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LUKA ZWAAN

We construct a new class of examples of Poisson manifolds of strong compact
type. In particular, we show that all strongly integral affine circles and
two-dimensional tori appear as the leaf space of a Poisson manifold of strong
compact type.

1. Introduction

Like symplectic geometry, Poisson geometry started from the mathematical formal-
isation of classical mechanics. Roughly speaking, a Poisson manifold is a smooth
manifold equipped with a Poisson bracket on its space of smooth functions, which
allows one to formulate Hamiltonian dynamics. Examples of Poisson manifolds
include symplectic manifolds and duals of Lie algebras, an early glimpse into
the deep connection with symplectic geometry and Lie theory. Unlike symplectic
manifolds, Poisson manifolds are very flexible in nature. For instance, every
manifold admits a Poisson structure and there is no local classification of Poisson
structures. For this reason it is common to restrict one’s attention to specific
classes of Poisson manifolds, where one can formulate deep results about their
geometry. In this paper we are concerned with Poisson manifolds of compact
type (PMCTs). PMCTs are the “compact objects” in Poisson geometry. They
were first introduced in [Crainic and Fernandes 2005] and their role in the theory
is analogous to the one played by compact Lie algebras in Lie theory. Just as
there is the special class of compact semisimple Lie algebras among compact
Lie algebras, there is an important distinguished class among PMCTs, namely
that of Poisson manifolds of strong compact type (PMSCTs). A simple class
of examples of PMSCTs is given by compact symplectic manifolds with finite
fundamental group, but it is difficult to construct examples that are not symplectic.
The first such example was given in [Martínez Torres 2014], building on work of
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[Kotschick 2006]. There a regular PMSCT is constructed whose symplectic leaves
are all diffeomorphic to a K3 surface and whose leaf space is diffeomorphic to a
circle. One can form new PMSCTs by taking products of the aforementioned
examples, but apart from these no other examples are known. In this paper
we use the construction of [Martínez Torres 2014] to obtain new examples of
PMSCTs. It is known that the leaf space of a PMSCT must be a compact integral
affine orbifold and in the example of [Martínez Torres 2014] this is the “standard”
integral affine structure on the circle. In this work we show that all strongly
integral affine circles and two-dimensional tori can appear as the leaf space of
a PMSCT.

In order to explain our main result, recall that a Poisson structure on a manifold M
is a Lie bracket on C∞(M) which is a derivation in each entry. Equivalently, a
Poisson structure is a bivector π ∈X2(M) satisfying [π, π]=0. This is the definition
we work with in this paper. Every Poisson manifold has a partition into symplectic
manifolds. This symplectic foliation can be viewed as a singular foliation integrating
the (singular) distribution π#(T ∗M)⊂ T M . If π has constant rank, this is actually
a regular foliation. In this case the Poisson manifold is called regular.

The “global” objects in Poisson geometry are the so-called symplectic groupoids.
A symplectic groupoid is a Lie groupoid G⇒ M carrying a multiplicative symplectic
form�∈�2(G). A Poisson manifold (M, π) is called integrable if there exists some
symplectic groupoid (G ⇒ M, �) for which the target map t : (G, �)→ (M, π)
is a Poisson map (see [Crainic et al. 2021]). PMCTs are defined as those Poisson
manifolds that are integrated by a source connected, Hausdorff symplectic groupoid
having a certain compactness property. Contrary to the case of Lie groups and Lie
algebras, there are multiple notions of compactness for Lie groupoids, namely a
Lie groupoid G ⇒ M is called

• proper if the anchor map (s, t) : G → M × M is proper;

• source proper, or s-proper, if the source map is proper;

• compact if the space of arrows G is compact.

Accordingly, we say that (M, π) is of proper/source proper/compact type if it admits
a source connected, Hausdorff symplectic groupoid of proper/source proper/compact
type, respectively.

The types just defined depend on the choice of integration of (M, π). However,
just like for Lie groups, there is a unique “largest” integration, namely the one with
1-connected source fibres. This is often called the Weinstein groupoid. We say that
an integrable Poisson manifold has strong proper/source proper/compact type if its
Weinstein groupoid is Hausdorff and has the corresponding type. As mentioned
above, we will focus here on Poisson manifolds of strong compact type.



POISSON MANIFOLDS OF STRONG COMPACT TYPE OVER 2-TORI 355

Unlike general Poisson manifolds, PMCTs have a rich geometry transverse to
their associated symplectic foliation. For example, the leaf space of a regular PMCT
inherits the structure of an integral affine orbifold. Roughly speaking this means
that the leaf space has an orbifold atlas where the transitions are integral affine
maps. The precise statement can be found in [Crainic et al. 2019a; 2019b], where
many other properties of PMCTs are discussed.

As mentioned above, the first example of a PMSCT that is not symplectic was
given in [Martínez Torres 2014]. The construction there is inspired by [Kotschick
2006], where nontrivial results on the geometry of K3 surfaces are used to construct
a free symplectic circle action with contractible orbits. The orbit space of such
an action is a PMSCT with smooth leaf space a circle endowed with its standard
integral affine structure (that is, the one it inherits as a quotient of R by Z acting
by translations). In general, it is not known whether any compact integral affine
orbifold can appear as the leaf space of a PMSCT. On the one hand constructing
strong PMCTs is a difficult problem on its own, and on the other not much is
known about the classification of compact integral affine manifolds in dimension
greater than two. The integral affine structures on a circle are easily classified, and
the classification of integral affine structures on compact 2-dimensional manifolds
was obtained in [Mishachev 1996; Sepe 2010]. The main result of this paper is
the following.

Main theorem. Any strongly integral affine circle or two-dimensional torus can be
realised as the leaf space of a PMSCT.

Here by a strongly integral affine structure we mean an integral affine structure
with integral translational part (see [Sepe 2013, Remark 5.10] and Remark 4.2).

