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SMOOTH LOCAL SOLUTIONS
TO SCHRÖDINGER FLOWS WITH DAMPING TERM

FOR MAPS INTO SYMPLECTIC MANIFOLDS

BO CHEN AND YOUDE WANG

We show the existence of short-time very regular solutions to the initial
Neumann boundary value problem of Schrödinger flows with damping term
(or Landau–Lifshitz–Gilbert flows) for maps from a 3-dimensional compact
Riemannian manifold with smooth boundary into a compact symplectic
manifold.

1. Introduction

Let (M, g) be a compact Riemannian manifold with smooth boundary and (N , J, ω)

be a symplectic manifold, where ω is the symplectic form and J : TN → TN with
J 2

=− id is an ω-tamed almost complex structure. For a smooth map u ∈C2(M, N ),
the tension field is defined by

τ(u) = trg(∇du),

where ∇ denotes the induced connection on the pullback bundle u∗TN.
Recently, in [Chen and Wang 2023b; 2023a] we have addressed the local existence

of strong or even smooth solutions to the initial Neumann boundary value problems
to the Schrödinger flows from a smooth bounded domain �m (m = 2, 3) into a
standard sphere S2. A natural problem is whether or not one can extend the local
existence of smooth solutions to the initial Neumann boundary value problem to the
following Schrödinger flow from a compact Riemannian manifold with boundary
(M, g) into a general symplectic manifold (N , J, ω):

∂t u = J (u)τ (u), (x, t) ∈ M × R+,

∂u/∂ν = 0, (x, t) ∈ ∂ M × R+,

u(x, 0) = u0 : M → N .
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In this paper, we are concerned with a geometric flow for maps between (M, g)

and (N , J, ω), which is a close relative of the Schrödinger flow. If u is a time-
dependent map from (M, g) into N satisfying

∂t u + γ∇vu = ατ(u) − β J (u)τ (u),

we call this geometric flow a Schrödinger flow with damping term ατ(u) (or
a Landau–Lifshitz–Gilbert (LLG) geometric flow) for maps from (M, g) into
(N , J, ω), where α > 0, β and γ are fixed real numbers, v : M × R+

→ TM
is a vector field satisfying div(v) = 0 inside M for any t ∈ R+, and ∇vu is defined
by

∇vu = du(v).

We are interested in the well-posedness to the initial Neumann boundary value
problem of the above geometric flow

(1-1)


∂t u + γ∇vu = ατ(u) − β J (u)τ (u), (x, t) ∈ M × R+,

∂u/∂ν = 0, (x, t) ∈ ∂ M × R+,

u(x, 0) = u0 : M → N .

In fact, the study of system (1-1) above can be regarded as the first step to
approach the previous initial Neumann boundary value problem on the Schrödinger
map flow. This is also the main motivation of this paper.

On the other hand, system (1-1) is of strong physical background. Now, let us
recall some background materials and related equations of this flow.

1A. Background: Landau–Lifshitz–Gilbert equation and the Schrödinger map
flow. Let � be a bounded domain in R3. In physics, for a map u from � into a
standard sphere S2, the Landau–Lifshitz (LL) equation

(1-2) ∂t u = −u × 1u

is a fundamental evolution equation for the ferromagnetic spin chain and was
proposed on the phenomenological ground in studying the dispersive theory of
magnetization of ferromagnets. It was first derived by Landau and Lifshitz [1935],
and then proposed by Gilbert [1955] with dissipation as the form

(1-3) ∂t u = −αu × (u × 1u) − βu × 1u,

where β is a real number and α ≥ 0 is called the Gilbert damping coefficient. Hence,
equation (1-3) above is also called the Landau–Lifshitz–Gilbert (LLG) equation if
α > 0. Here “×” denotes the cross product in R3 and 1 is the Laplace operator
in R3.

Let i : S2
→ R3 be the canonical inclusion map, which induces an embedding

i∗ : T S2
→ S2

× R3, namely i∗(p, v) = (p, di p(v)) for any p ∈ S2 and v ∈ TpS2.
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Let ι : R3
\ {0} → S2 be the projection defined by ι(y) = y/|y|. Then a direct

calculation shows
dι|y(w) = πy(w) = w − ⟨w, y⟩y

for y ∈ S2 and w ∈ R3, where π is the orthogonal projection from R3 to TyS2.
Moreover, it satisfies

i∗y ◦ πy = πy, πy ◦ i∗y = id.

Then u× has the intrinsic form

u× = i∗u ◦ J (u) ◦ πu .

Here J is the complex structure on S2, i.e., J (u) : TuS2
→ TuS2 rotates vectors

π
2 radians counterclockwise in the tangent space of S2. Therefore, (1-3) can be
written as

∂t u = απu1u − βi∗(u) ◦ J (u) ◦ πu1u.

Since τ(u) = πu1u ∈ TuS2 (i.e., the tension field) and πu∂t u = ∂t u, we get the
intrinsic version of (1-3) as

(1-4) ∂t u = ατ(u) − β J (u)τ (u).

In the case α = 0, it is just the Schrödinger flow into S2, which is introduced inde-
pendently in [Ding and Wang 2001] and [Terng and Uhlenbeck 2006] as a geometric
Hamiltonian flow of maps between manifolds. The intrinsic equation (1-4) can be
defined between general manifolds and gives a natural generalization of the LLG
equation, which is a parabolic perturbation of the Schrödinger flow. Namely, suppose
that (M, g) is a Riemannian manifold and (N , J, ω) is a symplectic manifold, the
LLG geometric flow for map u : M × R+

→ N ↪→ RK is defined by

(1-5) ∂t u = ατ(u) − β J (u)τ (u),

where
τ(u) = 1u + A(u)(∇u, ∇u)

is the tension field, A(u)( · , · ) is the second fundamental form of N in RK. Here
we have embedded isometrically N into RK by applying the well-known Nash
embedding theorem. In the following, we always assume that N ⊂ RK is just a
submanifold in RK for the sake of convenience and without loss of generality.

Let v : M ×R+
→ TM be a vector field with div(v) ≡ 0 inside M. The equation

(1-6) ∂t u + γ∇vu = ατ(u) − β J (u)τ (u)

appears in magnetoelastic theory, where γ ∈ R is a constant. One can refer to
[Benešová et al. 2018; Kalousek et al. 2021] for more details.
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In the special case of α = 0, the equation

∂t u + γ∇vu = −β J (u)τ (u)

is called an incompressible Schrödinger flow, which was derived for the purely
Eulerian simulation of incompressible fluids by Chern et al. [2016].

We should mention that (1-5) and (1-6) are gauge equivalent. Let φt : M → M
be a family of diffeomorphisms of M generated by γ v, which preserves the volume
element. Namely, φt is the solution to the ODE

(1-7)


∂φ

∂t
= γ v(φt(x), t),

φ( · , 0) = φ0,

where φ0 : M → M is a given diffeomorphism. If ∂ M ̸=∅, we additionally assume
γ ⟨v, ν⟩|∂ M = 0, where ν is the outer normal vector of ∂ M. Let u solve (1-6), and
set ũ(x, t) = u(φt(x), t). Then we have

∂t ũ = (∂t u + γ∇vu) ◦ φt(x) = φ∗

t (ατ(u) − β J (u)τ (u)) = ατ(ũ) − β J (ũ)τ (ũ).

This is the standard LLG equation

∂t ũ = ατ(ũ) − β J (ũ)τ (ũ)

with respect to the pullback metric gt = φ∗
t g.

It is worthy to point out that if the vector field v is the velocity field in magnetic
fluid, which satisfies a Navier–Stokes equation involving a magnetic term, we can
derive the so-called magnetic elasticity system (see [Benešová et al. 2018] for more
details)

(1-8)


∂tv + ∇vv + ∇ P = µ1v − ∇ · (∇u ⊙ ∇u − W ′(F)F),

div(v) = 0,

∂t F + (v · ∇)F − ∇vF = κ1F,

∂t u + γ∇vu = ατ(u) − βu × 1u,

accompanied by some suitable initial-boundary value conditions. Here µ, κ are two
positive constants, u : �m

×R+
→ S2 is the magnetization field, v : �m

×R+
→ Rm

is the velocity field of the fluid, P is the pressure function, and F : �m
→ Rm×m is

the deformation gradient, where �m is a domain in Rm with m = 2, 3. The term
∇u ⊙ ∇u is an m × m matrix with (i, j)-th entry

(∇u ⊙ ∇u)i j = ⟨∇i u, ∇ j u⟩,
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W is the elastic energy which satisfies W (RS) = W (S) for all R ∈ SO(m) (and
thus W ′(RS) = RW ′(S)) for all matrices S ∈ Rm×m, and

τ(u) = 1u + |∇u|
2u.

In the special case α =0 and F ≡0, equation (1-8) is the Navier–Stokes–Schrödinger
flow, which can be used to describe the dispersive theory of magnetization of
ferromagnets with quantum effects.

Next, we briefly recall a few results that are closely related to our work in the
present paper. In 1985, the existence of global weak solutions to the LLG equation
(i.e., (1-3) with α > 0) was established by Visintin [1985]. P.L. Sulem, C. Sulem,
and C. Bardos [Sulem et al. 1986] employed a difference method to prove that the
LL equation (1-2) without a dissipation term defined on Rn admits a global weak
solution and a smooth local solution. Later, Alouges and Soyeur [1992] showed the
nonuniqueness of weak solutions to the LLG equation defined on a bounded domain
� ⊂ R3. Y.D. Wang [1998] adopted a more geometric approximation method (i.e.,
the complex structure approximation method) than the Ginzburg–Landau penalized
method used for the LLG equation in [Alouges and Soyeur 1992; Bonithon 2007;
Tilioua 2011] to obtain the global existence of weak solutions to the Schrödinger
flow for maps from a closed Riemannian manifold or a bounded domain in Rn

into S2. For recent developments of weak solutions to a class of generalized LL
equations and related flows, we refer to [Jia and Wang 2019; 2020; Chen and Wang
2021] for various results.

The global well-posedness result for the LL equation on Rn with n ≥ 2 was
well studied by Ionescu, Kenig, and Bejanaru et al., we refer to [Bejenaru 2008;
Bejenaru et al. 2007; 2011; Ionescu and Kenig 2007] for more details. For the
Schrödinger flow from a closed manifold or Rn onto a compact Kähler manifold
(i.e., (1-9) with α = 0), the existence of local smooth solutions was obtained by
Ding and Wang et al., one can refer to [Ding and Wang 1998; 2001; Sulem et al.
1986; Pang et al. 2000; 2001; 2002; Zhou et al. 1991].

In the case the domain manifold is a smooth bounded domain in R3, Carbou
and Fabrie [2001] proved the local existence and uniqueness of regular solutions
of the initial Neumann boundary value problem to the LLG equation. Recently,
the local existence of very regular solutions to the LLG equation with α > 0 was
addressed by applying the delicate Galerkin approximation method and adding
initial Neumann boundary compatibility conditions on the initial map [Carbou and
Jizzini 2018]. Inspired by this method, which essentially stems from [Sulem et al.
1986], we obtained local-in-time very regular solutions to the LLG equation with
spin-polarized transport in [Chen and Wang 2023c].

Very recently, the authors of this paper studied the most challenging LL equation
(i.e., the Schrödinger flow into S2) on a smooth bounded domain in R3, and proved
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the existence and uniqueness of local-in-time strong solutions and local very regular
solutions to its initial Neumann boundary value problem (see [Chen and Wang
2023b; 2023a]).

