZ
fibers of p : T ∗NR/M → NR. The exponent m(σ

(α)
1 ) − m(σ

(β)

1 ) in 2τ (ω
′) should

be regarded as the direction of a wall if we use the polytope picture in MR. See [28]
for a more detailed discussion in dimension 2.

5. Unobstructedness in dimension 2

In this final section, we would like to determine when L is unobstructed when L

is a combinatorially indecomposable tropical Lagrangian multisection over a 2-
dimensional complete fan. In this case, the ramification locus S′

= L(0)
= π−1(0) is

a singleton and L\π−1(0) ∼= R2
\{0} topologically. First of all, not all such tropical

Lagrangian multisections are unobstructed.

Example 5.1. Consider the tropical Lagrangian multisection L depicted as in
Figure 6. It is easy to see that L is maximal and separated, which implies combina-
torial indecomposability by Proposition 3.23. However, one checks easily that the
matrices Gσ0σ1, Gσ1σ2 are all upper-triangular while Gσ2σ0 must have two nonzero
off-diagonal entries. Thus L must be obstructed.
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Figure 6. The tropical Lagrangian multisection L over 6P2 .

Therefore, we need an extra assumption on the piecewise linear function ϕ to
ensure unobstructedness. We begin with two lemmas.

Lemma 5.2. Suppose L is a combinatorially indecomposable rank r tropical
Lagrangian multisection over a complete 2-dimensional fan 6. Let σ ∈ 6(2)

and ρ ⊂ σ be a ray. Then for α ̸= β, either m(σ (α)) − m(σ (β)) ∈ ρ∨
∩ M or

m(σ (β)) − m(σ (α)) ∈ ρ∨
∩ M.

Proof. Since ρ ̸⊂ S, by separability, m(σ (α))|ρ ̸= m(σ (β))|ρ if α ̸= β. In par-
ticular, m(σ (α)) − m(σ (β)) ̸= 0. Note that ρ∨ is a half plane in MR, we have
m(σ (α)) − m(σ (β)) or m(σ (β)) − m(σ (α)) lies in ρ∨. Separability implies neither
can lie in ρ⊥. Hence only one of them can lie in ρ∨. □

Being unobstructed also restricts the choice of the local system L.

Lemma 5.3. If L is an unobstructed combinatorially indecomposable rank r trop-
ical Lagrangian multisection over a complete 2-dimensional fan 6, then L is the
unique local system on L\S′ that has monodromy (−1)r+1 around the unique
ramification point of π : L → NR.

Proof. Since Gsf
σ1σ2

, . . . , Gsf
σk−1σk

are all diagonal, by taking the determinant of (3),
we have

(−1)r+1
r∏

α=1
gsf

σ
(α)
k σ

(α+1)
1

k−1∏
i=1

r∏
α=1

gsf
σ

(α)
i σ

(α)
i+1

= 1.

Hence the monodromy of L, which is given by the cyclic product of all g
σ

(α)
i σ

(β)

i+1
’s,

is equal to (−1)r+1. As we are in dimension 2, the monodromy around the ramifi-
cation point uniquely determines the local system. □

Remark 5.4. When r = 2, the choice of the local system L has appeared in the
construction of the semiflat bundle in [15, Section 6.1]. Fukaya pointed out in [15,
Remark 6.4] that there should be a Floer theoretic explanation of this local system
based on the orientation problem of holomorphic disks. Believing the monomial
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term n(αβ)
τσ zm(σ (α))−m(σ (β)) corresponds to holomorphic disks, our calculation in

Lemma 5.3 suggests that the present of L is due to the fact that a holomorphic disk
only propagates in only one direction; m(σ (α)) − m(σ (β)) or m(σ (β)) − m(σ (α))

but not both. The number n(αβ)
τσ will then be the weighted count of holomorphic

disks (with extra boundary deformations if necessary, see Remark 5.6).