Our strategy to prove this result is as follows. Using the geometry of K3 surfaces
one constructs a universal family of marked Kähler K3 surfaces (see Section 3) to
which one can apply a general method from [Crainic et al. 2019b] to obtain PMSCTs.
Using this construction together with the classification of integral affine 2-tori from
[Mishachev 1996], one obtains examples of PMSCTs for all isomorphism classes
of strongly integral affine 2-tori.

This paper is organised as follows. In Section 2, we provide some background
on PMCTs and we recall the general method of constructing regular PMSCTs from
[Crainic et al. 2019b]. In Section 3 we recall the relevant results on K3 surfaces
that are needed for our construction. The resulting examples of PMSCTs have
symplectic foliation a fibration over S1 or T2 with typical fibre the smooth manifold
underlying a K3 surface. The symplectic structures on the fibres vary in a controlled
fashion which ensures that the Weinstein groupoid is a compact symplectic groupoid.
Finally, Section 4 is dedicated to the actual constructions, which includes some
lengthy computations. We treat the circle case first and this includes the original
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example from [Martínez Torres 2014]. Lastly, we construct the PMSCTs with leaf
space the strongly integral affine 2-tori.

2. Background & general construction of PMSCTs

The construction we give below is based on two results on PMCTs:

(a) The leaf space carries an integral affine orbifold structure (see [Crainic et al.
2019b, Section 3]).

(b) The linear variation theorem (see [Crainic et al. 2019b, Sections 4–5]).

We briefly recall these results before giving the general construction. Here we
only need to consider the case of 1-connected leaves. In this case the leaf space
is smooth, since this assumption implies that the monodromy groupoid of the
symplectic foliation is proper and has trivial isotropy groups. Then both (a) and (b)
above simplify significantly.

2A. The integral affine structure on the leaf space. Recall that an integral affine
structure on a manifold B is given by an atlas whose transition functions are integral
affine maps. Equivalently, it is specified by a lattice 3⊂ T ∗B locally spanned by
closed 1-forms.

Consider a regular, s-connected, proper symplectic groupoid (G, �)⇒ (M, π).
As mentioned above, we assume that the associated symplectic foliation Fπ has
1-connected leaves so that the leaf space B is a smooth manifold. We obtain a
lattice 3̃⊂ ν∗(Fπ ) as follows:

(1) For each x ∈ M , the kernel of the exponential map gx →Gx gives a lattice in gx .

(2) The isomorphism gx ∼= ν∗
x (Fπ ) induced by � allows us to transport it to the

conormal space.

This lattice descends to an integral affine structure 3⊂ T ∗B on B.

2B. The linear variation theorem. We assume now in addition that (G, �) ⇒
(M, π) is source proper. Denoting the symplectic leaf corresponding to b ∈ B by
(Sb, ωb), we form the vector bundle

H2
:=

⊔
b∈B

H 2(Sb,R)→ B

and the lattice
H2

Z :=
⊔

b∈B
im

(
H 2(Sb,Z)→ H 2(Sb,R)

)
inside it. Associated to this we have the Gauss–Manin connection ∇ on H2, uniquely
determined by requiring the sections of H2

Z to be parallel. Note that π gives us a
section ϖ ∈ 0(H2), b 7→ [ωb].
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The Gauss–Manin connection allows us to study the variation of ϖ : parallel
transport makes H2 into a 51(B)-representation and we define the variation map
varϖ :51(B)→ H2 to be

[γ ] 7→ γ∗(ϖγ (0)) ∈ H2
γ (1).

On the other hand, we also have the linear variation map varlin
ϖ : TB →H2 given by

v 7→ ∇vϖ

and the affine variation map varaff
ϖ :=ϖ + varlin

ϖ .
The linear variation theorem relates the variation and affine variation maps by

means of the developing map associated to the integral affine manifold (B,3).
Associated to the lattice 3∗

⊂ TB we have a canonical flat connection on TB (not
to be confused with ∇ above). This makes TB into a TB-representation, and since
the connection is torsion-free the identity map TB → TB is an algebroid cocycle.
The developing map is defined to be the groupoid cocycle dev : 51(B) → TB
integrating it.

Remark 2.1. One can show that after fixing b ∈ B and a basis of 3b this boils
down to the classical notion of developing map defined on the universal covering
space (see [Crainic et al. 2019b, Section 4.2]):

devb : B̃ → Tb B ≃ Rq .

We can now state the linear variation theorem as follows.

Theorem 2.2 [Crainic et al. 2019b, Theorem 4.4.2]. One has a commutative diagram

51(B) H2

TB

varϖ

dev varaff
ϖ

This rather abstract formulation can locally be made explicit. Let b0 ∈ B and
choose an integral affine chart (U, ϕ) centered at b0 such that ϕ(U ) is convex and
such that M → B trivialises over U . This induces a trivialisation 8 : H2

|U ∼=

U × H 2(Sb0,R). The chart induces an identification Tb0 B ∼= Rq and allows us to
consider “straight line” paths from b ∈ U to b0. Restricting to such paths the above
diagram becomes

U H 2(Sb0,R)

Rq

b 7→8([ωb])

ϕ
v 7→ [ωb0 ] +

∑
i vi ci
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where ci ∈ H 2(Sb0,Z) are the Chern classes of the torus bundle s−1(x) → Sb0 ,
where x ∈ Sb0 (see [Crainic et al. 2019b, Corollary 4.4.4]). This local formulation
is reminiscent of the linear variation theorem from [Duistermaat and Heckman
1982]. In other words, Theorem 2.2 can be viewed as a global formulation and
generalisation of the classical Duistermaat–Heckman theorem.

2C. The construction. The construction we describe in this section yields a PMSCT
with 1-connected symplectic leaves, whose leaf space is a complete integral affine
manifold. This means that the leaf space is a quotient of Rq by a free and proper
action of a discrete group of integral affine transformations. Note that if the Markus
conjecture holds true, then in fact every compact integral affine manifold is of
this type (see [Goldman 2022, Section 8.6]). This allows us to give an explicit
formulation of the linear variation, similar to the discussion following Theorem 2.2.
The setup is as follows.