1B. Motivations and main results. Although we have proved the existence and
uniqueness of local-in-time strong solutions and local very regular solutions to the
initial Neumann boundary value problem of the Schrödinger flow from a smooth
bounded domain in R3 into S2 (see [Chen and Wang 2023b; 2023a]), the existence
of the initial Neumann boundary value problem of the Schrödinger flow from a
smooth bounded domain M in R3 into a compact Kähler manifold N is still an
open problem: 

∂t u = J (u)τ (u), (x, t) ∈ M × R+,

∂u/∂ν = 0, (x, t) ∈ ∂ M × R+,

u(x, 0) = u0 : M → N .

To this end, the first step is to extend Carbou’s work [Carbou and Jizzini 2018] on
the LLG equation for maps from a smooth bounded domain in R3 into S2 to the
case from a compact Riemannian manifold with smooth boundary into a symplectic
manifold. So, in this paper we consider the existence of regular solutions to the
initial Neumann boundary value problem of (1-5) with α > 0.

Because the geometry of the domain manifold M does not affect our analysis and
the main results, for simplicity, we assume that � is a smooth bounded domain in Rm.
Let u be a time-dependent map from � to N. We consider the initial Neumann
boundary value problem of the general LLG flow (equation)

(1-9)


∂t u + γ∇vu = ατ(u) − β J (u)τ (u), (x, t) ∈ � × R+,

∂u/∂ν = 0, (x, t) ∈ ∂� × R+,

u(x, 0) = u0 : � → N ↪→ RK,

where α > 0, γ and β are fixed real numbers. Here v : �× R+
→ Rm is a vector

field satisfying div(v) = 0, and ∇vu is defined by

∇vu = du(v).

No doubt, the initial Neumann boundary value problem of the corresponding
incompressible Schrödinger flow

(1-10)


∂t u + γ∇vu = −β J (u)τ (u), (x, t) ∈ � × R+,

∂u/∂ν = 0, (x, t) ∈ ∂� × R+,

u(x, 0) = u0 : � → N ,

and related problems are more challenging and will be carried out in our forthcoming
papers.
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Our main results are the following two theorems:

Theorem 1.1. Let � be a smooth bounded domain in R3 and N be a compact
symplectic manifold. Let u0 ∈ H 2(�, N ) satisfy the compatibility condition

∂u0

∂ν
|∂� = 0.

Suppose v ∈ L∞(R+, W 1,3(�)), div(v)= 0 for any t ∈ R+, and ⟨v, ν⟩|∂�×R+ = 0.
Then there exists a constant T0 > 0 depending only on γ , α, β, ∥u0∥H2(�), and
∥v∥L∞(R+,W 1,3(�)) such that (1-9) admits a unique local solution u for any T < T0

which satisfies

(1-11) u ∈ C0(
[0, T ], H 2(�, N )

)
∩ L2(

[0, T ], H 3(�, N )
)
.

Furthermore, if u0 ∈ H 3(�, N ), v ∈ C0(R+, H 1(�)), and ∂tv ∈ L2(R+, H 1(�)),
then this solution u satisfies

(1-12) ∂ i
t u ∈ C0(

[0, T ], H 3−2i (�)
)
∩ L2(

[0, T ], H 4−2i (�)
)

for T < T0 and i = 0, 1.

Moreover, we can obtain a very regular solution to (1-9) by adding higher order
compatibility conditions on an initial map:

Theorem 1.2. Let � be a smooth bounded domain in R3 and N be a compact
symplectic manifold. Let k ≥ 4, u0 ∈ H k(�, N ) satisfy the compatibility condition
at

[ k
2

]
− 1 order, which is given in the Definition 5.1. Suppose that div(v) = 0 for

any t ∈ R+ and ⟨v, ν⟩|∂�×R+ = 0, and for any i ≤
[ k

2

]
− 1,

∂ i
t v ∈ C0(R+, H k−2(i+1)(�, R3)

)
∩ L2(R+, H 2[k/2]−2i (�, R3)

)
;

moreover, if k is odd, we additionally assume that ∂
[k/2]

t v ∈ L2(R+, L2(�)). Then,
for u and T0 > 0 which are given in Theorem 1.1, we have that for any T < T0 and
0 ≤ i ≤

[ k
2

]
− 1,

∂ i
t u ∈ C0(

[0, T ], H k−2i (�, N )
)
∩ L2(

[0, T ], H k+1−2i (�, N )
)
.

Remark 1.3. (1) Theorems 1.1 and 1.2 still hold true when � is a compact
3-dimensional Riemannian manifold with smooth boundary.

(2) By almost the same arguments as in the proofs of Theorem 1.1 and Theorem 1.2,
we can also get a short-time very regular solution to the equation

(1-13)


∂t u + γ∇vu = α(τ(u) + γ J (u)∇vu) + J (u)τ (u), (x, t) ∈ � × R+,

∂u/∂ν = 0, (x, t) ∈ ∂� × R+,

u(x, 0) = u0 : � → N ↪→ RK,

on �× R+, provided that u0 satisfies some suitable compatibility conditions on the
boundary. Here α > 0 and γ ∈ R.



194 BO CHEN AND YOUDE WANG

To prove Theorem 1.1, we need to consider an extrinsic version (see (3-1)) of
(1-9) and then use the solution of the auxiliary equation

(1-14)


∂t u + γ∇vu =α(1u +P(u)(∇u, ∇u)) − βJ(u)1u, (x, t)∈� × R+,

∂u/∂ν =0, (x, t)∈∂� × R+,

u(x, 0)=u0 :�→ N ↪→RK,

which preserves the original geometric structures of (1-9), to approximate a solution
of (1-9). Here P( · , · ) and J(u) are the extensions of A( · , · ) and J defined in
Section 3A, respectively. We then prove the main result Theorem 1.1 by the
following process T (1):

(1) We apply Galerkin approximation to (1-14), and then estimate some suitable
energies directly to get a unique solution u to (1-14) satisfying

u ∈ C0(
[0, T ], H 2(�, RK )

)
∩ L2(

[0, T ], H 3(�, RK )
)
.

Since u0 ∈ H 2(�, N ), the geometric structures of the above auxiliary equation (1-14)
guarantee u(x, t) ∈ N for a.e. (x, t) ∈ � × [0, T0). Therefore, u is also a solution
to (1-9) satisfying (1-11).

(2) Since the space of test functions associated to (1-14) is small, we cannot get
higher energy estimates directly to improve the regularity of u. We then consider
the differential of Galerkin approximation to (1-14) with respect to time and then
apply an energy method to show (1-12).

Next, with higher order compatibility conditions on initial data at hand we can
prove Theorem 1.2 by following the ideas in [Carbou and Jizzini 2018; Chen and
Wang 2023c]. More precisely, we consider the equation satisfied by ∂k

t u (i.e., (5-9))
with k ≥ 1 and repeat the process T (1) in the proof of Theorem 1.1 with ∂k

t u in
place of u. Namely, we prove the main result Theorem 1.2 by showing the so-called
property T (k) which is defined in Section 5.

Our proof of Theorems 1.1 and 1.2 is similar to that of [Carbou and Jizzini
2018; Chen and Wang 2023c], but is more complicated. There are two technical
issues we need to address in our presentation. The first one is that we obtain the
extensions of A( · , · ) and J in a tubular neighborhood U2δ(N ) of N by using the
canonical projections ι : U2δ(N ) → N and π : N × RK

→ TN, which satisfy the
original geometric structures of A( · , · ) and J , respectively. Then by multiplying a
truncation function involving the distance function dist( · , N ), we get the desired
extensions (i.e., P( · , · ) and J(u)) on RK (see Section 3A). In particular, the
extension J of J is still antisymmetric, which plays an essential role in our proof.
The second one is that the property div(v) = 0 can be applied to eliminate some
terms involving v in the process of the energy estimate. This makes the assumptions
on regularity for v in Theorems 1.1 and 1.2 weaker than those for the electric current



SMOOTH LOCAL SOLUTIONS TO SCHRÖDINGER FLOWS WITH DAMPING TERM 195

in [Carbou and Jizzini 2018], one can refer to [Carbou and Jizzini 2018] for more
details.

The rest of our paper is organized as follows: In Section 2, we introduce basic
notations on Sobolev spaces and some preliminary lemmas. In Section 3 and
Section 4, we give the proof of Theorem 1.1. Finally, the proof of Theorem 1.2 is
given in Section 5.

2. Preliminary

2A. Notations. In this subsection, we fix some notations on manifolds and Sobolev
spaces which will be used in the following context:

Let (N , J, ω) be an n-dimensional symplectic manifold, where ω is the symplec-
tic form and J : TN → TN with J 2

= − id is an ω-tamed almost complex structure,
that is, for any X, Y ∈ 0(TN ),

ω(JX, JY ) = ω(X, Y ).

Then ω and J induce a canonical Riemannian metric g on N as

g(X, Y ) = ω(X, JY ),

which also satisfies
g(JX, JY ) = g(X, Y ).

By the Nash embedding theorem, we always embed isometrically (N , g) into RK

hence without loss of generality we assume N ⊂ RK is an embedded submanifold
of RK with the induced metric. Let � be a smooth bounded domain in Rm with
m ≥ 1. Let u = (u1, . . . , uK ) : � → N ↪→ RK be a map. We set

H k(�) = W k,2(�, RK )

and
H k(�, N ) = {u ∈ H k(�) : u(x) ∈ N for a.e. x ∈ �}.

Moreover, let (B, ∥ · ∥B) be a Banach space and f : [0, T ] → B be a map. For
any p > 0 and T > 0, we define

∥ f ∥L p([0,T ],B) :=

(∫ T

0
∥ f ∥

p
B dt

)1/p
,

and set
L p([0, T ], B) := { f : [0, T ] → B : ∥ f ∥L p([0,T ],B) < ∞}.

In particular, we set

L p([0, T ], H k(�, N ))

= {u ∈ L p([0, T ], H k(�)) : u(x, t) ∈ N for a.e. (x, t) ∈ � × [0, T ]},

where k ∈ N and p ≥ 1.
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2B. Some basic lemmas. Next, we recall some crucial lemmas which will be
used later. The following lemma of equivalent norms for Sobolev functions with
Neumann boundary condition can be found in [Wehrheim 2004]:

Lemma 2.1. Let � be a smooth bounded domain in Rm and k ∈ N. There exists a
constant Ck,m such that, for all u ∈ H k+2(�) with ∂u

∂ν
|∂� = 0,

(2-1) ∥u∥H k+2(�) ≤ Ck,m(∥u∥L2(�) + ∥1u∥H k(�)).

Here, for simplicity we define H 0(�) := L2(�).

In particular, the above lemma implies that we can define the H k+2-norm of u
as follows:

∥u∥H k+2(�) := ∥u∥L2(�) + ∥1u∥H k(�).

We also need to use the following ODE comparison theorem and the classical
compactness results in [Boyer and Fabrie 2013; Simon 1987] to show the uniform
estimates and the convergence of solutions to the approximate equation constructed
in the coming sections:

Lemma 2.2. Let f : R+
× R → R be a continuous function, which is locally

Lipschitz in the second variable. Let z : [0, T ∗) → R be the maximal solution of the
Cauchy problem { z′

= f (t, z),

z(0) = z0.

Let y : R+
→ R be a C1 function such that{ y′

≤ f (t, y),

y(0) ≤ z0.

Then, we have
y(t) ≤ z(t), t ∈ [0, T ∗).

