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MODULES OVER THE PLANAR GALILEAN CONFORMAL
ALGEBRA ARISING FROM FREE MODULES OF RANK ONE

JIN CHENG, DONGFANG GAO AND ZITING ZENG

The planar Galilean conformal algebra G introduced by Bagchi-Gopakumar
and Aizawa is an infinite-dimensional extension of the finite-dimensional
Galilean conformal algebra in (2+1)-dimensional space-time. In this paper,
we give a complete classification of U(CL0)-free modules of rank 1 and
U(h)-free modules of rank 1 over G, where h is the Cartan subalgebra (a
nilpotent self-normalizing subalgebra) of G, CL0 is a subalgebra of h. Also,
we determine the necessary and sufficient conditions for these modules to be
irreducible, and find the maximal proper submodules when these modules
are not irreducible.

1. Introduction

Infinite-dimensional Galilean conformal algebras were introduced by Bagchi and
Gopakumar [2009] in order to construct a systematic nonrelativistic limit of the
AdS/CFT conjecture (see [Maldacena 1998]). Some physicists believe that AdS/CFT
correspondence would be better understood by exploring those algebras (see [Bagchi
et al. 2010; Martelli and Tachikawa 2010]). Moreover, those algebras appear in the
context of Galilean electrodynamics (see [Bagchi et al. 2014; Festuccia et al. 2016])
and may play an important role in Navier–Stokes equations (see [Bhattacharyya et al.
2009; Fouxon and Oz 2008; Fouxon and Oz 2009; Gusyatnikova and Yumaguzhin
1989]). These reasons make the infinite-dimensional Galilean conformal algebras
attract more and more attention from mathematicians and physicists. In particular,
the infinite-dimensional Galilean conformal algebra in (1+1)-dimensional space-
time is the centerless W -algebra W (2, 2); it has been studied in [Bagchi et al.
2010; Chen and Guo 2017; Zhang and Dong 2009]. This algebra is related to
the BMS/GCA correspondence (see [Bagchi 2010]), the tensionless limit of string
theory (see [Bagchi 2013]) and statistical mechanics (see [Henkel et al. 2012]).

The infinite-dimensional Galilean conformal algebra G in (2+1)-dimensional
space-time, named the planar Galilean conformal algebra by Aizawa [2013], is an
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infinite-dimensional Lie algebra with a basis {Ln, Hn, In, Jn | n ∈ Z} and the Lie
brackets are defined by

(1-1)

[Lm, Ln] = (n − m)Lm+n, [Lm, Hn] = nHm+n,

[Lm, In] = (n − m)Im+n, [Lm, Jn] = (n − m)Jm+n,

[Hm, In] = Im+n, [Hm, Jn] = −Jm+n,

[Hm, Hn] = [Im, In] = [Jm, Jn] = [Im, Jn]= 0 for all m, n ∈ Z,

which is the main object in this paper. This algebra is also the special case of
[Martelli and Tachikawa 2010]. As we know, many infinite-dimensional Lie al-
gebras in mathematics and physics are related to finite-dimensional semisimple
Lie algebras. For example, the Virasoro algebra contains infinitely many sl2(C)

as its subalgebras. For the Lie algebra G, there are two interesting features: it
contains the Witt algebra as a subalgebra, and it is associated with the Galilean
algebra, which is a nonsemisimple Lie algebra. Those would suggest that such an
infinite-dimensional algebra is important and its representation theory is different
from semisimple counterparts. So far there are a few of results about structures
and representations of G. The universal central extension G of G was determined in
[Gao et al. 2016]. The highest weight representations and coadjoint representations
of G were investigated in [Aizawa 2013; Aizawa and Kimura 2011], Whittaker
modules and restricted modules over G were studied in [Chen and Yao 2023; Chen
et al. 2022; Gao and Gao 2022].

Recently, a family of nonweight modules over G, called U(h)-free modules,
has attracted more attention from mathematicians, where h = span{L0, H0} is a
nilpotent self-normalizing subalgebra, called the Cartan subalgebra of G. The
notion of U(h)-free modules was first introduced by Nilsson [2015] for the simple
Lie algebra sln+1(C). At the same time, these modules were introduced in a very
different approach in [Tan and Zhao 2015]. Later, U(h)-free modules for many
important infinite-dimensional Lie algebras were determined, for example, the
Virasoro algebra in [Lu and Zhao 2014], the Witt algebra in [Tan and Zhao 2015],
affine Kac–Moody algebras in [Cai et al. 2020]. In the present paper, we will
study this family of modules over G and G. These lead to many new examples of
irreducible modules over G and G.

The paper is organized as follows. In Section 2, we recall the source of the
infinite-dimensional Galilean conformal algebras. Then we review the planar
Galilean conformal algebra G and G. We show that the U(CL0)-free modules of
rank 1 and U(h)-free modules of rank 1 over G coincide with U(CL0)-free modules
of rank 1 and U(h)-free modules of rank 1 over G respectively; see Corollary 2.3.
Lastly, we collect some results about U(CL0)-free modules over some Lie algebras
related to the Witt algebra for later use. In Section 3, we get all U(CL0)-free
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modules of rank 1 over G, and the necessary and sufficient conditions for these
modules to be irreducible are determined; see Theorem 3.2. We also determine
the isomorphism classes of these modules; see Theorem 3.3. In Section 4, we
obtain the main results of this paper. More precisely, we determine that there are
three families of U(h)-free modules of rank 1 over G, where h = span{L0, H0}

is the Cartan subalgebra of G; see Theorem 4.12. Also, we give the necessary
and sufficient conditions for these modules to be irreducible, and find the maximal
proper submodules when these modules are not irreducible; see Theorems 4.13, 4.14
and 4.15. Furthermore, we determine the isomorphism classes of these modules;
see Theorem 4.17. Consequently, we give a complete classification of U(h)-free
modules of rank 1 over G and G.