Let E → Rq be a fibre bundle with typical fibre S, a compact 1-connected
manifold, and assume that E admits a Poisson structure πE whose symplectic
leaves are precisely the fibres of this bundle. As in Section 2B we have

(i) the vector bundle H2
→ Rq whose fibres are the degree two cohomology

groups of the symplectic leaves,

(ii) the lattice H2
Z ⊂ H2 of integral cohomology,

(iii) the associated Gauss–Manin connection ∇ and

(iv) the section ϖ ∈ 0(H2) induced by πE .

Next, let 0⊂AffZ(R
q)={x 7→ Ax+v | A∈GL(q,Z), v∈Rq

} be a discrete group
of integral affine transformations acting freely and properly on Rq , and assume
that there is a Poisson action of 0 on (E, πE) making the projection E → Rq

equivariant. Then setting M := E/0 and B := Rq/0, we get a (smooth) fibre
bundle p : M → B, again with typical fibre S, and a Poisson structure π on M whose
leaves are the fibres of p. In other words, (M, π) is a regular Poisson manifold
with leaf space B. Note also that B, being a quotient Rq/0, naturally inherits an
integral affine structure.

We can now state the general method of constructing PMSCTs. It is a reformula-
tion of [Crainic et al. 2019b, Proposition 4.4.6].

Proposition 2.3. Let (M = E/0, π) be constructed as above. Assume that there
exists a ∇-flat section s ∈ 0(H2) and linearly independent sections c1, . . . , cq ∈

0(H2
Z) such that

(2-1) ϖ = s +

q∑
i=1

pri
· ci ,

where pri
: Rq

→ R denotes projection onto the i-th coordinate. Then (M, π) is of
strong s-proper type and the induced integral affine structure on B agrees with the



POISSON MANIFOLDS OF STRONG COMPACT TYPE OVER 2-TORI 359

one coming from the quotient Rq/0. In particular, if B is compact then (M, π) is
a PMSCT.

Proof. Pulling back the integral affine structure on B along p : M → B yields a
transverse integral affine structure on the symplectic foliation Fπ , i.e., a lattice in
its conormal bundle. We denote this lattice by 3̃⊂ ν∗(Fπ ). The main point is that
for all x ∈ M , the monodromy group Nx(M, π) is equal to the lattice 3̃x . In fact,
using the description of the monodromy groups for regular Poisson manifolds as
the variation of symplectic areas (see [Crainic and Fernandes 2004, Section 6]) this
follows directly from (2-1). The integrability criteria for Poisson manifolds then
imply that (M, π) is integrable. Furthermore, since S has trivial fundamental group,
the isotropy groups of the Weinstein groupoid 6(M, π) fit into the exact sequence

· · · → π2(S, x) ∂x
−→ ν∗

x (Fπ )→6x(M, π)→ 0,

where ∂x is the monodromy map at x . Therefore, from our previous discussion, it
follows that 6x(M, π)≃ ν∗

x (Fπ )/3̃x , i.e., that the isotropy group at x is compact.
Since this holds for all x ∈ M and since S is also compact, this shows that the
Weinstein groupoid is s-proper.

Finally, since 3̃⊂ ν∗(Fπ ) is closed, Hausdorffness of the Weinstein groupoid
follows from [Alcalde-Cuesta and Hector 1995, Theorem 1.1]. □

3. Background on K3 surfaces and the Poisson structure
on the universal family

We start by listing some definitions and results concerning K3 surfaces, after which
we describe the moduli spaces and universal families for K3 surfaces. These results
can be found in [Barth et al. 1984]. Finally, following [Martínez Torres 2014], we
use the Calabi–Yau theorem to turn the universal family into a Poisson manifold
and the strong Torelli theorem to establish a Poisson action on it, setting us up to
apply our construction.

Definition 3.1. A K3 surface is a compact, 1-connected complex surface with trivial
canonical bundle.

Every K3 surface is Kähler (see [Siu 1983]). All K3 surfaces have the same
underlying smooth manifold S (see [Barth et al. 1984, Corollary VIII.8.6]); this
will be the model fibre used in Proposition 2.3. The intersection form on H 2(S,Z)

turns it into a lattice and this lattice is isomorphic to the aptly named K3 lattice,
which we denote by (L , ( ·, ·)). It is the unique even, unimodular lattice of signa-
ture (3, 19) (see [Barth et al. 1984, Proposition VIII.3.2(ii)]). Explicitly, we have
L = U⊕3

⊕ (−E8)
⊕2, where U = Z⊕2 with form given by

( 0
1

1
0

)
and E8 = Z⊕8

with form given by the Cartan matrix of E8; it is important for us that this form is
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positive definite. We also set LR := L ⊗ R and LC := L ⊗ C; note that these are
models for the real and complex cohomology, respectively.

3A. The Torelli theorem.

Definition 3.2. Let X, X ′ be K3 surfaces. A Z-module isomorphism H 2(X ′,Z)→

H 2(X,Z) is a Hodge isometry if

(i) it preserves the intersection form;

(ii) its C-linear extension preserves the Hodge decomposition.

A Hodge isometry is called effective if its R-linear extension maps some Kähler
class of X ′ to one of X .

Effectiveness of a Hodge isometry is equivalent to requiring it to map the Kähler
cone of X ′ to that of X (see [Barth et al. 1984, Proposition VIII.3.10]).

Theorem 3.3 (Torelli [Barth et al. 1984, Corollary VIII.11.4]). Let X, X ′ be K3
surfaces. Then for any effective Hodge isometry ϕ : H 2(X ′,Z)→ H 2(X,Z) there
exists a unique biholomorphism f : X → X ′ such that f ∗

= ϕ.