Lemma 2.3 (Aubin–Lions–Simon compactness lemma, see [Simon 1987]). Let
X ⊂ B ⊂Y be Banach spaces with compact embedding X ↪→ B. Let 1≤ p, q, r ≤∞.
For T > 0, we define

E p,r =

{
f : f ∈ L p((0, T ), X) and

d f
dt

∈ Lr ((0, T ), Y )

}
,

which is equipped with a norm ∥ f ∥ := ∥ f ∥L p((0,T ),X) + ∥d f/dt∥Lr ((0,T ),Y ). Then
the following properties hold true:

(1) If p < ∞ and p < q , the embedding E p,r ∩ Lq((0, T ), B) in Ls((0, T ), B) is
compact for all 1 ≤ s < q.

(2) If p = ∞ and r > 1, the embedding of E p,r in C0([0, T ], B) is compact.
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Lemma 2.4 [Boyer and Fabrie 2013, Theorem II.5.14]. Let k ∈ N, then the space

E2,2 =

{
f : f ∈ L2((0, T ), H k+2(�)),

∂ f
∂t

∈ L2((0, T ), H k(�))

}
is continuously embedded in C0([0, T ], H k+1(�)).

2C. Galerkin basis and Galerkin projection. Let � be a smooth bounded domain
in Rm, λi be the i-th eigenvalue of the operator 1 − I with Neumann boundary
condition. We denote the corresponding eigenfunction of λi by fi , that is,

(1 − I ) fi = −λi fi with
∂ fi

∂ν

∣∣∣
∂�

= 0.

Without loss of generality, we assume that { fi }
∞

i=1 is a complete, standard or-
thonormal basis of L2(�, R1). Let Hn = span{ f1, . . . fn} be a finite subspace
of L2, Pn : L2

→ Hn be the Galerkin projection such that for any f ∈ L2,
f n

= Pn f =
∑n

1⟨ f, fi ⟩L2 fi . Then the following result is proved in [Carbou and
Jizzini 2018]:

Lemma 2.5. There exists a constant C such that for all n, the projection Pn satisfies
the following properties:

(1) For f ∈ H 1(�, R1), ∥Pn( f )∥H1(�) ≤ ∥ f ∥H1(�),

(2) For f ∈ H 2(�, R1) with ∂ f
∂ν

|∂� = 0, ∥Pn( f )∥H2(�) ≤ C∥ f ∥H2(�),

(3) For f ∈ H 3(�, R1) with ∂ f
∂ν

|∂� = 0, ∥Pn( f )∥H3(�) ≤ C∥ f ∥H3(�).

Here we set H k(�, R1) = W k,2(�, R1) for k ∈ N.

3. Local strong solution

3A. Approximation equation. We start with constructing the approximation equa-
tion of (1-9). Let N be a complete compact Riemannian manifold, and N ⊂ RK.
Let π : N × RK

→ TN be the canonical orthonormal projection induced by the
inclusion map i : N ↪→ RK. Then there exists a positive constant δ such that there
exists a canonical well-defined projection

ι : U2δ(N ) → N , x 7−→ ι(x),

satisfying dist(x, N ) = |x − ι(x)|, where

U2δ(N ) := {x ∈ RK
| dist(x, N ) < 2δ}.

Moreover, we have the following theorem (refer to [Simon 1996] for a proof):

Theorem 3.1. Let N be a compact n-dimensional C∞-submanifold embedded
in RK. Then there exists a positive number δ(N ) > 0 and a smooth projection map

ι : U2δ(N ) → N ⊂ RK
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such that the following properties hold:

(1) For any y ∈ U2δ(N ), we have y − ι(y) ∈ T ⊥

ι(y)N with |y − ι(y)| = dist(y, N ).
Moreover, if z ∈ N \ {ι(y)}, we have |y − z| > |y − ι(y)|.

(2) For any y ∈ N and z ∈ T ⊥
y N with |z| < 2δ, we have

ι(y + z) = y.

(3) For v ∈ RK and y ∈ N, we have

dι|y(v) = πy(v) ∈ Ty N.

(4) For y ∈ N and v1, v2 ∈ Ty N, we have

Hess ι|y(v1, v2) = ∇πy(v1, v2) = −A(y)(v1, v2).

We next restrict to the case where (N , J, ω) is a compact symplectic manifold.
The almost complex structure is a map J : TN → TN such that J 2

= − id. Then
we can define an extension J of J on U × RK by

U × RK J
//

(ι,π◦ι)

��

U × RK

TN J
// TN

i∗

OO

where we define U := U2δ(N ). That is J (u) = (ι(u), i∗ ◦ J (ι(u)) ◦ πι(u)w) for
any (u, w) ∈ U × RK. If we restrict J to RK, the second component of J can be
interpreted as a map

Ĵ = i∗ ◦ J (ι(u)) ◦ πι(u) : U → RK
⊗ RK, Ĵ (u) = ( Ĵα,β(u))K×K .

To proceed, the following property on Ĵ will be used:

Lemma 3.2. Let Ĵ : U → RK
⊗ RK be the smooth map defined as above. Then Ĵ is

antisymmetric. Namely, for any u ∈ U and X, Y ∈ RK,

⟨ Ĵ (u)X, Y ⟩ = −⟨X, Ĵ (u)Y ⟩.

Proof. For any u ∈ U and X, Y ∈ RK,

⟨ Ĵ (u)X, Y ⟩ = ⟨i∗ ◦ J (ι(u)) ◦ πι(u)(X), i∗ ◦ πι(u)Y ⟩

= ⟨J (ι(u)) ◦ πι(u)(X), πι(u)(Y )⟩Tι(u) N

= −⟨πι(u)(X), J (ι(u)) ◦ πι(u)(Y )⟩Tι(u) N = −⟨X, Ĵ (u)Y ⟩.

Hence, the proof is completed. □
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Therefore, (1-9) has the following extrinsic version:

(3-1)


∂t u + γ∇vu =α(1u + P(u)(∇u, ∇u)) − β Ĵ (u)1u, (x, t)∈� × R+,

∂u/∂ν =0, (x, t)∈∂� × R+,

u(x, 0)=u0 :�→ N ↪→RK.

Here we set P(u) = − Hess ι(u), and have used the facts

π ◦ 1u = τ(u) = 1u + A(u)(∇u, ∇u)

and
Hess ι|u(∇u, ∇u) = −A(u)(∇u, ∇u)

for u : � → N (see Theorem 3.1).
Let ζ be a cut-off function such that ζ = 1 on [0, δ2

] and ζ = 0 on [2δ2, ∞).
Then the definition domains of Ĵ and P can be naturally extended to RK in the
following way:

J(u) =

{
ζ(dist(u, N )2)i∗ ◦ J (ι(u)) ◦ πι(u), dist(u, N ) ≤

√
2δ,

0, dist(u, N ) >
√

2δ,

and

P(u) =

{
−ζ(dist(u, N )2) Hess ι(u), dist(u, N ) ≤

√
2δ,

0, dist(u, N ) >
√

2δ,

where J(u) is still a smooth antisymmetric matrix-valued function with compact
support set. Then we consider the following approximation equation of (1-9):

(3-2)


∂t u + γ∇vu =α(1u +P(u)(∇u, ∇u)) − βJ(u)1u, (x, t)∈� × R+,

∂u/∂ν =0, (x, t)∈∂� × R+,

u(x, 0)=u0 :�→ N ↪→RK.

3B. Galerkin approximation of (3-2) and a priori estimates. Next, we seek a
solution un in Hn to the Galerkin approximation equation associated to (3-2), i.e.,

(3-3)
{
∂t un

− α1un
= Pn(−γ∇vun

+ αP(un)(∇un, ∇un)) − β Pn(J(un)1un),

un(x, 0) = un
0 : � → RK.

Here un(x, t) =
∑n

i=1 gn
i (t) fi (x), gn(t) = {gn

1 (t), . . . , gn
n (t)} is a vector-valued

function. One can refer to Section 2C for the notions of Hn and fi . A direct
calculation shows that gn satisfies the ODE

∂gn

∂t
= F(gn(t)),

gn(0) = (⟨u0, f1⟩, . . . , ⟨u0, fn⟩),

where F(y) is a smooth function of y because of the smoothness of P and J. Then
there exists a regular solution gn(t) on [0, T n), where T n is the maximal time of
existence. So, we get a regular solution un to (3-3) on [0, T n).
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Next, by taking un as a test function of (3-3), we can see that

1
2

∂

∂t

∫
�
|un

|
2 dx + α

∫
�
|∇un

|
2 dx

=−γ
∫

�
⟨∇vun, un

⟩ dx+α
∫

�
⟨P(un)(∇un, ∇un), un

⟩ dx−β
∫

�
⟨J(un)1un, un

⟩ dx .

First of all, we use the fact that div(v) = 0 with ⟨v, ν⟩|∂� = 0 for all t to eliminate
the term ∫

�
⟨∇vun, un

⟩ dx =
1
2

∫
�

div(v|un
|
2) dx = 0.

On the other hand, since J(un) is antisymmetric and un
∈ Hn , we have∫

�
⟨J(un)1un, un

⟩ dx = −

∫
�
⟨∇(J(un)) · ∇un, un

⟩ dx .

It follows that

(3-4) 1
2

∂

∂t

∫
�
|un

|
2 dx + α

∫
�
|∇un

|
2 dx ≤ Cα,β

∫
�
|∇un

|
2 dx

since P and J are smooth maps with compact supports.
Next, taking 12un as another test function of (3-3), we can show

(3-5) 1
2

∂

∂t

∫
�
|1un

|
2 dx + α

∫
�
|∇1un

|
2 dx

= γ
∫

�
⟨∇(v · ∇un), ∇1un

⟩ dx + β
∫

�
⟨∇(J(un))1un, ∇1un

⟩ dx

− α
∫

�
⟨∇(P(un)(∇un, ∇un)), ∇1un

⟩ dx

= I + II + III.
To proceed, we estimate the above three terms as follows:

|I | ≤ |γ |

(∫
�
|∇v||∇un

||∇1un
| dx +

∫
�
|v||∇

2un
||∇1un

| dx
)

≤ C |γ |∥∇v∥L3∥∇un
∥L6∥∇1un

∥L2 + C |γ |∥v∥L6∥∇
2un

∥L3∥∇1un
∥L2

≤ Cα|γ |
2
∥v∥

2
W 1,3∥un

∥
2
H2 +

1
16α∥∇1un

∥
2
L2

+ C |γ |∥v∥H1(∥un
∥H2∥∇1un

∥L2 + ∥un
∥

1/2
H2 ∥∇1un

∥
3/2
L2 )

≤ Cα(|γ |
2
∥v∥

2
H1∥un

∥
2
H2 + |γ |

4
∥v∥

4
H1∥un

∥
2
H2)

+ Cα|γ |
2
∥v∥

2
W 1,3∥un

∥
2
H2 +

1
8α∥∇1un

∥
2
L2,

where we have used the interpolation inequality

∥∇
2un

∥L3 ≤ ∥∇
2un

∥
1/2
L2 ∥∇

2un
∥

1/2
L6 ,

and the Sobolev embedding inequality

∥ f ∥L6 ≤ C∥ f ∥H1

for any f ∈ H 1(�).
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The second term II can be estimated as follows:

|II | ≤ C |β|

∫
�
|∇un

||1un
||∇1un

| dx

≤ C |β|∥∇un
∥L6∥1un

∥L3∥∇1un
∥L2

≤ C |β|∥un
∥H2∥1un

∥
1/2
L2 ∥1un

∥
1/2
L6 ∥∇1un

∥L2

≤ C |β|∥un
∥

3/2
H2 (∥un

∥
1/2
H2 + ∥∇1un

∥
1/2
L2 )∥∇1un

∥L2

≤ Cα,β(∥un
∥

4
H2 + ∥un

∥
6
H2) +

1
8α∥∇1un

∥
2
L2 .