Throughout this paper, we denote by Z, Z+, N, C and C∗ the set of integers,
nonnegative integers, positive integers, complex numbers and nonzero complex
numbers respectively. All vector spaces and algebras are over C. We denote by U(g)

the universal enveloping algebra for a Lie algebra g.

2. Notation and preliminaries

In this section, we recall the infinite-dimensional Galilean conformal algebras and
collect some known results about U(CL0)-free modules over the Lie algebras related
to the Witt algebra.

2A. From Galilean algebras to infinite-dimensional Galilean conformal algebras.
In this subsection, we recall the background in which the infinite-dimensional
Galilean conformal algebras arise. See [Bagchi and Gopakumar 2009] for more
details. First, it is well-known that Galilean algebra G(d, 1) in Galilean space-time
Rd,1 arises as a contraction of the Poincaré algebra ISO(d, 1). The expressions for
the Poincaré generators (µ, ν = 0, 1, . . . , d)

Jµν = −(xµ∂ν − xν∂µ), Pµ = ∂µ,

give us the Galilean vector field generators {Ji j , Pi , Bi , H | i, j = 1, 2, . . . , d},
where

(2-1)
Ji j = −(xi∂ j − x j∂i ), Pi = ∂i ,

Bi = J0i = t∂i , H = P0 = −∂t .

and t, xi are variables. They obey the commutation relations

(2-2)

[Ji j , Jrs] = δir J js + δis Jr j + δ jr Jsi + δ js Jir ,

[H, Bi ] = −Pi ,

[Ji j , Br ] = −(Biδ jr − B jδir ),

[Ji j , Pr ] = −(Piδ jr − Pjδir ),

[Ji j , H ] = [H, Pi ] = [Bi , Pj ] = [Bi , B j ] = [Pi , Pj ] = 0.
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Consequently, we obtain the Galilean algebra

G(d, 1) = span{Ji j , Pi , Bi , H | i, j = 1, 2, . . . , d}

with the commutation relations (2-2).
To obtain the Galilean conformal algebra, we need additional generators

{D, K , Ki | i = 1, 2, . . . , d},

where

(2-3) D = −

( d∑
i=1

xi∂i + t∂t

)
, K = −

( d∑
i=1

2t xi∂i + t2∂t

)
, Ki = t2∂i .

Thus we get that Galilean conformal algebra in (d+1)-dimensional space-time is
spanned by {Ji j , Pi , Bi , H, D, K , Ki | i, j = 1, 2, . . . , d} with the commutation
relations (2-2) and

[Ji j , Kr ] = −(Kiδ jr − K jδir ), [K , Bi ] = Ki , [K , Pi ] = 2Bi ,

[H, Ki ] = −2Bi , [D, Ki ] = −Ki , [D, Pi ] = Pi ,

[D, H ] = H, [H, K ] = −2D, [D, K ] = −K ,

[Ji j , D] = [Ji j , K ] = [D, Bi ] = [K , Ki ] = [Ki , K j ] = [Ki , B j ] = [Ki , Pj ] = 0.

It is clear that Galilean conformal algebra contains Galilean algebra as a subalgebra.
We denote

L(−1)
= H, L(0)

= D, L(+1)
= K ,

M (−1)
i = Pi , M (0)

i = Bi , M (+1)
i = Ki .

Then Galilean conformal algebra in (d+1)-dimensional space-time is spanned by
{Ji j , L(n), M (n)

i | i, j = 1, 2, . . . , d, n = 0, ±1} with the commutation relations

[L(m), L(n)
] = (m − n)L(m+n), [L(m), M (n)

i ] = (m − n)M (m+n)
i ,

[Ji j , M (m)
k ] = −(M (m)

i δ jk − M (m)
j δik), [Ji j , L(n)

] = [M (m)
i , M (n)

j ] = 0,

where m, n = 0, ±1, i, j = 1, 2, . . . , d . In fact, we can define the vector fields

Ji j = −(xi∂ j − x j∂i ),

L(n)
= −(n + 1)tn

d∑
i=1

xi∂i − t (n+1)∂t ,

M (n)
i = t (n+1)∂i ,

where n = 0, ±1, i, j = 1, 2, . . . , d. These are exactly the vector fields in (2-1)
and (2-3), so they generate the Galilean conformal algebra.
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Now we have a very natural extension, for arbitrary n ∈ Z, define

J (n)
i j = −tn(xi∂ j − x j∂i ),

L(n)
= −(n + 1)tn

d∑
i=1

xi∂i − t (n+1)∂t ,

M (n)
i = t (n+1)∂i ,

where i, j = 1, 2, . . . , d. Therefore, we obtain the infinite-dimensional Galilean
conformal algebra GCA in (d+1)-dimensional space-time,

GCA = span{J (n)
i j , L(n), M (n)

i | n ∈ Z, i, j = 1, 2, . . . , d},

satisfying the commutation relations

[L(m), L(n)
] = (m − n)L(m+n),

[J (m)
i j , J (n)

rs ] = δir J (m+n)
js + δis J (m+n)

r j + δ jr J (m+n)
si + δ js J (m+n)

ir ,

[L(m), J (n)
i j ] = −n J (m+n)

i j , [L(m), M (n)
i ] = (m − n)M (m+n)

i ,

[J (m)
i j , M (n)

k ] = −(δ jk M (m+n)
i − δik M (m+n)

j ), [M (m)
i , M (n)

j ] = 0.

In this paper, we mainly investigate the infinite-dimensional Galilean conformal
algebra in (2+1)-dimensional space-time, which is called the planar Galilean
conformal algebra by Aizawa [2013].