This result is ultimately used to obtain the action in Proposition 2.3.

3B. Moduli spaces and universal families. There are two moduli spaces and
corresponding families for K3 surfaces: one takes into account the Kähler structure
and the other only considers the complex structure. We start now with the latter.

Definition 3.4. A marked K3 surface is a pair (X, ϕ) consisting of a K3 surface X
and a marking ϕ, i.e., an isometry ϕ : H 2(X,Z)→ L . Two marked K3 surfaces are
equivalent if there is a bihomolorphism between them intertwining the markings.
The moduli space of marked K3 surfaces is the set of equivalence classes:

M1 := {(X, ϕ)}/∼ .

It follows immediately from the definition that any K3 surface admits, up to
scalar multiplication, a unique nowhere vanishing holomorphic 2-form. In fact, one
can show that, again up to scalar multiplication, there is a bijection between complex
structures on S and closed, complex 2-forms σ ∈ �2(S,C) satisfying σ ∧ σ = 0
and σ ∧ σ̄ > 0. This motivates the following definitions. We will use the same letter
to denote a marking ϕ : H 2(X,Z)→ L and the induced maps ϕ : H 2(X,R)→ LR

and ϕ : H 2(X,C)→ LC.

Definition 3.5. The period domain is given by

� := {[σ ] ∈ P(LC) | (σ, σ )= 0, (σ, σ̄ ) > 0}.

We define the period map τ1 : M1 →� by

[(X, ϕ)] 7→ [ϕ(σX )],

where σX is a nowhere vanishing holomorphic 2-form on X .
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Theorem 3.6 [Barth et al. 1984, Theorem VIII.12.1]. The moduli space M1 admits
the structure of a 20-dimensional complex manifold such that the period map
τ1 : M1 →� becomes a surjective local biholomorphism. Furthermore, there exists
a universal family U → M1 of marked K3 surfaces.

Remark 3.7. Recall that a family is universal if any other family is locally the
pullback of it by a unique map (see [Barth et al. 1984, Section I.10]). The fibre
of the universal family U → M1 over any t ∈ M1 is a marked K3 surface (X t , ϕt)

such that [(X t , ϕt)] = t . Furthermore, these markings vary smoothly in the sense
that they induce local trivialisations of the bundle

⋃
t∈M1

H 2(X t ,R).

There are still some inconveniences present here. It can be shown that M1 is
not Hausdorff, and that the period map τ1 is not injective (see [Barth et al. 1984,
Remark VIII.12.2]). These problems disappear when taking into account the Kähler
structure.

Definition 3.8. We define M2 to be the subset of the bundle⊔
t∈M1

H 2(X t ,C)

consisting of all Kähler classes.

It can be shown that M2 is a real-analytic manifold of dimension 60 (see [Barth
et al. 1984, Lemma VIII.9.3] and its proof). One should think of a point in M2 as
an equivalence class of marked K3 surfaces together with a specified Kähler class.
Note that there is a projection map pr : M2 → M1.

Inspired by some analysis of the Kähler cone of K3 surfaces (see [Barth et al.
1984, Sections VIII.3 and VIII.9]) one makes the following definitions.

Definition 3.9. Set

K� := {(k, [σ ]) ∈ LR ×� | (k, k) > 0, (k, σ )= 0}.

The refined period domain is then given by

K�0
:={(k, [σ ])∈ K� |(k, d) ̸=0 for all d ∈ L such that (d, d)=−2, (d, σ )=0}.

The refined period map τ2 : M2 → K�0 is defined as

(t, k) 7→ (ϕt(k), τ1(t)).

Theorem 3.10 [Barth et al. 1984, Theorems VIII.12.3 and VIII.14.1]. The refined
period map is a diffeomorphism.

We set K U := (pr◦τ−1
2 )∗U . This is a real-analytic family (i.e., fibre bundle) over

K�0 with extra data attached: the fibre over (k, [σ ]) is a triple (X, ϕ, ω) consisting
of a K3 surface X , a marking ϕ : H 2(X,Z)→ L and a Kähler class ω ∈ H 2(X,R)
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such that ϕ(ω) = k. These markings vary smoothly in the same sense as before,
and hence so do the Kähler classes.

The family K U → K�0 is universal for real-analytic “marked Kähler K3 fam-
ilies”, i.e., real-analytic families of K3 surfaces equipped with smoothly varying
markings and Kähler classes.

3C. The Poisson structure. Recall the following special version of the Calabi–Yau
theorem (see, e.g., [Barth et al. 1984, Theorem I.15.1]).

Theorem 3.11. Let X be a compact complex manifold with vanishing first Chern
class. Then for any Kähler class ω ∈ H 2(X,R) there exists a unique Ricci flat
Kähler metric whose Kähler form belongs to ω.

This theorem applies in particular to K3 surfaces, and thus we can use it to endow
the fibres of K U → K�0 with smoothly varying Kähler forms, turning it into a
Poisson manifold (see also [Martínez Torres 2014, Section 2.1.3]).

Corollary 3.12. The family K U admits a regular Poisson structure πK U whose
symplectic leaves are the fibres of K U → K�0. Moreover the symplectic form on
the fibre X over (k, [σ ]) with marking ϕ is the Kähler form associated to the unique
Ricci flat Kähler metric on X with Kähler class ϕ−1(k).

3D. The action. We will construct an action on K U by the group O(L) of isometries
of the K3 lattice. Note that there is an obvious induced action of O(L) on K�0.

Proposition 3.13. There is a Poisson action of O(L) on (K U, πKU ) with respect
to which the projection K U → K�0 is equivariant.