Similarly, for the last term III , we have

|III | ≤ Cα

∫
�
(|∇un

|
3
+ |∇un

||∇
2un

|)|∇1un
| dx

≤ Cα∥∇un
∥

6
L6 +

1
16α∥∇1un

∥
2
L2 + C∥∇un

∥L6∥∇
2un

∥L3∥∇1un
∥L2

≤ Cα∥un
∥

6
H2 + Cα(∥un

∥
4
H2 + ∥un

∥
6
H2) +

1
8α∥∇1un

∥
2
L2 .

In view of the above estimates of terms I , II , and III , we have

(3-6) ∂

∂t

∫
�
|1un

|
2 dx+α

∫
�
|∇1un

|
2 dx ≤Cα,γ,β(∥v∥

2
W 1,3(�)

+1)2(∥un
∥

2
H2(�)

+1)3.

Therefore, by combining (3-4) with (3-6), we conclude

(3-7)
∂

∂t
∥un

∥
2
H2(�)

+α
∫

�
|∇1un

|
2 dx ≤ Cα,γ,β(∥v∥

2
W 1,3(�)

+1)2(∥un
∥

2
H2(�)

+1)3.

Proposition 3.3. Let � be a smooth bounded domain in R3. Suppose that u0 is in
H 2(�) and

∂u0

∂ν

∣∣∣
∂�

= 0,

v ∈ L∞(R+, W 1,3(�)), and div(v) = 0 with ⟨v, ν⟩|∂�×R+ = 0. Then, there exists a
positive constant T0 depending only on α, γ, β, and ∥u0∥H2 , such that the above
approximate solutions un satisfy

(3-8) sup
0≤t≤T

(∥un
∥

2
H2(�)

+∥∂t un
∥

2
L2(�)

)+α
∫ T

0
(∥un

∥
2
H3(�)

+∥∂t un
∥

2
H1(�)

) dt ≤C(T )

for 0 < T < T0, where C(T ) is a constant depending on T.

Proof. Let f (t)=∥un
∥

2
H2 +1. Since v ∈ L∞(R+, W 1,3(�)), inequality (3-7) implies

f (t) satisfies { f ′(t) ≤ C( f (t) + 1)3,

f (0) = ∥un
0∥

2
H2 + 1 ≤ C∥u0∥

2
H2 + 1.

Here we have used the inequality

∥un
0∥

2
H2 ≤ C∥u0∥

2
H2,

since ∂u0
∂ν

|∂� = 0.
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Then, by Lemma 2.1 and the classical comparison theorem of ODE, Lemma 2.2,
we can show that there exists a positive constant T0 depending only on α, γ, β,
and ∥u0∥H2 , such that for any 0 < T < T0,

sup
0≤t≤T

∥un
∥

2
H2(�)

+ α
∫ T

0
∥un

∥
2
H3(�)

dt ≤ C(T ).

By (3-3), it is not difficult to show

sup
0≤t≤T

∥∂t un
∥

2
L2(�)

+ α
∫ T

0
∥∂t un

∥
2
H1(�)

dt ≤ C(T ).

Therefore, the proof is completed. □

With the above uniform estimate (3-8) of un at hand, we can show that there
exists a local strong solution to (3-2) by applying the compactness Lemma 2.3 and
letting n → ∞. Therefore, we conclude:

Theorem 3.4. Let � be a smooth bounded domain in R3 and u0 ∈ H 2(�) with
∂u0

∂ν

∣∣∣
∂�

= 0.

Suppose that v ∈ L∞(R+, W 1,3(�)) and div(v) = 0 with ⟨v, ν⟩|∂�×R+ = 0. Then
there exists a positive constant T0 depending only on α, γ, β, and ∥u0∥H2 , such that
the initial Neumann boundary value problem (3-2) admits a local strong solution
u ∈ C0

(
[0, T ], H 2(�)

)
∩ L2

(
[0, T ], H 3(�)

)
, which satisfies

(3-9) sup
0≤t≤T

(∥u∥
2
H2(�)

+∥∂t u∥
2
L2(�)

)+α
∫ T

0
(∥u∥

2
H3(�)

+∥∂t u∥
2
H1(�)

) dt ≤C(T )

for 0 < T < T0, where C(T ) is a constant depending on T.

Since the proof of the above theorem is almost the same as that in [Chen and
Wang 2023c], we omit it. To show that u is a strong solution to (1-9) or (3-1), we
need to prove u(x, t) ∈ N for almost all (x, t) ∈ � × [0, T0).

Proposition 3.5. The solution u constructed in Theorem 3.4 satisfies u(x, t) ∈ N
for almost every (x, t) ∈ �×[0, T0), and hence u is a local strong solution to (1-9).

Proof. Since u ∈ L∞([0, T ], H 2(�)) and ∂u/∂t ∈ L2([0, T ], L2(�)) for T < T0,
Lemma 2.3 implies

u ∈ C0([0, T ], W 1,4(�)).

It follows that

sup
x∈�

|u(x, t) − u(x, 0)| ≤ C∥u( · , t) − u( · , 0)∥W 1,4 → 0

as t → 0. Then there exists a positive number t1 ≤ T such that for t ≤ t1, we have

sup
x∈�

|u(x, t) − u(x, 0)| ≤ δ,
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namely u(x, t) ∈ Uδ(N ) for (x, t) ∈ �×[0, t1]. Therefore, by the definition of the
cut-off function ζ , u satisfies

∂u
∂t

+ γ∇vu = α(1u − Hess ι(∇u, ∇u)) − βi∗ ◦ J (ι(u)) ◦ πι(u)1u.

Let ρ(u) = u − ι(u), then we have

1
2

∂

∂t

∫
�
|ρ(u)|2 dx =

∫
�

〈
ρ(u),

∂u
∂t

〉
dx

=

∫
�
⟨ρ(u), α(1ρ(u) + dι(1u))⟩ dx

− β
∫

�
⟨ρ(u), Ĵ (u)1u⟩ dx − γ

∫
�
v · ⟨ρ(u), ∇u⟩ dx

= α
∫

�
⟨ρ(u), 1ρ(u)⟩ dx −

γ

2

∫
�
v · ∇|ρ(u)|2 dx

= −α
∫

�
|∇ρ(u)|2 dx .

Here we have used the following facts:

(1) Since 1ι(u) = dι(1u) + Hess ι(∇u, ∇u), we have

1u − Hess ι(∇u, ∇u) = 1ρ(u) + dι(1u).

(2) Since ρ(u) ∈ T ⊥

ι(u)
N and Ĵ (u)1u ∈ Tι(u)N,

⟨ρ(u), Ĵ (u)1u⟩ = 0 and ⟨ρ(u), dι(1u)⟩ = 0.

(3) Since div(v) = 0 and ⟨v, ν⟩|∂� = 0,∫
�
v · ∇|ρ(u)|2 dx = 0.

Then the Gronwall inequality implies ρ(u) = 0 for almost all (x, t) ∈ �×[0, t1].
Finally, we can prove this proposition by repeating the above argument. □

To end this section, we show the uniqueness of the solution u constructed above:

Proposition 3.6. The solution to (3-1) in L∞
(
[0, T ], H 2(�)

)
∩ L2

(
[0, T ], H 3(�)

)
is unique.

Proof. Assume u1 and u2 are two solutions in L∞
(
[0, T ], H 2

)
∩L2

(
[0, T ], H 3(�)

)
,

then ū = u1 − u2 satisfies

(3-10)


∂t ū = −γ∇vū + α1ū + α(P(u1)(∇u1, ∇u1) − P(u2)(∇u2, ∇u2))

− β( Ĵ (u1) − Ĵ (u2))1u1 − β Ĵ (u2)1ū,

ū(x, 0) = 0
∂ ū/∂ν = 0.

By taking ū as a test function to (3-10), we can show

1
2

∂

∂t

∫
�
|ū|

2 dx + α
∫

�
|∇ū|

2 dx = −γ
∫

�
⟨∇vū, ū⟩ dx + I + II + III.
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Here

|γ | ·

∣∣∣∫
�
⟨∇vū, ū⟩ dx

∣∣∣ =

∣∣∣γ2 ∣∣∣ · ∣∣∣∫
�

div(v|ū|
2) dx

∣∣∣ = 0,

since ⟨v, ν⟩|∂� = 0 and div(v) = 0.

|I | = α

∣∣∣∫
�
⟨P(u1)(∇u1, ∇u1) − P(u2)(∇u2, ∇u2), ū⟩ dx

∣∣∣
≤ Cα

(∫
�
|ū|

2
|∇u1|

2 dx +

∫
�
|∇ū|(|∇u1| + |∇u2|)|ū| dx

)
≤ Cα(∥u1∥

2
H3 + ∥u2∥

2
H3)

∫
�
|ū|

2 dx +
α

8

∫
�
|∇ū|

2 dx,

|II | = |β|

∣∣∣∫
�
⟨( Ĵ (u1) − Ĵ (u2))1u1, ū⟩ dx

∣∣∣
≤ C |β|

∣∣∣∫
�
⟨div(( Ĵ (u1) − Ĵ (u2))∇u1), ū⟩ dx

∣∣∣
+ C |β|

∣∣∣∫
�
⟨∇(( Ĵ (u1) − Ĵ (u2)) · ∇u1), ū⟩ dx

∣∣∣
≤ C |β|

∫
�
| Ĵ (u1) − Ĵ (u2)||∇u1||∇ū| dx

+ C |β|

∣∣∣∫
�
⟨∇(( Ĵ (u1) − Ĵ (u2)) · ∇u1), ū⟩ dx

∣∣∣
≤ C |β|∥∇u1∥L∞

∫
�
|∇ū||ū| dx + C |β|(|∇u1|

2
∞

+ |∇u2|
2
∞

)
∫

�
|ū|

2 dx

≤ Cα|β|(∥u1∥
2
H3 + ∥u2∥

2
H3)

∫
�
|ū|

2 dx +
α

8

∫
�
|∇ū|

2 dx,

|III | = |β|

∣∣∣∫
�
⟨ Ĵ (u2)1ū, ū⟩ dx

∣∣∣
≤ |β|

∣∣∣∫
�
⟨∇( Ĵ (u2)) · ∇ū, ū⟩ dx

∣∣∣ + |β|

∣∣∣∫
�
|⟨div( Ĵ (u2)∇ū), ū⟩ dx

∣∣∣
≤ C |β||

∫
�
|∇u2||∇ū||ū| dx |

≤ Cα|β|∥u2∥
2
H3

∫
�
|ū|

2 dx +
α

8

∫
�
|∇ū|

2 dx .

In view of the above estimates of terms I , II and III , we get

∂

∂t

∫
�
|ū|

2 dx + α
∫

�
|∇ū|

2 dx ≤ Cα,β,γ (∥u1∥
2
H3(�)

+ ∥u2∥
2
H3(�)

+ 1)
∫

�
|ū|

2 dx .

Then, since ∥u1∥
2
H3(�)

+ ∥u2∥
2
H3(�)

∈ L1
[0, T ], the Gronwall inequality implies

u1 ≡ u2. □
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4. Local regular solution

In the previous section, we obtained a strong solution u to the equation

(4-1)


∂t u+γ∇vu=α(1u+ P(u)(∇u, ∇u))−β Ĵ (u)1u, (x, t)∈�×[0, T0),

∂u/∂ν=0, (x, t)∈∂�×[0, T0),

u(x, 0)=u0 :�→N ↪→RK.