Therefore, to obtain unobstructedness, it is necessary for us to choose L to be
the unique local system on L\S′ that has monodromy (−1)r+1. In particular, by
Proposition 4.19, we may choose the transition maps of L to be

gsf
σ

(α)
i σ

(α)
i+1

= 1 for all i < k, α = 1, . . . , r

and

gsf
σ

(r)
k σ

(1)
1

= (−1)r+1, gsf
σ

(α)
k σ

(α+1)
1

= 1 for α < r .

We put

gsf
σkσ1

:=


0 · · · 0 (−1)r+1

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

,

which is the monodromy of the rank r local system π∗L on NR\{0}. The consistency
condition then becomes

θσkσ1 ◦ θσk−1σk ◦ · · · ◦ θσ1σ2 = gsf
σ1σk

,

where θσi σi+1 is obtained by deleting the monomial part of 2σi σi+1 . Recalling that
2σi σi+1 is of the form Id +Nσi σi+1 , we may write the above equation as

(4)
k∏

i=1
(Id +nσi σi+1) = gsf

σ1σk
.

Thus unobstructedness of L is equivalent to solving nσi σi+1’s subordinated to the
conditions

(N1) n(αα)
σi σi+1 = 0,

(N2) n(αβ)
σi σi+1 ̸= 0 only if m(σ

(α)
i ) − m(σ

(β)

i ) ∈ (σi ∩ σi+1)
∨

∩ M .

Note that (N2) gives a combinatorial constraint on ϕ for solving (4) as expected
by Example 5.1. Although (4) is not easy to solve for general r , it has the following
interesting consequence.
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Theorem 5.5. Let L be combinatorially indecomposable rank r tropical Lagrangian
multisection over a complete 2-dimensional fan 6. Then

dimC(K(L)) ≤
1
2r(r − 1) · #6(1),

where K(L) is the moduli space of toric vector bundles with equivariant Chern
classes determined by L.

Proof. The number of nσi σi+1’s is exactly the number of rays in 6 and each nσi σi+1

has at most 1
2r(r − 1) free variables. By Theorem 4.21, our construction extracts

all the possible Kaneyama data up to equivalence. The inequality follows. □

Remark 5.6. The moduli space K(L) is parametrized, up to the equivalence defined
in Definition 4.1, by the variables n(αβ)

σi σi+1 , which only depend on Nσi σi+1 or 2σi σi+1 .
As was discussed in Remark 4.23, these parameters are related to holomorphic disks
bounded by a Lagrangian multisection and some SYZ fibers. One should expect that
these variables are actually mirror to the moduli parameters of A∞-deformations of
the Lagrangian multisection.

Finally, we give an explicit description of the combinatorial obstruction for
solving (4) in the case r =2. This condition is particularly easy to check. Let’s recall
Lemma 5.2. In the rank 2 case, it means for any σ1, σ2 ∈ 6(2) that intersect along
an edge, we are always allowed to put 3 nonzero entries in the 2×2 matrices Gσ1σ2 .
Without loss of generality, we may arrange σ

(1)
1 , σ

(1)
2 , . . . , σ

(1)
k , σ

(2)
1 , σ

(2)
2 , . . . , σ

(2)
k

in an anticlockwise manner such that the matrix Gσkσ1 is of form(
zm(σ

(1)
k )−m(σ

(1)
1 )

−zm(σ
(2)
k )−m(σ

(1)
1 )

zm(σ
(1)
k )−m(σ

(2)
1 ) 0

)
and all the remaining Gσi σi+1 are either upper-triangular or lower-triangular.

Definition 5.7. Let L be a tropical Lagrangian multisection over a complete fan 6.
The slope matrix Mσ1σ2 associated to σ1, σ2 ∈ 6(n) is the matrix given by

M (αβ)
σ1σ2

:=

{
m(σ

(α)
1 ) − m(σ

(β)

2 ) if m(σ
(α)
1 ) − m(σ

(β)

2 ) ∈ (σ1 ∩ σ2)
∨

∩ M,

∞ otherwise.