Proof. Fix γ ∈ O(L) and p ∈ K�0. Using the notation from above, denote the
triple over p by (X p, ϕp, ωp) and similarly for γ (p). It is easy to see that

ϕ−1
p ◦ γ−1

◦ϕγ (p) : H 2(Xγ (p),Z)→ H 2(X p,Z)

is an effective Hodge isometry, so that by Theorem 3.3 we obtain a biholomorphism
f p
γ : X p → Xγ (p). The universality of the family then gives neighbourhoods U

and V of p and of γ (p) respectively and an isomorphism (9,ψ) : K U |U → K U |V

extending f p
γ : through the biholomorphism f p

γ , K U becomes a deformation of X p

at two basepoints, p and γ (p). Since K U is universal, these two deformations
are locally isomorphic. Writing 9q : Xq → Xψ(q) for the fiberwise maps, it then
follows that for all q ∈ U we have that

9∗

q = ϕ−1
q ◦ γ−1

◦ϕψ(q) : H 2(Xψ(q),Z)→ H 2(Xq ,Z).

This implies first of all that ψ = γ |U , from which it follows that 9q = f q
γ , since

biholomorphisms of K3 surfaces are uniquely determined by their induced maps on
degree 2 integral cohomology (see [Barth et al. 1984, Proposition VIII.11.3]). Thus
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these fibrewise biholomorphisms f p
γ , p ∈ K�0, together form an automorphism

Fγ : K U → K U . It is immediate from the above construction that Fid = id, and
from the uniqueness part of Theorem 3.3 it follows that Fγ ◦γ ′ = Fγ ◦ Fγ ′ for
all γ, γ ′

∈ O(L), meaning that we have an action of O(L) on K U . This action
makes K U → K�0 equivariant by construction. Finally, from the uniqueness part
of the Calabi–Yau theorem it follows that each f p

γ preserves the symplectic forms
on the fibres, meaning that the action is by Poisson maps. □

4. The examples

From our work in Section 3 we have a Poisson manifold (K U, πKU ) with leaf
space K�0 such that

(i) the cohomology classes of the symplectic forms on the leaves are described in
terms of the leaf space K�0 (Corollary 3.12);

(ii) the natural action of O(L) on K�0 lifts to a Poisson action on (K U, πKU )

(Proposition 3.13).

In order to apply the construction described in Section 2, we need to find a suit-
able embedding Rq ↪→ K�0 and a suitable subgroup 0 ⊂ O(L). We rephrase
Proposition 2.3 in the current setting in order to make this more precise. For a
different version of this result see also [Martínez Torres 2014, Theorem 1].

Corollary 4.1. Assume that we have an embedding f : Rq
→ K�0 and a subgroup

0 ⊂ O(L) such that

(i) there exist a ∈ LR and linearly independent a1, . . . , aq ∈ L such that the
LR-component of f has the form

(x1, . . . , xq) 7→ a +

q∑
i=1

xi ai ;

(ii) the action of 0 on K�0 preserves the image of f ;

(iii) the induced action on Rq is free, proper and by integral affine maps.

Then M := f ∗K U/0 with the Poisson structure induced from πK U is a Poisson
manifold of strong s-proper type with leaf space B := Rq/0. If B is compact, M is
a PMSCT.

Remark 4.2. We can now explain why our construction leads to PMSCTs with
strongly integral affine leaf spaces. On the one hand, because of Theorem 2.2, we
are forced to consider embeddings with integral variation, i.e., the ai must lie in the
integral lattice L . On the other hand, to apply Theorem 3.3 we need to consider
isometries of integral cohomology, i.e., we need to act by elements of O(L). These
two technical limitations together only allow for strongly integral affine leaf spaces
in the examples.
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Remark 4.3. At the level of the symplectic groupoid, one can see that the leaf
space being strongly integral affine implies that the restriction of the symplectic
form to the identity component of the isotropy (a torus bundle) lies in the integral
cohomology. See [Sepe 2013, Remark 5.10].

We now recall the classification of strongly integral affine structures for S1 and T2.

Theorem 4.4. The strongly integral affine circles are, up to isomorphism, the
quotients R/Z where the Z-action is generated by x 7→ x + p, for a fixed p ∈ Z≥1.

Proof. It is easy to see that all integral affine circles are complete. Hence, it suffices
to classify, up to conjugation, embeddings Z → AffZ(R) inducing free and proper
actions. These are precisely the actions generated by x 7→ x + a with a > 0.
Restricting to strongly integral affine circles yields the result. □

Theorem 4.5. The strongly integral affine 2-tori, up to isomorphism, are quotients
R2/Z2, where the Z2-actions fall into one of the following types:

(I) An action generated by (x, y) 7→ (x + p, y) and (x, y) 7→ (x, y + q), where
p, q ∈ Z≥1 and p|q.

(II) An action generated by (x, y) 7→ (x + p, y) and (x, y) 7→ (x + ny, y + q),
where n, p, q ∈ Z≥1.

Proof. The classification of all integral affine structures on 2-tori is given in
[Mishachev 1996, Theorem A]. Restricting to strongly integral affine structures
and using the Smith normal form for matrices with integer entries to simplify the
possibilities from type (I) yields the above classification. □

Remark 4.6. The integral affine 2-tori of type (I) are (isomorphic to) products of
integral affine circles. Thus to find examples of PMSCTs with leaf space of this
type one can simply take products of PMSCTs with leaf space S1, constructed
in Section 4A. This yields Poisson manifolds of dimension 10 whose leaves are
products of K3 surfaces. However, the examples we construct in Section 4B are
six-dimensional Poisson manifolds with K3 surfaces as symplectic leaves and thus
result in “smaller” examples.

Remark 4.7. Continuing the previous remark, note that by taking products we
can also realise some higher-dimensional integral affine tori as the leaf space of
a PMSCT, namely those that are isomorphic to a product of some of the integral
affine circles and 2-tori classified above.