Here u : � × [0, T0) → N,

P(u) = − Hess ι(u) : RK
⊗ RK

→ RK

is a bilinear functional, and

Ĵ (u) = i∗ ◦ J ◦ dι(u) : RK
→ RK

is an antisymmetric matrix, since dι(u) = πu .
Suppose u0 ∈ H 3(�, N ) and ∂u0

∂ν
|∂� = 0, we can improve the regularity of u by

applying the differential of Galerkin approximation to (3-2) with respect to the time
variable t .

Theorem 4.1. Let � be a smooth bounded domain in R3 and u0 ∈ H 3(�, N ) with

∂u0

∂ν

∣∣∣
∂�

= 0.

Suppose that v ∈ L∞
(
R+, W 1,3(�)

)
∩ C0

(
R+, H 1(�)

)
, ∂tv ∈ L2(R+, H 1(�)), and

div(v)= 0 with ⟨v, ν⟩|∂�×R+ = 0. Then, the solution u given in Theorem 3.4 satisfies

∂ i
t u ∈ C0(

[0, T ], H 3−2i (�)
)
∩ L2(

[0, T ], H 4−2i (�)
)

for T < T0 and i = 0, 1.

Proof. We divide the proof into two steps.

Step 1: H 2-estimate of ∂t u.
To get H 2-estimates of the solution ∂t u, we consider the equation of wn

= ∂t un

as follows, where un is the Galerkin approximation of u:

(4-2) ∂tw
n

= α1wn
+ Pn(−γ∇vw

n
− γ∇∂tvun)

+αPn(P(un)(∇wn, ∇un) + ∂tP(un)(∇un, ∇un))

−β Pn(∂tJ(un)1un
− J(un)1wn).
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Then we take 1wn as a test function for (4-2) to give

∂

∂t

∫
�
|∇wn

|
2 dx + 2α

∫
�
|1wn

|
2 dx

≤ Cα,β(
∫

�
|wn

|
2
|1un

|
2 dx +

∫
�
|wn

|
2
|∇un

|
4 dx)

+Cα,γ (
∫

�
|∇wn

|
2
|∇un

|
2 dx + |∂tv|

2
|∇un

|
2 dx)

+|γ |

∫
�
|∇wn

|
2
|∇v| dx +

α

2

∫
�
|1wn

|
2 dx

≤ Cα,β,γ (∥un
∥

2
H3 + ∥un

∥
4
H2 + 1)∥wn

∥
2
H1 + Cα,γ ∥un

∥
2
H2∥∂tv∥

2
H1

+|γ |

∫
�
|∇wn

|
2
|∇v| dx +

α

2

∫
�
|1wn

|
2 dx .

Here we have used the fact div(v) = 0 and ⟨v, ν⟩|∂�×R+ = 0 to show∫
�
⟨v · ∇wn, 1wn

⟩ dx = −

∫
�
⟨∇v · ∇wn, ∇wn

⟩ dx .

On the other hand, we have∫
�
|∇wn

|
2
|∇v| dx≤∥∇wn

∥
2
L3∥∇v∥L3 ≤∥∇wn

∥L2∥∇wn
∥L6∥∇v∥L3

≤C∥v∥W 1,3∥∇wn
∥L2(∥wn

∥L2 + ∥1wn
∥L2)

≤Cα∥v∥
2
W 1,3∥w

n
∥

2
H1 +

α

2

∫
�
|1wn

|
2 dx .

It follows that
∂

∂t

∫
�
|∇wn

|
2 dx + α

∫
�
|1wn

|
2 dx

≤ C(α, β, γ )(∥un
∥

2
H3 +∥un

∥
4
H2 +∥v∥

2
W 1,3 +1)∥wn

∥
2
H1 +C(α, γ )∥un

∥
2
H2∥∂tv∥

2
H1 .

By assumption we know that v ∈ L2(R+, W 1,3(�)) and ∂tv ∈ L2(R+, H 1(�)).
Hence, by applying the Gronwall inequality we can derive from (3-8) that

(4-3) sup
0<t≤T

∥wn
∥H1(�) + α

∫ T

0
∥wn

∥
2
H2(�)

dt ≤ C(α, β, γ, T, ∥wn
|t=0∥H1(�)).

Now, it remains to give a bound of ∥wn
|t=0∥H1 . Since

wn( · , 0) = α1un
0 + Pn(−γ∇vun

0 + αP(un
0)(∇un

0, ∇un
0) − βJ(un

0)1un
0),

it is not difficult to show

∥wn
|t=0∥H1(�) ≤ C(∥u0∥

2
H3(�)

, ∥v( · , 0)∥2
H1).

Here we have used the fact

∥un
0∥

2
H3(�)

≤ C∥u0∥
2
H3(�)

by providing ∂u0
∂ν

|∂� = 0.
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Without loss of generality, the estimate (4-3) implies wn weakly converges to ∂t u,
which satisfies

∂t u ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)

for any 0 < T < T0.

Step 2: H 4-estimate of u.
Equation (1-5) is equivalent to

1u = −A(u)(∇u, ∇u)+
1

α2+β2 (α∂t u+β J (u)∂t u)+
γ

α2+β2 (α∇vu+β J (u)∇vu).

Under the assumption that v ∈ L∞(R+, H 1(�)), one can easily show

1u ∈ L∞([0, T ], L3(�)),

the classical L p-theory of elliptic equations gives

u ∈ L∞([0, T ], W 2,3(�)).

Hence, by using the assumption v ∈ L∞
(
R+, W 1,3(�)

)
∩ L2

(
R+, H 2(�)

)
, we can

take almost the same argument as in [Chen and Wang 2023c] to show

1u ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
,

hence the classical L2-theory of elliptic equations again gives

u ∈ L∞
(
[0, T ], H 3(�)

)
∩ L2(

[0, T ], H 4(�)
)
.

Moreover, since u ∈ L2([0, T ], H 4(�)) and ∂t u ∈ L2([0, T ], H 2(�)), Lemma 2.4
tells us that u ∈ C0([0, T ], H 3(�)). It follows that

∂t u ∈ C0([0, T ], H 1(�))

by using (4-1) and the fact v ∈ C0(R+, H 1(�)). □

The proof of Theorem 1.1. By combining Theorem 3.4, Propositions 3.5, 3.6, and
Theorem 4.1, we can obtain the results in Theorem 1.1 and finish its proof. □

5. Local very regular solution

In this section, we prove Theorem 1.2.

5A. Compatibility conditions of the initial data. In order to make the LLG equa-
tion (4-1) (an extrinsic version of the LLG equation (1-9)) admit a regular or smooth
solution, we need to pose some compatibility conditions of the initial data. We
start with a brief description of the compatibility conditions of the initial data. For
the sake of convenience, we assume v is a smooth vector field and u is a smooth



208 BO CHEN AND YOUDE WANG

solution to the initial Neumann boundary value problem of the LLG equation (4-1).
Then, for any k ∈ N, uk = ∂k

t u satisfies the linear equation

(5-1) ∂t uk = α1uk − β Ĵ (u)1uk − γ∇vuk + Lk(uk, u) + Fk(u)

with the initial data
Vk(u0) := ∂k

t u|t=0.

In particular, V0 = u0 and

V1(u0) = −γ∇v(x,0)u0 + ατ(u0) − β J (u0)τ (u0).

Here we set

Lk(uk, u) = 2αP(u)(∇uk, ∇u) + αd P(u)(uk, ∇u, ∇u) − βd Ĵ (u)(uk)1u,

and

Fk(u) = −γ
∑

i+ j=k
i≥1

C i
k∇vi u j + α

∑
i1+···+is+m+l=k

1≤i j <k

∇
s P(u)#ui1# · · · #uis #∇um#∇ul

+ β
∑

i1+···+is+m=k
1≤i j <k

∇
s Ĵ (u)#ui1# · · · #uis #1um,

where vi = ∂ i
t v and # denotes the linear contraction.

Then the compatibility conditions of the initial data is defined as follows:

Definition 5.1. Let k ∈ N, u0 ∈ H 2k+2(�, N ). Suppose that for any 0 ≤ i ≤ k, v

satisfies
∂ i

t v ∈ C0(R+, H 2k−2i (�)).

We say u0 satisfies the compatibility condition at order k, if for any j ∈ {0, 1, . . . , k}

(5-2)
∂V j

∂ν

∣∣∣
∂�

= 0.

Intrinsically, if we set

Ṽk(u0) = ∇
k
t u(x, 0) ∈ 0(u∗

0(TN ))

where ∇t = ∇
N
∂u/∂t , then the compatibility conditions defined in Definition 5.1 has

the following equivalent characterization:

Proposition 5.2. Let k ∈ N, u0 ∈ H 2k+2(�, N ). Suppose that for any 0 ≤ i ≤ k, v

satisfies
∂ i

t v ∈ C0(R+, H 2k−2i (�)).

Then u0 satisfies the compatibility condition of order k if and only if for any
j ∈ {0, 1, . . . , k},

(5-3) ∇ν Ṽ j |∂� = 0.
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Proof. The necessity is proved by induction on k. Since V1 = Ṽ1, if we assume
∂V1
∂ν

|∂� = 0, then we have

∇ν Ṽ1|∂� =
∂ Ṽ1

∂ν

∣∣∣
∂�

+ A(u0)

(
∂u0

∂ν

∣∣∣
∂�

, Ṽ1

)
= 0.

Then, we assume that the result is true for 1 ≤ l ≤ k − 1. For the case l = k ≤ 2, by
definition of Ṽk , a simple calculations gives

Ṽk = Vk +
∑
σ

Bσ(k)(u0)(Va1, . . . , Vas )

where the sum is over all multi-indices a1, . . . , as such that 1 ≤ ai ≤ k − 1 and
a1 + · · · + as = k for all i ,

(a1, . . . , as) = σ(k)

is a partition of k, and B is a multilinear functional on u∗

0(TN ).
Hence, by using the assumption of induction, we have

∇ν Ṽk |∂� =
∂ Ṽk

∂ν

∣∣∣
∂�

+ A(u0)

(
∂u0

∂ν

∣∣∣
∂�

, Ṽk

)
=

∂Vk

∂ν

∣∣∣
∂�

+

∑
σ

∇ Bσ(k)(u0)

(
∂u0

∂ν

∣∣∣
∂�

, Va1, . . . , Vas

)
= 0.

For the converse the proof is almost the same as above, so we omit it. □

Remark 5.3. If γ = 0 in (1-9) and ∇
N J = 0, we set

Wk = ∇
k−1
t τ(u)(x, 0) and W̃k = ∂k−1

t τ(u)(x, 0)

for any k ≥ 1, and set W0 = W̃0 = u0. Then, by taking a similar argument to that in
the proof of Proposition 5.2 or Proposition 3.2 in [Chen and Wang 2023b], we can
show the k-order compatibility condition defined in Definition 5.1 is equivalent to
one of the following:

(1) For 1 ≤ j ≤ k,
∇νW j |∂� = 0.

(2) For 1 ≤ j ≤ k,
∂W̃ j

∂ν

∣∣∣
∂�

= 0.

Next, we apply the method of induction to show the existence of very regular
solutions to (4-1) by considering the initial Neumann boundary value problem of
equation of ∂k

t u for k ≥ 1 with corresponding initial data Vk . For this purpose, we
intend to prove the main result Theorem 1.2 by showing the following process
T (k) with k ≥ 2:
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(1) Assume that u0 ∈ H 2k(�) satisfies the (k − 1)-order compatibility conditions.
Suppose moreover

∂ i
t v ∈ C0(

[0, T ], H 2k−2(i+1)(�)
)
∩ L2(

[0, T ], H 2k−2i (�)
)

for any 0 < T < T0 and i ∈ {0, 1, . . . , k − 1}. Then for any 0 ≤ i ≤ k − 1, we have

∂ i
t u ∈ C0(

[0, T ], H 2k−2i (�)
)
∩ L2(

[0, T ], H 2k−2i+1(�)
)
,

and
∂k

t u ∈ L∞
(
[0, T ], L2(�)

)
∩ L2(

[0, T ], H 1(�)
)
.