2B. Planar Galilean conformal algebra. From Section 2A, the planar Galilean
conformal algebra is spanned by {J (n)

12 , L(n), M (n)
i | n ∈ Z, i = 1, 2}. We denote this

algebra by G, then G is an infinite-dimensional Lie algebra with the commutation
relations

[L(m), L(n)
] = (m − n)L(m+n), [L(m), J (n)

12 ] = −n J (m+n)
12 ,

[L(m), M (n)
1 ] = (m − n)M (m+n)

1 , [L(m), M (n)
2 ] = (m − n)M (m+n)

2 ,

[J (m)
12 , M (n)

1 ] = M (m+n)
2 , [J (m)

12 , M (n)
2 ] = −M (m+n)

1 ,

[J (m)
12 , J (n)

12 ] = [M (m)
1 , M (n)

1 ] = [M (m)
2 , M (n)

2 ] = [M (m)
1 , M (n)

2 ] = 0 for all m, n ∈ Z.

For convenience, we would like to simplify the notation (see [Chen et al. 2022]).
Let

Ln = −L(n), Hn =
√

−1J (n)
12 ,

In = M (n)
1 +

√
−1M (n)

2 , Jn = M (n)
1 −

√
−1M (n)

2 for all n ∈ Z.

Then it is easy to check that {Ln, Hn, In, Jn | n ∈ Z} satisfy the commutation
relations (1-1). Now, we may describe the definition of the planar Galilean conformal
algebra as follows.
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Definition 2.1. The planar Galilean conformal algebra G is an infinite-dimensional
Lie algebra with a basis {Ln, Hn, In, Jn | n ∈ Z} subject to the commutation relations
(1-1).

Note that the Lie subalgebra ĨJ spanned by {Im, Jm | m ∈ Z} is a commutative
ideal of G. Furthermore, G contains the following interesting subalgebras.

(1) h = span{L0, H0} is a nilpotent self-normalizing subalgebra, called the Cartan
subalgebra of G.

(2) V = span{Lm | m ∈ Z} is the centerless Virasoro algebra, i.e., the Witt algebra.

(3) L= span{Lm, Hm | m ∈ Z} is the Heisenberg–Virasoro algebra with the one-
dimensional center.

(4) W = span{Lm, Im | m ∈ Z} is the centerless W (2, 2) algebra.

(5) W ′
= span{Lm, Jm | m ∈ Z} is the centerless W (2, 2) algebra.

Recall that (see [Gao et al. 2016]) the universal central extension G of the planar
Galilean conformal algebra G is an infinite-dimensional Lie algebra with a basis
{Ln, Hn, In, Jn, c1, c2, c3 | n ∈ Z} subject to the commutation relations

(2-4)

[Lm, Ln] = (n − m)Lm+n +
1
12(m3

− m)δm+n,0 c1,

[Lm, Hn] = nHm+n + m2δm+n,0 c2, [Hm, Hn] = mδm+n,0 c3,

[Lm, In] = (n − m)Im+n, [Lm, Jn] = (n − m)Jm+n,

[Hm, In] = Im+n, [Hm, Jn] = −Jm+n,

[Im, In] = [Jm, Jn] = [Im, Jn] = 0 for all m, n ∈ Z.

Denote L′
= span{Lm, Hm, c1, c2, c3 | m ∈ Z}, which is a subalgebra of G. From

Theorem 3 in [Chen and Guo 2017] and Theorem 3.1 in [Han et al. 2017] we get
the following lemma.

Lemma 2.2. (1) Suppose M is an L′-module such that it is a U(CL0)-free module
of rank 1. Then c1 M = c2 M = c3 M = 0.

(2) Suppose M ′ is an L′-module such that it is a U(h)-free module of rank 1. Then
c1 M ′

= c2 M ′
= c3 M ′

= 0.

So, we have the following corollary.

Corollary 2.3. (1) Let M be a U(G)-module such that M , when considered as
a U(CL0)-module, is free of rank 1. Then c1 M = c2 M = c3 M = 0. Thus
U(CL0)-free modules of rank 1 over G coincide with U(CL0)-free modules of
rank 1 over G.

(2) Let M ′ be a U(G)-module such that M ′, when considered as a U(h)-module,
is free of rank 1. Then c1 M ′

= c2 M ′
= c3 M ′

= 0. Thus U(h)-free modules of
rank 1 over G coincide with U(h)-free modules of rank 1 over G.
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Therefore, we mainly classify U(CL0)-free modules of rank 1 and U(h)-free
modules of rank 1 over G in the following sections.

Now, we conclude this section by recalling U(CL0)-free modules of rank 1 over
algebras V,L and W (2, 2), respectively. For any λ ∈ C∗, α ∈ C, it is not hard to
see that the polynomial algebra C[L0] has a V-module structure with the following
actions

Lm( f (L0)) = λm(L0 + mα) f (L0 − m), ∀ m ∈ Z, f (L0) ∈ C[L0].

Denote this module by �(λ, α). Thanks to [Lu and Zhao 2014], we know that
�(λ, α) is irreducible if and only if α ̸=0, and �(λ, 0) has an irreducible submodule
L0�(λ, 0) with codimension 1. Note that �(λ, α) can be easily viewed as a
W (resp. W ′)-module by defining In(�(λ, α)) = 0 (resp. Jn(�(λ, α)) = 0) for
all n ∈ Z, and the resulting module is denoted by �(λ, α)W (resp. �(λ, α)W

′

).
Moreover, we have the following lemmas.

Lemma 2.4 (cf. [Tan and Zhao 2015, Theorem 3]). Let V be a V-module. Assume
that V can be viewed as a U(CL0)-module is free of rank 1. Then V ∼= �(λ, α) for
some λ ∈ C∗, α ∈ C.