Before we move on to the examples, we establish some notation. Recall that
L = U⊕3

⊕ (−E8)
⊕2. We denote the standard bases of the three copies of U

by {u, v}, {x, y} and {z, t}, so that (u, v) = (x, y) = (z, t) = 1 with all other
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combinations yielding zero. Recall also that −E8 is even and negative definite.
Finally, let {e1, . . . , e8} be a set of real numbers such that the set

{1, e1, . . . , e8, e2
1, e1e2, . . . , e2

7, e7e8, e2
8}

consisting of 1, e1, . . . , e8 and their pairwise products is linearly independent over
the integers, or equivalently the rationals. The existence of such a set is guaranteed
by [Mordell 1953]. We then set e := (e1, . . . , e8) ∈ (−E8)R, scaling if necessary
such that |(e, e)| ≤

1
2 , and we set a := (0, e), b := (e, 0) ∈ (−E8)

⊕2
R ⊂ LR.

Let us outline the strategy for the examples below. In each case, we start by defin-
ing f and0. It is fairly straightforward to check items (ii) and (iii) from Corollary 4.1
and that the image of f is contained in K�. It then remains to show that it is
actually contained in K�0. This is the more involved part of the computations.

4A. The PMSCTs with leaf space the circle. We will construct a PMSCT whose
leaf space is a strongly integral affine circle, i.e., we want the action of Z on R

generated by x 7→ x + p with p ∈ Z≥1. The case p = 1 is the one treated in
[Martínez Torres 2014] and the computations carried out below for general p are
an obvious generalisation of the computations there.

Consider the map f : R → LR × P(LC) defined by

s 7→
(
2u + v+ sy, [x − su + 2y + a + i(z + 2t + b)]

)
and the map ϕ : L → L defined by u 7→ u, v 7→ v+ py, x 7→ x − pu, y 7→ y on the
first two copies of U and as the identity on the other summands of L . It is easily
checked that ϕ is an isometry and that

ϕ · f (s)= f (s + p).

This implies that the image of f is invariant under the action of 0 := ⟨ϕ⟩, and also
that the induced action on R is the one we need.

To show that the image of f is contained in K�, let s ∈ R. Setting f1(s) =

2u + v+ sy, f2(s)= x − su + 2y + a and f3(s)= z + 2t + b, we see that

( f2(s), f2(s))= (x − su + 2y + a, x − su + 2y + a)

= 4(x, y)+ (a, a)

= 4 + (e, e)≥
7
2 > 0,

( f3(s), f3(s))= (z + 2t + b, z + 2t + b)

= 4(z, t)+ (b, b)

= 4 + (e, e)≥
7
2 > 0,

( f2(s), f3(s))= (x − su + 2y + a, z + 2t + b)

= 0.
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These computations imply that [ f2(s)+ i f3(s)] ∈�. Since

( f1(s), f1(s))= (2u + v+ sy, 2u + v+ sy)= (2u, v)+ (v, 2u)= 4> 0,

( f1(s), f2(s))= (2u + v+ sy, x − su + 2y + a)

= −s(v, u)+ s(y, x)= −s + s = 0,

( f1(s), f3(s))= (2u + v+ sy, z + 2t + b)= 0,

we see that f (s) ∈ K�.
It remains to check that f (s) ∈ K�0 for all s ∈ R.

Proof. Assume that we have d ∈ L such that (d, d) = −2 and (d, f1(s)) =

(d, f2(s))= (d, f3(s))= 0. We need to find a contradiction. Let us write

d = Au + Bv+ Cx + Dy + Ez + Ft + d1 + d2,

with A, . . . , F ∈ Z and di in the i-th copy of −E8. Since E8 is even and positive
definite, we can write (di , di ) = −2ni , for ni ∈ Z≥0. The above conditions then
translate into three equations:

AB + C D + E F = n1 + n2 − 1,(4-1)

2B + A + Cs = 0,(4-2)

D − Bs + 2C + (d2, e)= 0,(4-3)

F + 2E + (d1, e)= 0.(4-4)

This is where the seemingly strange choice of e comes in. There exist k1, . . . , k8 ∈

Z such that (d1, e)=
∑

i ki ei and since {1, e1, . . . , e8} is linearly independent over
the integers by choice of e, it follows from (4-4) that we must have F + 2E = k1 =

· · · = k8 = 0. Since the bilinear form on −E8 is nondegenerate, it follows that
d1 = 0 and thus that n1 = 0.

Case C = 0: Equation (4-2) yields 2B + A = 0, and (4-1) becomes

2B2
+ 2E2

= 1 − n2.

This implies that B = E = 0 and n2 = 1. But then d2 ̸= 0 and (4-3) becomes

D + (d2, e)= 0,

which together with d2 ̸= 0 contradicts the “linear independence” assumption on e.

Case C ̸= 0: From (4-2) we get

s = −
2B + A

C
,

and substituting this into (4-3) yields

AB + C D = −2C2
− 2B2

− (d2, e).
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Combining this with (4-1) gives

2B2
+ 2C2

+ 2E2
+ C(d2, e)= 1 − n2.

From the properties of e we get Cd2 = 0, implying that d2 = 0 and thus also that
n2 = 0, so that we are left with

2B2
+ 2C2

+ 2E2
= 1,

which is absurd since B,C, E ∈ Z. □

4B. The PMSCTs with leaf space a torus of type (I). Here we construct a PMSCT
with leaf space the torus T2 with an integral affine structure of type (I). This
means that we want the action of Z2 on R2 generated by (x, y) 7→ (x + p, y) and
(x, y) 7→ (x, y + q), with p, q ∈ Z≥1.

Consider the map f : R2
→ LR × P(LC) defined by

(s, r) 7→
(
2u + v+ sy + r t, [x − su + 2y + a + i(z − ru + 2t + b)]

)
,

the map ϕ : L → L as in the previous example and the map ψ : L → L defined
by u 7→ u, v 7→ v + qt , x 7→ x , y 7→ y, z 7→ z − qu, t 7→ t on two copies of U
and as the identity on the other summands of L . It is easily checked that these are
isometries and that

ϕ · f (s, r)= f (s + p, r),

ψ · f (s, r)= f (s, r + q).