One associates to the slope matrix Mσ1σ2 the monomial matrix

Z (αβ)
σ1σ2

:=

{
zm(σ

(α)
1 )−m(σ

(β)

2 ) if m(σ
(α)
1 ) − m(σ

(β)

2 ) ∈ (σ1 ∩ σ2)
∨

∩ M,

0 otherwise.

We call a slope matrix upper-triangular (resp. lower-triangular) if the associated
monomial matrix is upper-triangular (resp. lower-triangular).
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By Lemma 5.3, the local system L needs to be chosen to have monodromy −1
around the ramification point. With the above choice of arrangement convention,
it is necessary that the coefficient matrix of the composition Gσk−1σk ◦ · · · ◦ Gσ1σ2

takes the form

(5)
(

0 −1
1 1

)
.

Definition 5.8. A combinatorially indecomposable rank 2 tropical Lagrangian
multisection L over a complete 2-dimensional fan 6 is said to be satisfying the
slope condition if under the above arrangement convention, one of the following
conditions is satisfied:

(1) If Mσk−1σk is upper-triangular, there is at least one i < k − 1 such that Mσi σi+1

is lower-triangular.

(2) If Mσk−1σk is lower-triangular, there exists some i, j with 1 ≤ i < j < k − 1,
such that Mσ j σ j+1 is upper-triangular and Mσi σi+1 is lower-triangular.

Theorem 5.9. A combinatorially indecomposable rank 2 tropical Lagrangian multi-
section L over a 2-dimensional complete fan 6 is unobstructed if and only if it
satisfies the slope condition.

Proof. If L is unobstructed and Gσk−1σk is of upper-triangular type, then it is clear
that we need a lower-triangular type matrix to bring it into the required form (5).
Suppose Gσk−1σk is of lower-triangular type. There must be some j < k − 1 so that
Gσ j σ j+1 is of upper-triangular type. If there are no i < j for which Gσi σi+1 is of
lower triangular type, the composition Gσk−1σk ◦ · · · ◦ Gσ1σ2 will then take the form(

1 0
∗ 1

)(
1 ∗

0 1

)
=

(
1 ∗

∗ ∗

)
,

which can never have the required form (5). It remains to prove the converse.
In the upper-triangular case, let i < k − 1 be the first index for which Mσi σi+1 is
lower-triangular. Then

(Gσk−1σk ◦ Gσk−1σk−2 ◦ · · · ◦ Gσi+1σi+2) ◦ Gσi σi+1 =

(
1 a
0 1

)(
1 0
b 1

)
=

(
1 + ab a

b 1

)
,

and by choosing a = −1, b = 1, we obtain (5). Then we simply choose the
remaining matrices to be the identity to obtain Gσk−1σk ◦ · · · ◦ Gσ1σ2 = G−1

σkσ1
. For

the lower-triangular case, let i < j < k − 1 be the first index for which Mσ j σ j+1 is
upper-triangular and Mσi σi+1 is lower-triangular. Then we have

Gσk−1σk ◦· · ·◦Gσ j σ j+1 ◦· · ·◦Gσi σi+1 =

(
1 0
a 1

)(
1 b
0 1

)(
1 0
c 1

)
=

(
1 + bc b

a + c + abc 1

)
.
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Choose b = −1, c = 1 and let a be arbitrary. Then the triple product is equal
to (5). Again, by choosing the remaining matrices to be the identity, we obtain
Gσk−1σk ◦ · · · ◦ Gσ1σ2 = G−1

σkσ1
. □

The proof of Theorem 5.9 also sharpens the inequality in Theorem 5.5.

Corollary 5.10. Suppose that L is a combinatorially indecomposable rank 2 tropical
Lagrangian multisection over a complete 2-dimensional fan 6. Then we have
dimC(K(L)) ≤ #6(1) − 1.

Proof. In the proof of Theorem 5.9, the equation 1 + ab = 0 in the upper-triangular
case or 1 + bc = 0 in the lower-triangular case cut down the dimension by 1. By
Theorem 4.21, our construction extracts all the possible toric structures with fixed
equivariant Chern class, which is determined by L. Hence dimC(K(L))≤ #6(1)−1.

□
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