Lemma 2.5 (cf. [Chen and Guo 2017, Theorem 3]). Let V be a W (resp. W ′)-
module. Assume that V can be viewed as a U(CL0)-module is free of rank 1. Then
V ∼= �(λ, α)W (resp. �(λ, α)W

′

) for some λ ∈ C∗, α ∈ C.

For λ ∈ C∗, α, β ∈ C, thanks to [Chen and Guo 2017], we see that the polynomial
algebra C[L0] is an L-module with the actions

(2-5)
Lm( f (L0)) = λm(L0 + mα) f (L0 − m),

Hm( f (L0)) = βλm f (L0 − m) for all m ∈ Z, f (L0) ∈ C[L0].

We denote by �(λ, α, β) this module. From [Chen and Guo 2017], we also know
that �(λ, α, β) is irreducible if and only if (α, β) ̸= (0, 0), and �(λ, 0, 0) has an
irreducible submodule L0�(λ, 0, 0) with codimension 1. Furthermore:

Lemma 2.6 (cf. [Chen and Guo 2017, Theorem 2]). Let V be an L-module. Assume
that V can be viewed as a U(CL0)-module is free of rank 1. Then V ∼= �(λ, α, β)

for some λ ∈ C∗, α, β ∈ C.

3. U(CL0)-free modules over G

In this section, we determine the G-module structures on U(CL0). We give the
necessary and sufficient conditions for these modules to be irreducible. Also, we
find the maximal proper submodules and get the irreducible quotient modules when
these modules are not irreducible. Moreover, we determine the isomorphism classes
of these modules.



234 JIN CHENG, DONGFANG GAO AND ZITING ZENG

Note that ĨJ is a commutative ideal of G. Thus for any λ ∈ C∗, α, β ∈ C, by (2-5)
it is easy to see that the polynomial algebra C[L0] equips with a G-module structure
via the actions

Lm( f (L0)) = λm(L0 + mα) f (L0 − m),

Hm( f (L0)) = βλm f (L0 − m),

Im( f (L0)) = Jm( f (L0)) = 0 for all m ∈ Z, f (L0) ∈ C[L0].

(3-1)

We denote this module by A(λ, α, β).
Now we show that {A(λ, α, β) | λ ∈ C∗, α, β ∈ C} exhaust all U(CL0)-free

modules of rank 1 over G up to isomorphism.

Lemma 3.1. Let V be a U(CL0)-free module of rank 1 over G. We identify V with
C[L0] as vector spaces.

(1) Im(V ) = Jm(V ) = 0 for all m ∈ Z.

(2) There exist λ ∈ C∗, α, β ∈ C such that

Lm( f (L0)) = λm(L0 + mα) f (L0 − m),

Hm( f (L0)) = βλm f (L0 − m) for all f (L0) ∈ V, m ∈ Z.

Proof. (1) It is clear that V may be viewed as a U(CL0)-free module of rank 1
over W , since W is a subalgebra containing V of G. By Lemma 2.5, we have
Im(V ) = 0 for all m ∈ Z. Similarly, we may get Jm(V ) = 0 for all m ∈ Z.

(2) We view V as a U(CL0)-free module of rank 1 over L. Then the conclusions
are clear by Lemma 2.6. □

Theorem 3.2. Let V be a U(CL0)-free module of rank 1 over the Lie algebra G.

(1) There exist λ ∈ C∗, α, β ∈ C such that V ∼= A(λ, α, β) as G-modules.

(2) V is an irreducible G-module if and only if V ∼= A(λ, α, β) for some λ ∈ C∗,
α, β ∈ C with (α, β) ̸= (0, 0).

(3) If V is isomorphic to A(λ, 0, 0) for some λ ∈ C∗, then V has an irreducible
submodule L0V with codimension 1.

Proof. (1) is clear from Lemma 3.1 and (3-1).

(2) and (3) follow from the irreducibility of L-module �(λ, α, β). □

From (3-1) and [Chen and Guo 2017] we can get the following theorem.

Theorem 3.3. Let λ, λ′
∈ C∗, α, α′, β, β ′

∈ C. Then A(λ, α, β) and A(λ′, α′, β ′)

are isomorphic as G-modules if and only if λ = λ′, α = α′, β = β ′.
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4. U(h)-free modules over G

In this section, we obtain all U(h)-free modules of rank 1 over G. The necessary and
sufficient conditions for these modules to be irreducible are determined. We also
investigate the maximal proper submodules and the irreducible quotient modules
when these modules are not irreducible. Furthermore, we determine the isomorphism
classes of these modules. These conclusions are the main results of this paper.

4A. U(h)-free modules over G. In this subsection, we determine the G-module
structures on U(h), where h = span{L0, H0} is the Cartan subalgebra of G.

For any λ ∈ C∗, δ ∈ C[H0], denote by T (λ, δ) = C[H0, L0] the polynomial
algebra over C. It is clear that T (λ, δ) is isomorphic to U(h) as vector spaces. First,
we consider the L-module structures on T (λ, δ), where L= span{Lm, Hm | m ∈ Z}.
It is not hard to see that we may give T (λ, δ) an L-module structure via the actions

(4-1)
Lm( f (H0, L0)) = λm f (H0, L0−m)(L0+mδ),

Hm( f (H0, L0)) = λm H0 f (H0, L0−m) for all m ∈ Z, f (H0, L0) ∈ T (λ,δ).