This implies that the image of f is invariant under the action of 0 := ⟨ϕ,ψ⟩, and
also that the induced action on R2 is as desired.

To show that the image of f is contained in K�, let f1, f2, f3 be the three
“components” of f , as before, and let (s, r) ∈ R2. We compute

( f2(s, r), f2(s, r))= (x − su + 2y + a, x − su + 2y + a)

= 4(x, y)+ (a, a)

= 4 + (e, e)≥
7
2 > 0,

( f3(s, r), f3(s, r))= (z − ru + 2t + b, z − ru + 2t + b)

= 4(z, t)+ (b, b)

= 4 + (e, e)≥
7
2 > 0,

( f2(s, r), f3(s, r))= (x − su + 2y + a, z − ru + 2t + b)

= 0
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and conclude that [ f2(s, r)+ i f3(s, r)] ∈�. Also,

( f1(s, r), f1(s, r))= (2u + v+ sy + r t, 2u + v+ sy + r t)

= (2u, v)+ (v, 2u)= 4> 0,

( f1(s, r), f2(s, r))= (2u + v+ sy + r t, x − su + 2y + a)

= −s(u, v)+ s(x, y)= −s + s = 0,

( f1(s, r), f3(s, r))= (2u + v+ sy + r t, z − ru + 2t + b)

= −r(u, v)+ r(z, t)= −r + r = 0

implies that f (s, r) ∈ K�.
It remains to check that f (s, r) ∈ K�0 for all (s, r) ∈ R2.

Proof. Let d ∈ L such that (d, d) = −2 and (d, f1(s, r)) = (d, f2(s, r)) =

(d, f3(s, r))= 0 and as before write

d = Au + Bv+ Cx + Dy + Ez + Ft + d1 + d2,

and (di , di ) = −2ni for ni ∈ Z≥0. We need to find a contradiction. The relevant
equations now become

AB + C D + E F = n1 + n2 − 1,(4-5)

2B + A + Cs + Er = 0,(4-6)

D − Bs + 2C + (d2, e)= 0,(4-7)

F − Br + 2E + (d1, e)= 0.(4-8)

Case B = 0: The assumptions on e, together with (4-7) and (4-8), imply that
D+2C = F +2E = 0 and d1 = d2 = 0, so that n1 = n2 = 0. But then (4-5) becomes

2C2
+ 2E2

= 1,

which is impossible.

Case B ̸= 0: From (4-7) and (4-8) we get

s =
D + 2C + (d2, e)

B
, r =

F + 2E + (d1, e)
B

.

Substituting this into (4-6) gives

AB + C D + E F = −2B2
− 2C2

− 2E2
− C(d2, e)− E(d1, e),

and combining this with (4-5) we obtain

2B2
+ 2C2

+ 2E2
+ C(d2, e)+ E(d1, e)= 1 − n1 − n2.
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The assumptions on e imply that Cd2 + Ed1 = 0, so that this becomes

2B2
+ 2C2

+ 2E2
= 1 − n1 − n2.

This is impossible under the assumption B ̸= 0, since ni ∈ Z≥0. □

4C. The PMSCTs with leaf space a torus of type (II). In this example we will
construct a PMSCT whose leaf space is a torus with an induced integral affine
structure of type (II), namely one induced by the action of Z2 on R2 generated by
(x, y) 7→ (x + p, y) and (x, y) 7→ (x + ny, y + q), where n, p, q ∈ Z≥1.

Consider the map f : R2
→ LR × P(LC) defined by

(s,r)

7→
(
2u+v+sy+r t, [qx+(nr2

−qs)u−nrz+2qy+a+i(z−ru+2q2t+2nqry+b)]
)
,

the map ϕ : L → L defined as before and the map ψ : L → L defined by u 7→ u,
v 7→ v+ qt , x 7→ x − nz + qnu, y 7→ y, z 7→ z − qu, t 7→ t + ny on the copies
of U and the identity on the other summands of L . It is easily checked that these
are isometries and that

ϕ · f (s, r)= f (s + p, r),

ψ · f (s, r)= f (s + nr, r + q).

This implies that the image of f is invariant under the action of 0 := ⟨ϕ,ψ⟩, and
also that the induced action on R2 is the desired one. To show that the image of f
is contained in K�, denote once more by f1, f2, f3 the “components” of f , and
let (s, r) ∈ R2. Since

( f2(s,r), f2(s,r))=
(
qx+(nr2

−qs)u−nrz+2qy+a,qx+(nr2
−qs)u−nrz

+2qy+a
)

= 4q2(x, y)+(a,a)

= 4q2
+(e,e)≥ 7

2 > 0,

( f3(s,r), f3(s,r))= (z−ru+2q2t+2nqry+b, z−ru+2q2t+2nqry+b)

= 4q2(z, t)+(b,b)

= 4q2
+(e,e)≥ 7

2 > 0,

( f2(s,r), f3(s,r))= (qx+(nr2
−qs)u−nrz+2qy+a, z−ru+2q2t+2nqry+b)

= 2nq2r(x, y)−2nq2r(z, t)= 2nq2r −2nq2r = 0,
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we get that [ f2(s, r)+ i f3(s, r)] ∈�. The computations

( f1(s, r), f1(s, r))= (2u + v+ sy + r t, 2u + v+ sy + r t)

= (2u, v)+ (v, 2u)= 4> 0,

( f1(s, r), f2(s, r))= (2u + v+ sy + r t, qx + (nr2
− qs)u − nrz + 2qy + a)

= (nr2
− qs)(u, v)+ qs(x, y)− nr2(z, t)

= nr2
− qs + qs − nr2

= 0,

( f1(s, r), f3(s, r))= (2u + v+ sy + r t, z − ru + 2q2t + 2nqry + b)

= −r(u, v)+ r(z, t)= −r + r = 0

show that f (s, r) ∈ K�.
It remains to show that f (s, r) ∈ K�0 for all (s, r) ∈ R2.