(2) Additionally, if u0 ∈ H 2k+1(�),

∂ i
t v ∈ C0(

[0, T ], H 2k+1−2(i+1)(�)
)
∩ L2(

[0, T ], H 2k−2i (�)
)

for i ∈ {0, 1, . . . , k − 1} and ∂k
t v ∈ L2([0, T ], L2(�)), then for any 0 ≤ i ≤ k we

have
∂ i

t u ∈ C0(
[0, T ], H 2k−2i+1(�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)
.

5B. H5-regularity of u (i.e., the proof of property T (2)). For any T < T0,
Theorem 4.1 implies that ∂t u ∈ C0

(
[0, T ], H 1(�)

)
∩ L2

(
[0, T ], H 2(�)

)
is a strong

solution to

(5-4)



∂t u1+γ∇vu1

=α1u1−β Ĵ (u)1u1+L1(u1, u)+F1(u), (x, t)∈�×[0, T ],

∂u1/∂ν =0, (x, t)∈∂�×[0, T ],

u1(x, 0)=V1

where

L1(u1, u) = 2αP(u)(∇u1, ∇u) + αd P(u)(u1, ∇u, ∇u) − βd Ĵ (u)(u1)1u,

and
F1(u) = −γ∇∂tvu.

To improve the regularity of ∂t u, we solve the initial Neumann boundary value
problem (5-4) with compatibility condition

∂V1

∂ν

∣∣∣
∂�

= 0.

As before, we consider the Galerkin approximation equation of (5-4):

(5-5)

{
∂t un

1 +γ Pn(∇vun
1) = α1un

1 −β Pn( Ĵ (u)1un
1)+Pn(L1(un

1, u)+F1(u)),

u1(x, 0) = V n
1 .

Since the operators P and Ĵ satisfy
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(1) |P(u)| + | Ĵ (u)| ≤ C ,

(2) |∇(P(u))| + |∇( Ĵ (u))| ≤ C |∇u|,

(3) Ĵ is antisymmetric,

we can apply almost the same argument as that in [Chen and Wang 2023c] to give
the estimate

sup
0≤t≤T

(∥un
1∥

2
H2 + ∥∂t un

1∥
2
L2) + α

∫ T

0
∥1∇un

1∥
2
L2 + ∥∇∂t un

1∥
2
L2 dt

≤ C(∥u0∥H3, ∥Pn(V1)∥H2),

by providing v ∈ C0(R+, H 2(�)) and ∂tv ∈ L∞
(
R+, L2(�)

)
∩L2

(
R+, H 1(�)

)
, then

taking un
1 and 12un

1 as test functions to (5-5).
On the other hand, since

V1 = −γ∇v(x,0)u0 + ατ(u0) − β J (u0)τ (u0)

and
∂V1

∂ν

∣∣∣
∂�

= 0,

Lemma 2.5 implies that

∥Pn(V1)∥H2(�) ≤ C∥V1∥H2 ≤ C(∥u0∥H4(�), ∥v(., 0)∥H2(�)).

Without loss of generality, by using the compactness in Lemma 2.3, we can infer
that un

1 converges to a map u1 ∈ L∞
(
[0, T ], H 2(�)

)
∩ L2

(
[0, T ], H 3(�)

)
which

solves (5-4). To show that ∂t u = u1 on � × [0, T0), we need to use the following
result:

Proposition 5.4. The solution to (5-4) in C0
(
[0, T ], H 1

)
∩ L2

(
[0, T ], H 2(�)

)
is

unique.

Proof. Let v1 and v2 be two solutions of (5-4), which belong to the space

C0(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
.

Then, ω = v1 − v2 satisfies
∂tω + γ∇vω = α1ω − β Ĵ (u)1ω + L1(ω, u), (x, t) ∈ � × [0, T ],

∂ω/∂ν = 0, (x, t) ∈ ∂� × [0, T ],

ω(x, 0) = 0.
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By choosing ω as a test function of this equation and taking a simple calculation
we obtain
1
2

∂

∂t

∫
�
|ω|

2 dx + α
∫

�
|∇ω|

2 dx

≤ Cα

∫
�
(|∇u||∇ω||ω| + |∇u|

2
|ω|

2) dx − β
∫

�
⟨d Ĵ (u)(ω)1u, ω⟩ dx

≤ Cα

∫
�
(|∇u||∇ω||ω|+|∇u|

2
|ω|

2) dx −β
∫

�
⟨∇u, ∇(d Ĵ (u)(ω)ω)⟩ dx

≤ Cα,β

∫
�
(|∇u||∇ω||ω| + |∇u|

2
|ω|

2) dx

≤ Cα,β∥u∥
2
L∞([0,T ],H3(�))

∫
ω
|ω|

2 dx +
α

2

∫
�
|∇ω|

2 dx .

Consequently, the Gronwall inequality implies ω ≡ 0, completing the proof. □

It follows from Proposition 5.4 that

(5-6) ∂t u ∈ L∞
(
[0, T ], H 2(�)

)
∩ L2(

[0, T ], H 3(�)
)
.

Additionally, if we provide u0 ∈ H 5(�), ∂tv ∈ C0([0, T ], H 1(�)), and ∂2
t v

in L2(R+, L2(�)), we can apply a similar argument to Step 1 of the proof of
Theorem 4.1 to show

(5-7) ∂2
t u ∈ L∞

(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)

by considering the equation of ∂un
1/∂t .

To enhance the regularity of u, we need to use the following technical lemmas:

Lemma 5.5. Let � be a smooth bounded domain in R3, n ≥ 0, and m ≥ 2. If
f ∈ H n(�) (we set H 0(�) = L2(�)) and g ∈ H m(�), then f g ∈ H l(�) with
l = min{n, m}. Moreover, there exists a constant C(∥ f ∥Hn , ∥g∥Hm ) such that we
have

∥ f g∥H l (�) ≤ C(∥ f ∥Hn , ∥g∥Hm ).

One can consult [Carbou and Jizzini 2018] for a proof. As a direct corollary, we
have:

Corollary 5.6. Let � be a smooth bounded domain in R3 and N be a compact
Riemannian submanifold of RK. If

u ∈ L∞
(
[0, T ], H k(�, N )

)
∩ L2(

[0, T ], H k+1(�, N )
)

with k ≥ 2 and L : N → RK
⊗ RK is a smooth map, then L(u) belongs to

L∞
(
[0, T ], H k(�)

)
∩ L2

(
[0, T ], H k+1(�)

)
.

Proof. It is not difficult to show that the result holds true for k = 2. Hence, without
loss of generality we can assume that k ≥ 3.



SMOOTH LOCAL SOLUTIONS TO SCHRÖDINGER FLOWS WITH DAMPING TERM 213

Since ∇(L(u))=∇L(u)#∇u, the fact that u ∈ L∞([0, T ], H k(�, N )) with k ≥ 3
implies

∇(L(u)) ∈ L∞([0, T ], L2(�, N )).

On the other hand, a simple calculation gives

∇
l(L(u))=

∑
i1+···+is=l
1≤s≤l, i j ≥1

∇
s L(u)#∇

i1u# · · · #∇
is u

=∇L(u)#∇
lu + ∇

2L(u)#∇
l−1u#∇u +

∑
i1+···+is=l

2≤s≤l
1≤i j ≤l−2

∇
sL(u)#∇

i1u# · · · #∇
is u

for 2 ≤ l ≤ k + 1. Since u ∈ L∞([0, T ], H k(�, N )) and supy∈N |∇
s L|(y) ≤ C(s),

Lemma 5.5 above implies

∇
l(L(u)) ∈ L∞([0, T ], L2(�))

for 2 ≤ l ≤ k.
To show ∇

k+1(L(u)) ∈ L2([0, T ], L2(�)), we need only to deal with the follow-
ing term of ∇

k+1(L(u)):

I = ∇
2L(u)#∇

k−1u#∇
2u,

since the other terms can be bounded directly by applying Lemma 5.5.
By using the facts ∇

k−1u ∈ L2([0, T ], H 2(�)) and ∇
2u ∈ L∞([0, T ], H 1(�)),

we have ∫ T

0

∫
�
|I |2 dxdt ≤C

∫ T

0
∥∇

k−1u∥
2
L∞(�) dt sup

t∈[0,T ]

∫
�
|∇

2u|
2 dx

≤C
∫ T

0
∥∇

k−1u∥
2
H2 dt sup

t∈[0,T ]

∫
�
|∇

2u|
2 dx < ∞.

Therefore, we finish the proof. □

We are now in position to prove the main result (i.e., T (2)) of this subsection:

Proposition 5.7. Suppose that u0 ∈ H 4(�, N ) satisfies the 1-order compatibility
condition defined in Definition 5.1, v ∈ C0

(
R+, H 2(�)

)
∩ L2

(
R+, H 3(�)

)
, and

∂tv ∈ L∞
(
R+, L2(�)

)
∩ L2

(
R+, H 1(�)

)
. Then for any 0 < T < T0 we have

∂ i
t u ∈ C0(

[0, T ], H 4−2i (�)
)
∩ L2(

[0, T ], H 5−2i (�)
)

for i ∈ {0, 1}, and

∂2
t u ∈ L∞

(
[0, T ], L2(�)

)
∩ L2(

[0, T ], H 1(�)
)
.
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Additionally, if u0 ∈ H 5(�, N ), ∂ i
t v ∈ C0

(
R+, H 3−2i (�)

)
∩ L2

(
R+, H 4−2i (�)

)
with i = 0, 1, and ∂2

t v ∈ L2(R+, L2(�)), we obtain

∂ i
t u ∈ C0(

[0, T ], H 5−2i (�)
)
∩ L2(

[0, T ], H 6−2i (�)
)

for i ∈ {0, 1, 2}.

Proof. Our proof is divided into two steps:

Step 1: H 5-estimate of u.
By using (4-1) and taking a simple computation we can show

(5-8) 1u = −P(u)(∇u, ∇u) +
1

α2 + β2 (α∂t u + β Ĵ (u)∂t u)

+
γ

α2 + β2 (α∇vu + β Ĵ (u)∇vu).

In the case u0 ∈ H 4(�, N ), Lemma 5.5 and Corollary 5.6 tell us that

1u ∈ L∞([0, T ], H 2(�)),

since u ∈ L∞([0, T ], H 3(�)), v ∈ C0(R+, H 2(�)) and by estimate (5-6). Hence,
by the L2-theory of elliptic equations we know that

u ∈ L∞([0, T ], H 4(�)).

Moreover, if we assume v ∈ L2([0, T ], H 3(�)), we can apply Lemma 5.5 and
Corollary 5.6 again to show

1u ∈ L2([0, T ], H 3(�)),

and hence we have u ∈ L2([0, T ], H 5(�)). Consequently, Lemma 2.4 implies

∂ i
t u ∈ C0([0, T ], H 4−2i (�))

for i = 0, 1.

Step 2: H 6-estimate of u.
On the other hand, it follows from (5-8) that

1∂t u =
1

α2 + β2 (α∂2
t u + β Ĵ (u)∂2

t u) +
β

α2 + β2 d Ĵ (u)#∂t u#∂t u

+
γ

α2 + β2 ∂t(α∇vu + β Ĵ (u)∇vu) − ∂t(P(u)(∇u, ∇u)).