Note that H0T (λ, δ) is always a proper L-submodule of T (λ, δ). Denote the
quotient module T (λ, δ̄) = T (λ, δ)/H0T (λ, δ) = C[L0], where δ̄ is the constant
term of δ. It is easy to see that the actions of L on T (λ, δ̄) are

Lm( f (L0)) = λm f (L0 − m)(L0 + mδ̄),

Hm( f (L0)) = 0 for all m ∈ Z, f (L0) ∈ T (λ, δ̄).

Furthermore, we have the following lemma.

Lemma 4.1. (1) T (λ, δ̄) is an irreducible L-module if and only if δ̄ ̸= 0.

(2) If δ̄ = 0, then T (λ, δ̄) has an irreducible L-submodule L0T (λ, δ̄) with co-
dimension 1.

Proof. This directly follows from the irreducibility of L-module �(λ, δ̄, 0), which
was introduced in Section 2B. □

By Theorem 3.1 in [Han et al. 2017], we have the following theorem.

Theorem 4.2. Let M be a U(L)-module such that M , when considered as a U(h)-
module, is free of rank 1. Then M ∼= T (λ, δ) for some λ ∈ C∗, δ ∈ C[H0].

Next, we investigate the G-module structures on U(h). We first define three fam-
ilies of G-modules “�(λ, δ, 0, 0), �(λ, η1, σ1, 0) and �(λ, η2, 0, σ2)” as follows:
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Definition 4.3. (1) For any λ ∈ C∗, δ ∈ C[H0], the polynomial algebra C[H0, L0]

can be endowed with a G-module structure via the actions

(4-2)

Lm( f (H0, L0)) = λm f (H0, L0−m)(L0+mδ),

Hm( f (H0, L0)) = λm H0 f (H0, L0−m),

Im(C[H0, L0]) = Jm(C[H0, L0]) = 0 for all m ∈ Z, f (H0, L0) ∈ C[H0, L0].

We denote this module by �(λ, δ, 0, 0).

(2) For any λ ∈ C∗, η1 ∈ C, σ1(̸= 0) ∈ C[H0], the polynomial algebra C[H0, L0]

has a G-module structure with the actions

(4-3)

Lm( f (H0, L0) = λm f (H0, L0 − m)(L0 − m H0 + mη1),

Hm( f (H0, L0) = λm H0 f (H0, L0 − m),

Im( f (H0, L0) = λmσ1 f (H0 − 1, L0 − m),

Jm(C[H0, L0) = 0 for all m ∈ Z, f (H0, L0) ∈ C[H0, L0].

This module is denoted by �(λ, η1, σ1, 0).

(3) For any λ ∈ C∗, η2 ∈ C, σ2(̸= 0) ∈ C[H0], the polynomial algebra C[H0, L0]

becomes a G-module under the following actions

(4-4)

Lm( f (H0, L0) = λm f (H0, L0 − m)(L0 + m H0 + mη2),

Hm( f (H0, L0) = λm H0 f (H0, L0 − m),

Im(C[H0, L0) = 0,

Jm( f (H0, L0) = λmσ2 f (H0 + 1, L0 − m),

for all m ∈ Z, f (H0, L0) ∈ C[H0, L0].

Denote this module by �(λ, η2, 0, σ2).

Remark 4.4. (1) It is clear that �(λ, δ, 0, 0) is a G-module by (4-1), since ĨJ is
an ideal of G. By direct computations we can verify that �(λ, η1, σ1, 0) and
�(λ, η2, 0, σ2) are G-modules.

(2) These three families of G-modules in Definition 4.3, when considered as
U(h)-modules, are all free of rank 1.

In the rest of this subsection, we will show that the three families of G-modules
in Definition 4.3 exhaust all U(h)-free modules of rank 1 over G up to isomorphism.
We break the arguments into the following several lemmas.

From now on, throughout this subsection, N always denotes the U(h)-free module
of rank 1 over G. We identify N with C[H0, L0] as vector spaces. Moreover, it is
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clear that we can view N as a U(h)-free module of rank 1 over L. Therefore, by
Theorem 4.2 there exist λ ∈ C∗, δ(H0) ∈ C[H0] such that

Lm( f (H0, L0)) = λm f (H0, L0 − m)(L0 + mδ(H0)),

Hm( f (H0, L0)) = λm H0 f (H0, L0 − m) for all m ∈ Z, f (H0, L0) ∈ N .
(4-5)

Lemma 4.5. The actions of G on N are completely determined by Lm(1), Hm(1),
Im(1), Jm(1) for all m ∈ Z.

Proof. For any f (H0, L0) ∈ N , using the commutation relations of G we see that

Lm( f (H0, L0)) = f (H0, L0 − m)Lm(1),

Hm( f (H0, L0)) = f (H0, L0 − m)Hm(1),

Im( f (H0, L0)) = f (H0 − 1, L0 − m)Im(1),

Jm( f (H0, L0)) = f (H0 + 1, L0 − m)Jm(1) for all m ∈ Z.

So Lemma 4.5 is clear. □

From Lemma 4.5, we only need to determine the actions of Lm, Hm, Im, Jm on 1
for all m ∈ Z.

Lemma 4.6. Assume that there exist k, l ∈ Z such that Ik(1) = Jl(1) = 0. Then
Im(N ) = Jm(N ) = 0 for all m ∈ Z.

Proof. For any i, j ∈ Z+, we have

Ik(H i
0 L j

0) = (H0 − 1)i Ik L j
0 = (H0 − 1)i (L0 − k) j Ik(1) = 0,

Jl(H i
0 L j

0) = (H0 + 1)i Jl L
j
0 = (H0 + 1)i (L0 − l) j Jl(1) = 0.

Thus Ik(N ) = Jl(N ) = 0. Using the defining relations of G we see that Im(N ) =

Jm(N ) = 0 for all m ∈ Z. □

Lemma 4.7. Suppose that Im(1) is nonzero for any m ∈ Z. Denote I0(1) =∑q0
i=0 c0i (H0)L i

0, where q0 ∈ Z+, c0i (H0) ∈ C[H0] for i = 0, 1, . . . , q0.