Proof. Let d ∈ L such that (d, d)= −2 and (d, f1(s))= (d, f2(s))= (d, f3(s))= 0.
Like before we write

d = Au + Bv+ Cx + Dy + Ez + Ft + d1 + d2,

and we set (di , di )= −2ni with ni ∈ Z≥0. The goal is to find a contradiction. The
main equations are now

AB + C D + E F = n1 + n2 − 1,(4-9)

2B + A + Cs + Er = 0,(4-10)

Dq + B(nr2
− qs)− Fnr + 2Cq + (d2, e)= 0,(4-11)

F − Br + 2Eq2
+ 2Cnqr + (d1, e)= 0.(4-12)

Case B − 2Cnq = 0: Equation (4-12) tells us that d1 = 0 and F + 2Eq2
= 0.

Subcase C = 0: This implies that B = 0, so that (4-9) becomes

2E2q2
= 1 − n2.

This is only possible if E = 0 and n2 = 1, but then also F = 0 and (4-11) becomes

Dq + (d2, e)= 0,

which would imply that d2 = 0, contradicting n2 = 1.

Subcase C ̸= 0: Equation (4-10) tells us that

s = −
2B + A + Er

C
,

and with (4-11) we obtain

2Cn2qr2
− 2Fnr + 2Anq2

+ C(8n2q3
+ 2q)+ Dq + (d2, e)= 0.
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Since C, n, q ̸= 0 and r ∈ R, we must have that

F2
≥ 2Cq

[
2Anq2

+ C(8n2q3
+ 2q)+ Dq + (d2, e)

]
.

But F = −2Eq2 and B = 2Cnq, so combining this with (4-9) yields

q(1 − n2)≥ C2(8n2q3
+ 2q)+ C(d2, e).

Since C ̸= 0, this is certainly impossible when C and (d2, e) have the same parity.
So let us assume that they have opposite parity, so that the equation becomes

(4-13) q(1 − n2)≥ C2(8n2q3
+ 2q)− |C | · |(d2, e)|.

Now both d2 and e lie in the same copy of −E8, and since ( ·, ·) is negative definite
on −E8 we can use the Cauchy–Schwarz inequality to obtain

|(d2, e)| ≤

√
|(d2, d2)| · |(e, e)| =

√
2 · |(e, e)|n2 ≤

√
n2,

using that we chose e such that |(e, e)| ≤
1
2 . Now, in order for (4-13) to hold we

certainly must have

C2(8n2q3
+ 2q)−

√
n2 · |C | + qn2 − q ≤ 0

and it is easily seen that this is not possible for 0 ̸= C ∈ Z.

Case B − 2Cnq ̸= 0: We immediately distinguish two cases: B = 0 and B ̸= 0.

Subcase B = 0: We claim that F ̸= 0. Indeed, if we had F = 0, equation (4-11)
would become

Dq + 2Cq + (d2, e)= 0,

meaning that d2 = 0, so n2 = 0, and D + 2C = 0. But then (4-9) becomes

2C2
= 1 − n1,

which can only hold if C = 0 and n1 = 1. But then (4-12) becomes

2Eq2
+ (d1, e)= 0,

which implies d1 = 0, contradicting n1 = 1. So we see indeed that F ̸= 0. But
then (4-11) and (4-12) yield

r = −
F + 2Eq2

+ (d1, e)
2Cnq

=
Dq + 2Cq + (d2, e)

Fn
.
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This becomes

2C Dnq2
+ 4C2nq2

+ 2Cnq(d2, e)+ F2n + 2E Fnq2
+ Fn(d1, e)= 0,

and the assumptions on e imply that 2Cqd2 + Fd1 = 0 and

2C Dnq2
+ 4C2nq2

+ F2n + 2E Fnq2
= 0.

Since B = 0, combining this with (4-9) we obtain

4C2nq2
+ F2n = 2nq2(1 − n1 − n2).

Both C and F are nonzero, meaning that this is impossible.

Subcase B ̸= 0: We can write

r =
F + 2Eq2

+ (d1, e)
B − 2Cnq

, s =
Dq + Bnr2

− Fnr + 2Cq + (d2, e)
Bq

.

This yields

s =
(B − 2Cnq)2(2Cq + Dq + (d2, e))+ Bn(F + 2Eq2

+ (d1, e))2

Bq(B − 2Cnq)2

−
Fn(B − 2Cnq)(F + 2Eq2

+ (d1, e))
Bq(B − 2Cnq)2

and substituting this into (4-10) and using the assumptions on e (actually, finally
using them to their full potential), this reduces to

0 = 2B2q(B−2Cnq)2+ABq(B−2Cnq)2

+C
(
(B−2Cnq)2(2Cq+Dq)+Bn(F+2Eq2)2−Fn(B−2Cnq)(F+2Eq2)

)
+B Eq(B−2Cnq)(F+2Eq2).

Some rewriting turns this into

0 = q(B − 2Cnq)2
(
2B2

+ 2C2
+ AB + C D

)
+ BCn(F + 2Eq2)2

− C Fn(B − 2Cnq)(F + 2Eq2)+ B Eq(B − 2Cnq)(F + 2Eq2),

and some easy computations show that the second line is equal to

E Fq(B − 2Cnq)2 + 2q(B Eq + C Fn)2,

so that altogether we obtain

q(B − 2Cnq)2
(
2B2

+ 2C2
+ AB + C D + E F

)
+ 2q(B Eq + C Fn)2 = 0.

Combining this with (4-9) we get

2
(
(B − 2Cnq)2(B2

+ C2)+ (B Eq + C Fn)2
)
= (B − 2Cnq)2(1 − n1 − n2).
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But this is impossible, since B − 2Cnq ̸= 0, B ̸= 0 and n1, n2 ≥ 0, giving us the
desired contradiction. □
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