Then, by using estimate (5-7) and taking the same argument as above, we can show

1∂t u ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
;

hence the L2-theory of the Laplace operator again implies

∂t u ∈ L∞
(
[0, T ], H 3(�)

)
∩ L2(

[0, T ], H 4(�)
)
.
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Finally, we can show

u ∈ L∞
(
[0, T ], H 5(�)

)
∩ L2(

[0, T ], H 6(�)
)
,

by providing v ∈ L∞
(
[0, T ], H 3(�)

)
∩ L2

(
[0, T ], H 4(�)

)
.

Now, by Lemma 2.4 we can also derive that

∂ i
t u ∈ C0([0, T ], H 5−2i (�))

for i ∈ 0, 1. Hence, it follows that ∂2
t u ∈ C0([0, T ], H 1(�)) by using the equation

of ∂t u and the fact ∂ i
t v ∈ C0(R+, H 3−2i (�)) with i = 0, 1. □

5C. Higher order regularity of u (i.e., the proof ofT (k)with k≥2). In Section 5B,
we have proved property T (k) in the case k = 2. Next, we assume that T (k) has
been established for k ≥ 2, then we intend to show T (k + 1) is true. To this end,
we assume that u0 ∈ H 2(k+1)(�) satisfies the k-order compatibility conditions, and
v satisfies

∂ i
t v ∈ C0(

[0, T ], H 2(k+1)−2(i+1)(�)
)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)

for any 0 < T < T0 and any i ∈ {0, 1, . . . , k}. Moreover, property T (k) implies

∂ i
t u ∈ C0(

[0, T ], H 2k−2i+1(�)
)
∩ L2(

[0, T ], H 2k−2i+2(�)
)

for any 0 ≤ i ≤ k.
In particular, uk = ∂k

t u ∈ C0
(
[0, T ], H 1(�)

)
∩ L2

(
[0, T ], H 2(�)

)
is a strong

solution to the equation

(5-9)


∂tw+γ∇vw=α1w−β Ĵ (u)1w+Lk(w, u)+Fk(u), (x, t)∈�×[0, T ],

∂w/∂ν=0, (x, t)∈∂�×[0, T ],

w(x, 0)=Vk(u0):�→RK.

In the following context, we improve the regularity of u by proving the following
three claims:

(1) If u0 ∈ H 2(k+1)(�) satisfies the k-order compatibility conditions, then we get a
regular solution to (5-9):

w ∈ C0(
[0, T ], H 2(�)

)
∩ L2(

[0, T ], H 3(�)
)
.

(2) It follows from an argument on uniqueness that w = uk . Hence we can show

ui ∈ C0(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1−2i (�)
)

for any 0 ≤ i ≤ k + 1, by using (4-1).

(3) Additionally if u0 ∈ H 2(k+1)+1(�), we can further prove

uk+1 ∈ C0(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
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by considering differentiation of the Galerkin approximation equation to (5-9) in
the time direction. This implies

ui ∈ C0(
[0, T ], H 2(k+1)+1−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+2−2i (�)
)

for any 0 ≤ i ≤ k + 1.

5D. Regular solution to (5-9). To show the existence of local regular solutions to
(5-9) by applying a similar argument to that in Section 3, first of all, we estimate
the nonhomogeneous term Fk by using the estimates given in Lemmas 5.5 and 5.6.

Lemma 5.8. Assume that, for 0 ≤ i ≤ k, the field v satisfies

∂ i
t v ∈ C0(

[0, T ], H 2(k+1)−2(i+1)(�)
)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)

and property T (k) holds true. Then, we have

Fi ∈ L∞
(
[0, T ], H 2k−2i (�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)

for 0 ≤ i ≤ k.

Proof. For any 0 ≤ i ≤ k, by setting vi = ∂ i
t v, we have

Fi (u) = −γ
∑

m+ j=i
m≥1

vm#∇u j + α
∑

i1+···+is+m+l=i
1≤i j <i

∇
s P(u)#ui1# · · · #uis #∇um#∇ul

+ β
∑

i1+···+is+m=i
1≤i j <i

∇
s Ĵ (u)#ui1# · · · #uis #1um

= I + II + III.

Next we estimate the above three terms step by step. For term I : since 1 ≤ m ≤ i
and 0 ≤ j = i − m ≤ i − 1, then we have

vm ∈ L∞
(
[0, T ], H 2k−2i (�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)

and
u j ∈ L∞([0, T ], H 2k−2i+3(�)).

Hence, Lemma 5.5 claims

I ∈ L∞
(
[0, T ], H 2k−2i (�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)
.

For term II : since 1 ≤ i j ≤ i − 1 and 0 ≤ m ≤ i − 1, we have

ui j ∈ L∞([0, T ], H 2k−2i+3(�))

and
∇um ∈ L∞

(
[0, T ], H 2k−2i+2(�)

)
∩ L2(

[0, T ], H 2k−2i+3(�)
)
.

It follows from Lemma 5.5 that

II ∈ L∞([0, T ], H 2k−2i+2(�)).
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Similarly, by applying Corollary 5.6 with ∇
s Ĵ in place of L , we can also show

III ∈ L∞
(
[0, T ], H 2k−2i+1(�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)
.

Therefore, the desired results are proved. □

Now we turn to considering the Galerkin approximation of (5-9):

(5-10)

{
∂tw

n
+γ Pn(∇vw

n) = α1wn
−β Pn( Ĵ (u)1wn)+Pn(Lk(w

n, u)+Fk(u)),

wn(x, 0) = Pn(Vk(u0)) : � → Rn+k.

It is not difficult to show that there exists a unique solution wn
∈ H n to (5-10) on a

maximal interval [0, T n
∗
), and we will show T0 ≤ T n

∗
.

Next, we choose wn and 12wn as test functions of (5-10) and take a simple
calculation to show
∂

∂t

∫
�
|wn

|
2 dx +α

∫
�
|∇wn

|
2 dx ≤ Cα(1+|β|

2)(∥u∥
2
H3 +1)∥wn

∥
2
H1 +

∫
�
|Fk |

2 dx,

∂

∂t

∫
�
|1wn

|
2 dx + α

∫
�
|∇1wn

|
2 dx

≤ Cα(1 + |β|
2
+ |γ |

2)(∥u∥
6
H3 + ∥v∥

2
H2 + 1)∥wn

∥
2
H2 + Cα

∫
�
|∇Fk |

2 dx .

It follows that
∂

∂t
∥wn

∥
2
H2 + α

∫
�
|∇1wn

|
2 dx ≤ Cα,β,γ p(t)∥wn

∥
2
H2 + Cαq(t),

where
p(t) := ∥u∥

6
H3 + ∥v∥

2
H2 + 1 ≤ C(T )

and
q(t) := ∥Fk∥

2
H1 ∈ L1([0, T ])

for any T < T0.
On the other hand, since u0 ∈ H 2k+2(�) and vi ∈ C0([0, T ], H 2k−2i (�)) with

0 ≤ i ≤ k, it is not difficult to show

∥V n
k ∥

2
H2(�)

≤ C∥Vk∥
2
H2(�)

≤ C(T, ∥u0∥
2
H2(k+1)(�)

).

Here we have used Lemma 2.5 in the first inequality.
Thus, by the Gronwall inequality we can infer from the above

sup
0<t≤T

(∥wn
∥

2
H2 + ∥∂tw

n
∥

2
L2) + α

∫ T

0
(∥wn

∥
2
H3 + ∥∂tw

n
∥

2
H1) dt ≤ C(T ).

Hence without loss of generality, we assume that wn converges to a regular
solution w ∈ L∞

(
[0, T ], H 2

)
∩ L2

(
[0, T ], H 3(�)

)
to (5-9). Moreover, ∂tw is

in L∞
(
[0, T ], L2(�)

)
∩ L2

(
[0, T ], H 1(�)

)
. By Lemma 2.4 we know that

w ∈ C0([0, T ], H 2(�)).
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5E. Uniqueness of strong solutions to equation (5-9).

Proposition 5.9. There exists a unique solution to equation (5-9) in the space
L∞

(
[0, T ], H 1(�)

)
∩ L2

(
[0, T ], H 2(�)

)
.

Proof. Suppose w1 and w2 are two solutions to (5-9) belonging to the space
L∞

(
[0, T ], H 1

)
∩ L2

(
[0, T ], H 2(�)

)
. Then, the difference w = w1 −w2 satisfies

∂tw + γ∇vw = α1w − β Ĵ (u)1w, u) + Fk(u), (x, t) ∈ � × [0, T ],

∂w/∂ν = 0, (x, t) ∈ ∂� × [0, T ],

w(x, 0) = 0.

Taking w as a test function to the above equation, we can show

(5-11) 1
2

∂

∂t

∫
�
|w|

2 dx + α
∫

�
|∇w|

2 dx

= −γ
∫

�
⟨v ·∇w, w⟩ dx −β

∫
�
⟨ Ĵ (u)1w, w⟩ dx +

∫
�
⟨Lk(w, u), w⟩ dx

= I + II + III.

We estimates the above three terms as follows:

I = −
γ

2

∫
�
v · ∇|w|

2 dx = −
γ

2

∫
�

div(v|w|
2) dx = 0,

since div(v) = 0 and ⟨v, ν⟩|∂� = 0.

|II | = |β|

∣∣∣∫
�
⟨ Ĵ (u)1w, w⟩ dx

∣∣∣
≤ C |β|

∫
�
|∇w||∇u||w| dx ≤ Cαβ2

∥u∥
2
H3

∫
�
|w|

2 dx +
α

4

∫
�
|∇w|

2 dx .

|III | ≤ Cα
∫

�
(|w||∇w||∇u| + |w|

2
|∇u|) dx + C |β|

∣∣∣∫
�
⟨d Ĵ (w)1u, w⟩ dx

∣∣∣
≤ Cα(1 + β2)∥u∥

2
H3

∫
�
|w|

2 dx +
α

4

∫
�
|∇w|

2 dx .

Here we have used the fact∣∣∣∫
�
⟨∇ Ĵ (w)1u, w⟩ dx

∣∣∣≤ ∣∣∣∫
�
⟨∇(d Ĵ (w))·∇u, w⟩ dx

∣∣∣+∣∣∣∫
�
⟨(d Ĵ (w))·∇u, ∇w⟩ dx

∣∣∣
since ∂u

∂ν
|∂� = 0.

By combining the estimates of I –III with (5-11), we get

∂

∂t

∫
�
|w|

2 dx + α
∫

�
|∇w|

2 dx ≤ Cα,β

∫
�
|w|

2 dx .

It follows from the Gronwall inequality that w ≡ 0. Therefore, the proof is com-
pleted. □

As a direct conclusion of the above proposition, we have uk ≡ w and hence

uk ∈ C0(
[0, T ], H 2(�)

)
∩ L2(

[0, T ], H 3(�)
)
.
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5F. The proof of item (1) of property T (k + 1). Now we are in position to prove
item (1) of property T (k + 1) as follows:

Proposition 5.10. Assume that u0 ∈ H 2(k+1)(�) satisfies the k-order compatibility
condition, for i ∈ {0, 1, . . . , k},

vi = ∂ i
t v ∈ C0(

[0, T ], H 2(k+1)−2(i+1)(�)
)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)
,

and property T (k) holds true. Then, for any i ∈ {0, 1, . . . , k + 1},

ui ∈ L∞
(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1(�)
)
.

It follows that, for any i ∈ {0, 1, . . . , k},

ui ∈ C0(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1(�)
)
.