(1) In (4-5), δ(H0) = αH0 + β, for some α ∈ Z≥−1, β ∈ C.

(2) degL0
(Im(1)) = α + 1 = q0 and

Im(1) = λmc0(α+1)(H0)Lα+1
0 + (lower − degree terms in L0) for all m ∈ Z.

(3) If α ≥ 0, then for any m ∈ Z∗, the coefficient of Lα
0 in Im(1) is

mλm(α + 1)c0(α+1)(H0)
(
αH0 + β −

1
2α

)
.

(4) If α ≥ 0, then α = 1.
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Proof. (1) For any n ∈ Z∗, denote

In(1) =

qn∑
i=0

cni (H0)L i
0,

where qn ∈ Z+, cni (H0) ∈ C[H0] and cnqn (H0) ̸= 0. For any m ∈ Z, we compute

(n−m)Im+n(1)

= [Lm, In](1) = Lm In(1)−In Lm(1)

=

qn∑
i=0

Lmcni (H0)L i
0−In

(
λm(L0+mδ(H0))

)
=

qn∑
i=0

cni (H0)(L0−m)i Lm(1)−
(
λm(L0−n+mδ(H0−1))

)
In(1)

=

qn∑
i=0

cni (H0)(L0−m)iλm(L0+mδ(H0))−
qn∑

i=0
λm(L0−n+mδ(H0−1))cni (H0)L i

0

= λm(L0+mδ(H0))
qn∑

i=0
cni (H0)(L0−m)i

−λm(L0−n+mδ(H0−1))
qn∑

i=0
cni (H0)L i

0.

In the last equality, the coefficients of Lqn
0 and Lqn−1

0 are respectively

(4-6) λmcnqn (H0)
(
mδ(H0) − mqn + n − mδ(H0 − 1)

)
and

(4-7) m2qnλ
mcnqn (H0)

( 1
2(qn − 1) − δ(H0)

)
+ λmcn(qn−1)(H0)

(
mδ(H0) − mδ(H0 − 1) − mqn + m + n

)
.

Taking m = n, from equality (4-6) we deduce

nλncnqn (H0)
(
δ(H0) − qn + 1 − δ(H0 − 1)

)
= 0,

which implies that δ(H0) = αH0 + β and qn = α + 1 for some α, β ∈ C. Note that
qn ∈ Z+, thus α ∈ Z≥−1, β ∈ C.

(2) From (1), we see that the equality (4-6) becomes

λmcnqn (H0)(n − m).

Thus for any m (̸= n) ∈ Z, we have degL0
(Im+n(1)) = qn = α + 1 and

(4-8) Im+n(1) = λmcnqn (H0)Lqn
0 + (lower − degree terms in L0).
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Taking m = −n, we see that q0 = qn = α + 1, c0q0(H0) = λ−ncnqn (H0). Using
equality (4-8) we see that for any m (̸= 2n) ∈ Z,

(4-9)
degL0

(Im(1)) = α + 1,

Im(1) = λmc0(α+1)(H0)Lα+1
0 + (lower − degree terms in L0),

If we substitute n′ for n in the beginning, where n′(̸= n) is nonzero, then we can
similarly deduce that (4-9) holds for any m ̸= 2n′. Therefore, the equality (4-9)
holds for any m ∈ Z.

(3) Using (1) we see that equality (4-7) reads

m2qnλ
mcnqn (H0)

(1
2(qn − 1) − δ(H0)

)
+ nλmcn(qn−1)(H0).

Taking m = n(̸= 0), we get

(4-10) cmα(H0) = cm(qm−1)(H0) = mqmcmqm (H0)
(
δ(H0) −

1
2(qm − 1)

)
.

So (3) is clear from (2) and equality (4-10).

(4) For m, n ∈ Z∗, we may denote

In(1) =

α+1∑
j=0

cnj (H0)L j
0, Im(1) =

α+1∑
l=0

cml(H0)L l
0,

where cnj (H0), cml(H0) ∈ C[H0] and cn(α+1)(H0), cm(α+1)(H0) ̸= 0. We compute

0 = [In, Im](1) = In Im(1) − Im In(1)

=

α+1∑
l=0

Incml(H0)L l
0 −

α+1∑
j=0

Imcnj (H0)L j
0

=

α+1∑
j=0

α+1∑
l=0

cnj (H0)cml(H0 − 1)L j
0(L0 − n)l

−

α+1∑
j=0

α+1∑
l=0

cnj (H0 − 1)cml(H0)(L0 − m) j L l
0.

In the last equality, the coefficients of L2α+2
0 and L2α+1

0 are respectively

(4-11) cn(α+1)(H0)cm(α+1)(H0 − 1) − cn(α+1)(H0 − 1)cm(α+1)(H0),

and

(4-12) cn(α+1)(H0)cm(α+1)(H0 − 1)(−n)(α + 1)

+ cnα(H0)cm(α+1)(H0 − 1) + cn(α+1)(H0)cmα(H0 − 1)

−
(
cn(α+1)(H0 − 1)cm(α+1)(H0)(−m)(α + 1)

+ cnα(H0 − 1)cm(α+1)(H0) + cn(α+1)(H0 − 1)cmα(H0)
)
.
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Using (2) and (3) we see that (4-11) and (4-12) read as

λm+nc0(α+1)(H0)c0(α+1)(H0 − 1) − λm+nc0(α+1)(H0 − 1)c0(α+1)(H0)

and

(n − m)(α + 1)(α − 1)λm+nc0(α+1)(H0)c0(α+1)(H0 − 1),

which implies

(n − m)(α + 1)(α − 1)λm+nc0(α+1)(H0)c0(α+1)(H0 − 1) = 0

for any m, n ∈ Z∗. Thus α = 1. This completes the proof. □

Proposition 4.8. Suppose that Im(1) is nonzero for any m ∈ Z. Then Im(1) ∈ C[H0]

for all m ∈ Z.

Proof. It is sufficient to show that α = −1 by Lemma 4.7. Now we assume that
α ≥ 0. Then α = 1 by Lemma 4.7. Denote

I0(1) = c02(H0)L2
0 + c01(H0)L0 + c00(H0),

where c02(H0), c01(H0), c00(H0) ∈ C[H0] with c02(H0) ̸= 0. Then by Lemma 4.7
we may write

I1(1) = λc02(H0)L2
0 + 2λ

(
H0 + β −

1
2

)
c02(H0)L0 + c10(H0)

for some c10(H0) ∈ C[H0]. We compute

I1(1) = [H1, I0](1) = H1 I0(1) − I0 H1(1)

= H1
(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)
− I0(λH0)

=
(
c02(H0)(L0 − 1)2

+ c01(H0)(L0 − 1) + c00(H0)
)
(λH0)

− λ(H0 − 1)
(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)

= λc02(H0)L2
0 + λ

(
−2H0c02(H0) + c01(H0)

)
L0

+ λ
(
H0c02(H0) − H0c01(H0) + c00(H0)

)
,

I1(1) = [I0, L1](1) = I0L1(1) − L1 I0(1)

= I0
(
λ(L0 + H0 + β)

)
− L1

(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)

=
(
λ(L0 + H0 − 1 + β)

)(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)

−
(
c02(H0)(L0 − 1)2

+ c01(H0)(L0 − 1) + c00(H0)
)(

λ(L0 + H0 + β)
)

= λc02(H0)L2
0 + 2λ(H0 + β −

1
2)c02(H0)L0

− λ
(
(c02(H0) − c01(H0))(H0 + β) + c00(H0)

)
.
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Then by comparing the coefficients of L0 and the constant terms, we obtain

λ(−2H0c02(H0)+c01(H0)) = 2λ
(
H0+β−

1
2

)
c02(H0),

λ
(
H0c02(H0)−H0c01(H0)+c00(H0)

)
= −λ

(
(c02(H0)−c01(H0))(H0+β)+c00(H0)

)
.

Thus we deduce

c01(H0) = (4H0 + 2β − 1)c02(H0),

c00(H0) = (2H0 + β)(2H0 + β − 1)c02(H0).
(4-13)

Finally, we consider

(4-14) 0 = [I1, I0](1) = I1 I0(1)−I0 I1(1)

=
(
c02(H0−1)(L0−1)2

+c01(H0−1)(L0−1)+c00(H0−1)
)

×
(
λc02(H0)L2

0+2λ
(
H0+β−

1
2

)
c02(H0)L0+c10(H0)

)
−

(
λc02(H0−1)L2

0+2λ
(
H0−1+β−

1
2

)
c02(H0−1)L0+c10(H0−1)

)
×

(
c02(H0)L2

0+c01(H0)L0+c00(H0)
)
.

In the equality (4-14), the coefficient of L3
0 is

(4-15) λ
(
c02(H0)c01(H0 − 1) − c02(H0 − 1)c01(H0)

)
.

Substituting (4-13) into (4-15), we get

−4λc02(H0)c02(H0 − 1) = 0,

which implies c02(H0) = 0. This is a contradiction, completing □

Proposition 4.9. Suppose that Jm(1) is nonzero for any m ∈ Z. Then Jm(1)∈ C[H0]

for all m ∈ Z.

Proof. The proof is similar to that of Lemma 4.7 and Proposition 4.8. □

Lemma 4.10. For any m ∈ Z, Im(1) = λm I0(1), Jm(1) = λm J0(1) ∈ C[H0].

Proof. For any m, n ∈ Z, using Proposition 4.8 and equality (4-5) we see that

Im+n(1) = [Hm, In](1) = Hm In(1) − In Hm(1)

= Hm(1)In(1) − In(λ
m H0) = λm H0 In(1) − λm(H0 − 1)In(1)

= λm In(1).

Taking n = 0, we get Im(1) = λm I0(1) for m ∈ Z. Similarly, we may get Jm(1) =

λm J0(1) for m ∈ Z. □

Lemma 4.11. (1) If I0(1) ̸= 0, then δ = −H0 + η′ for some η′
∈ C.

(2) If J0(1) ̸= 0, then δ = H0 + η′′ for some η′′
∈ C.
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Proof. (1) For any m, n ∈ Z, using Proposition 4.8 and equality (4-5) we compute

(n−m)Im+n(1) = [Lm, In](1) = Lm In(1)− In Lm(1)

= Lm(1)In(1)− In
(
λm(L0+mδ(H0))

)
= λm(L0+mδ(H0))In(1)−λm(L0−n)In(1)−mλmδ(H0−1)In(1)

= λm(
m(δ(H0)−δ(H0−1))+n

)
In(1),

which yields (n −m) =
(
m(δ(H0)−δ(H0 −1))+n

)
by Lemma 4.10 and I0(1) ̸= 0.

Thus δ(H0) − δ(H0 − 1) = −1, which forces δ(H0) = −H0 + η′ for some η′
∈ C.

(2) Proved similarly to (1). □

Now we state the main results of this subsection.

Theorem 4.12. Let N be a U(G)-module such that N , when considered as a U(h)-
module, is free of rank 1.

(a) There exist λ ∈ C∗, δ ∈ C[H0] such that L1(1) = λ(L0 + δ), H1(1) = λH0.