Proof. Since

uk+1 = α1uk − β Ĵ (u)1uk − γ∇vuk + Lk(uk, u) + Fk(u)

and uk ∈ L∞
(
[0, T ], H 2

)
∩ L2

(
[0, T ], H 3(�)

)
, a direct calculation shows

uk+1 ∈ L∞
(
[0, T ], L2(�)

)
∩ L2(

[0, T ], H 1(�)
)
.

Next we prove this proposition by inducting on k + 1 − l. We have shown the
result is true for l = 0 and l = 1. Now, we assume that for l = i ≥ 1 the result has
been proved. Then, we need to establish it for l = i + 1, where i ≤ k − 1. Thus, we
consider the following equation of uk−i :

(5-12) 1uk−i =
1
σ

(αuk−i+1 + β Ĵ (u)uk−i+1) +
αγ

σ

∑
q+m=k−i

vq#um

+

∑
i1+···+iq+s+m=k−i

∇
q P#ui1# · · · #uiq #∇us#∇um

+
βγ

σ

∑
i1+···+iq+s+m=k−i

∇
q Ĵ#ui1# · · · #uiq #vs#∇um

+
β

σ

∑
i1+···+iq+m=k−i

m<k−i

∇
q Ĵ#ui1# · · · #uiq #um+1

= J1 + J2 + J3 + J4 + J5,

where σ denotes α2
+ β2.

Next we estimate the above five terms step by step. First of all, by the assumptions
of induction, we have the following:

(1) For i + 1 ≤ l ≤ k + 1, uk+1−l ∈ L∞
(
[0, T ], H 2l−1(�)

)
∩ L2

(
[0, T ], H 2l(�)

)
.

(2) For 0 ≤ l ≤ i < k, uk+1−l ∈ L∞
(
[0, T ], H 2l(�)

)
∩ L2

(
[0, T ], H 2l+1(�)

)
.



220 BO CHEN AND YOUDE WANG

(3) For 0 ≤ s ≤ k,

vs ∈ L∞
(
[0, T ], H 2k−2s(�)

)
∩ L2(

[0, T ], H 2(k+1)−2l(�)
)
.

The estimate of term J1: since

uk−i+1 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)

and
u ∈ L∞

(
[0, T ], H 2k+1(�)

)
∩ L2(

[0, T ], H 2k+2(�)
)
,

by applying Corollary 5.6 with L replaced by Ĵ and Lemma 5.5, we have

J1 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

The estimate of term J3: A simple computation shows that J3 satisfies

J3 = ∇ P#uk−i #∇u#∇u + P(u)#∇uk−i #∇u

+
∑

i1+···+iq+s+m=k−i
i j ,m,s≤k−i−1

∇
q P#ui1# · · · #uiq #∇us#∇um

= a + b + c.

Since uk−i ∈ L∞
(
[0, T ], H 2i+1

)
∩ L2

(
[0, T ], H 2i+2

)
with i ≤ k − 1 and

∇u ∈ L∞
(
[0, T ], H 2k(�)

)
∩ L2(

[0, T ], H 2k+1(�)
)
,

Lemma 5.5 implies

a + b ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

On the other hand, by using the fact i j , m, s ≤ k − i − 1, we have

ui j ∈ L∞([0, T ], H 2(i+1)+1(�)) and ∇um ∈ L∞([0, T ], H 2(i+1)(�)).

It follows that c ∈ L∞([0, T ], H 2(i+1)). Consequently, we obtain

J3 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

Taking almost the same argument as in estimating J3, we obtain

J2 + J4 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

Then we show the last term:

J5 =
β

σ
∇ Ĵ (u)#uk−i #u1 +

β

σ

∑
i1+···+iq+m=k−i

i j ,m<k−i

∇
q Ĵ (u)#ui1# · · · #uiq #um+1

= d + e.

Since uk−i ∈ L∞([0, T ], H 2i+1(�)) with i ≤ k − 1 and

u1 ∈ L∞([0, T ], H 2k−1(�)) ⊂ L∞([0, T ], H 2i+1(�)),
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we have
d ∈ L∞([0, T ], H 2i+1(�)).

Since m, i j ≤ k − i − 1, by Lemma 5.5 and Corollary 5.6, it is not difficult to
show

e ∈ L∞([0, T ], H 2i+1(�)).

Combining the above estimates of J1–J5 with formula (5-12), we conclude that

1uk−i ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

Then, by the L2-theory of Laplace operator we have

uk−i ∈ L∞
(
[0, T ], H 2(i+1)(�)

)
∩ L2(

[0, T ], H 2(i+1)+1(�)
)

for 1 ≤ i ≤ k − 1.
It remains to show the result in the case of l = k + 1. Since

(5-13) 1u = −P(u)(∇u, ∇u)+
1
σ

(α∂t u +β Ĵ (u)∂t u)+
γ

σ
(α∇vu +β Ĵ (u)∇vu)

and

• u ∈ L∞([0, T ], H 2k+1(�)),

• ∂t u ∈ L∞
(
[0, T ], H 2k(�)

)
∩ L2

(
[0, T ], H 2k+1(�)

)
,

• v ∈ L∞
(
[0, T ], H 2k(�)

)
∩ L2

(
[0, T ], H 2k+2(�)

)
,

we can apply Lemma 5.5 to show

1u ∈ L∞([0, T ], H 2k(�)),

which gives u ∈ L∞([0, T ], H 2k+2(�)).
And again it follows that

1u ∈ L2([0, T ], H 2k+1(�)),

then the L2-theory of the Laplace operator yields

u ∈ L2([0, T ], H 2(k+1)+1(�)).

Therefore, the proof is completed. □

5G. The proof of item (2) in property T (k + 1). In the last part, we assume that
u0 ∈ H 2(k+1)+1(�) satisfies the k-order compatibility conditions. Furthermore,
suppose that there hold true the following properties C(k):

• for any i ∈ {0, 1, . . . , k},

vi ∈ C0(
[0, T ], H 2(k+1)+1−2(i+1)(�)

)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)

and ∂k+1
t v ∈ L2([0, T ], L2(�));



222 BO CHEN AND YOUDE WANG

• for any i ∈ {0, 1, . . . , k + 1}, we have

ui ∈ C0(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1−2i (�)
)
.

Next, we turn to proving item (2) of property T (k + 1).
First of all, taking almost the same argument as in Lemma 5.8, we can show:

Proposition 5.11. For any i ∈ {0, 1, . . . , k},

∂t Fi ∈ L2([0, T ], H 2k−2i (�)).

Next, we can also prove the following proposition, which is analogous to the
main theorem in Section 4:

Proposition 5.12. Assume that u0 ∈ H 2(k+1)+1(�) satisfies the k-order compatibil-
ity conditions. If the properties C(k) hold true, then we have

uk+1 ∈ C0(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
.

Proof. It follows from the Galerkin approximation equation (5-10) that wn
t := ∂tw

n

satisfies

∂tw
n
t − α1wn

t = Pn∂t(−γ∇vw
n
− β Ĵ (u)1wn

+ Lk(w
n, u) + Fk(u)).

Then, taking −1wn
t as a test function to this equation, we obtain

1
2

∂

∂t

∫
�
|∇wn

t |
2 dx + α

∫
�
|1wn

t | dx

= γ
∫

�
⟨∂t(v · ∇wn), 1wn

t ⟩ dx + β
∫

�
⟨∂t( Ĵ (u)1wn), 1wn

t ⟩ dx

−

∫
�
⟨∂t Lk(w

n, u), 1wn
t ⟩ dx −

∫
�
⟨∂t Fk(u), 1wn

t ⟩ dx

= M1 + M2 + M3 + M4.

By direct calculations, we show the estimates of M1–M4 as follows:

|M1| ≤ C |γ |

∫
�
(|∂tv||∇wn

| + |v||∇∂tw
n
|)|1wn

t | dx

≤ Cα|γ |
2
∥∂tv∥

2
H1∥w

n
∥

2
H2 + Cα∥v∥

2
H2 |γ |

2
∫

�
|∇wn

t |
2 dx +

α

8

∫
�
|1wn

t |
2 dx,

|M2| = |β|

∣∣∣∫
�
⟨∂t( Ĵ (u))1wn, 1wn

t ⟩ dx
∣∣∣

≤ Cα|β|
2
∥∂t u∥

2
H2∥w

n
∥

2
H2 +

α

8

∫
�
|1wn

t |
2 dx,
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|M3| =

∣∣∣∫
�
⟨∂t Lk(w

n, u), 1wn
t ⟩ dx

∣∣∣
≤ Cα

∫
�
(|∇wn

t |
2
|∇u|

2
+ |ut |

2
|∇wn

|
2
|∇u|

2
+ |∇ut |

2
|∇wn

|
2) dx

+ Cα
∫

�
(|wn

t |
2
|∇u|

4
+ |ut |

2
|wn

|
2
|∇u|

4
+ |∇ut |

2
|∇u|

2
|wn

|
2) dx

+ Cα|β|
2
∫

�
(|wn

t |
2
|1u|

2
+ |ut |

2
|wn

|
2
|1u|

2
+ |1ut |

2
|wn

|
2) dx

+
α

8

∫
�
|1wn

t |
2 dx

≤ Cα(1+β2) f (t)
(∫

�
|wn

t |
2 dx

)
+Cα∥u∥

2
H3

∫
�
|∇wn

t |
2 dx +

α

8

∫
�
|1wn

t |
2 dx,

where
f (t) := ∥ut∥

2
H2∥w

n
∥

2
H2(∥u∥

2
H2 + 1)2

≤ C(T ).

The last term satisfies the estimate

|M4| ≤ C(α)∥∂t Fk∥
2
L2 +

α

8

∫
�
|1wn

t |
2 dx .

Hence, we conclude that

∂

∂t

∫
�
|∇wn

t |
2 dx + α

∫
�
|1wn

t | dx ≤ Cγ,α,β,T

∫
�
|∇wn

t |
2 dx + Cα∥∂t Fk∥

2
L2 .

It follows

sup
0≤t≤T

∥∂tw
n
∥

2
H1 + α

∫ T

0

∫
�
|1wn

t |
2 dxdt ≤ C(T, ∥V n

k ∥
2
H3),

since ∥∂t Fk∥
2
L2 ∈ L1([0, T ]).

Now, it remains to show there exists a uniform bound of ∥V n
k ∥

2
H3 . By using the

fact vi ∈ C0([0, T ], H 2k−2i+1) with 0 ≤ i ≤ k, we can show

∥V n
k ∥

2
H3(�)

≤ C∥Vk∥
2
H3(�)

≤ C(∥u0∥
2
H2(k+1)+1(�)

).

Hence, without loss of generality we can assume that wn
t converges weakly to

uk+1 ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
.

It follows that
∂t uk+1 ∈ L2([0, T ], L2(�))

by applying the equation of uk+1 and the fact ∂t Fk ∈ L2([0, T ], L2(�)). Then,
Lemma 2.4 gives

uk+1 ∈ C0([0, T ], H 1(�)). □

Consequently, taking the estimates in Propositions 5.10–5.12 into consideration,
and adopting almost the same argument as in the proof of Proposition 5.10, we can
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see that it is not difficult to show

ui ∈ L∞
(
[0, T ], H 2(k+1)−2i+1(�)

)
∩ L2(

[0, T ], H 2(k+1)−2i+2(�)
)

for any 0 ≤ i ≤ k + 1. Hence, Lemma 2.4 implies that for any i ∈ {0, . . . , k},

ui ∈ C0([0, T ], H 2(k+1)−2i+1(�)).

Therefore, the second term (2) in property T (k + 1) is proved.
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