(b) If I0(1) = J0(1) = 0, then N ∼= �(λ, δ, 0, 0) as U(G)-modules.

(c) If I0(1) ̸= 0, J0(1) = 0, then δ = −H0 + η′ for some η′
∈ C, and N ∼=

�(λ, η′, σ1, 0) as U(G)-modules, where σ1 = I0(1) ∈ C[H0].

(d) If I0(1) = 0, J0(1) ̸= 0, then δ = H0 + η′′ for some η′′
∈ C, and N ∼=

�(λ, η′′, 0, σ2) as U(G)-modules, where σ2 = J0(1) ∈ C[H0].

(e) The case I0(1) ̸= 0, J0(1) ̸= 0 does not exist.

Proof. (a) follows from equality (4-5).

(b) follows from Lemmas 4.5, 4.6 and equalities (4-2), (4-5).

(c) and (d) follow from Lemmas 4.5, 4.6, 4.10, 4.11 and equalities (4-3), (4-4), (4-5).

(e) follows from Lemma 4.11. □

4B. Irreducibility of U(h)-free modules over G. In Section 4A, we determined
all U(h)-free modules of rank 1 over G. These modules have three families
�(λ, δ, 0, 0), �(λ, η1, σ1, 0) and �(λ, η2, 0, σ2) (see Definition 4.3). Here we
will give the necessary and sufficient conditions for these modules to be irreducible.
Furthermore, we find the maximal proper submodules and obtain irreducible quotient
modules when these modules are not irreducible.

Theorem 4.13. Let λ ∈ C∗, δ ∈ C[H0]. δ̄ denotes the constant term of δ.

(1) �(λ, δ, 0, 0) always has a proper G-submodule H0�(λ, δ, 0, 0). Denote the
quotient module �1(λ, δ, 0, 0) = �(λ, δ, 0, 0)/H0�(λ, δ, 0, 0).

(2) �1(λ, δ, 0, 0) is an irreducible G-module if and only if δ̄ ̸= 0.
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(3) �1(λ, δ, 0, 0) has an irreducible G-submodule L0�1(λ, δ, 0, 0) with codimen-
sion 1 when δ̄ = 0. Consequently, the quotient module

�1(λ, δ, 0, 0)/L0�1(λ, δ, 0, 0)

is irreducible.

Proof. These directly follow from the properties of L-module T (λ, δ), which were
described in Lemma 4.1. □

Theorem 4.14. Let λ ∈ C∗, η1 ∈ C, σ1(̸= 0) ∈ C[H0].

(1) �(λ, η1, σ1, 0) is an irreducible G-module if and only if σ1 ∈ C∗.

(2) If σ1 = H0 +β, where β ∈ C, then �(λ, η1, σ1, 0) has a proper G-submodule
σ1�(λ, η1, σ1, 0). Moreover, denote the quotient module

�1(λ, η1, σ1, 0) = �(λ, η1, σ1, 0)/σ1�(λ, η1, σ1, 0) = C[L0].

(i) �1(λ, η1, σ1, 0) is irreducible if and only if (η1, β) ̸= (0, 0).
(ii) �1(λ, η1, σ1, 0) has an irreducible G-submodule L0�1(λ, η1, σ1, 0) with

codimension 1 when (η1, β) = (0, 0). Consequently,

�1(λ, η1, σ1, 0)/L0�1(λ, η1, σ1, 0)

is irreducible.

(3) If deg(σ1) = n > 1, we may write

σ1 = cσ11σ12 · · · σ1n,

where σ1i = H0+βi , βi ∈C, c∈C∗, for i =1, 2, . . . , n. Then σ1i�(λ, η1, σ1, 0)

is a proper G-submodule of �(λ, η1, σ1, 0) for i = 1, 2, . . . , n. Furthermore,
denote the quotient module

�1i (λ, η1, σ1, 0) = �(λ, η1, σ1, 0)/σ1i�(λ, η1, σ1, 0).

(i) �1i (λ, η1, σ1, 0) is irreducible if and only if (η1, βi ) ̸= (0, 0).
(ii) �1i (λ, η1, σ1, 0) has an irreducible G-submodule L0�1i (λ, η1, σ1, 0) with

codimension 1 when (η1, βi ) = (0, 0). Consequently,

�1i (λ, η1, σ1, 0)/L0�1i (λ, η1, σ1, 0)

is irreducible.

Proof. (1) (⇒). Let �(λ, η1, σ1, 0) be an irreducible G-module. Assume that
degH0

(σ1) ≥ 1. It is easy to see that σ1�(λ, η1, σ1, 0) is a proper G-submodule of
�(λ, η1, σ1, 0), which contradicts that �(λ, η1, σ1, 0) is irreducible.
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(⇐). Suppose σ1 ∈C∗. For arbitrary nonzero f (H0, L0)∈�(λ, η1, σ1, 0), we write

f (H0, L0) =

q∑
j=0

a j (H0)L j
0,

where q ∈ Z+, a j (H0) ∈ C[H0], aq(H0) ̸= 0. Let ⟨ f (H0, L0)⟩ denote the G-
submodule of �(λ, η1, σ1, 0) generated by f (H0, L0).

If q > 0, we compute

H1( f (H0, L0)) − λH0 f (H0, L0)

= λH0

q∑
j=0

a j (H0)(L0 − 1) j
− λH0

q∑
j=0

a j (H0)L j
0

= −qλH0aq(H0)Lq−1
0 + (lower − degree terms in L0).

Denote

f1(H0, L0) = H1( f (H0, L0)) − λH0 f (H0, L0) ∈ ⟨ f (H0, L0)⟩

with degL0
( f1(H0, L0)) = q − 1. Therefore, without loss of generality, we may

assume that degL0
( f H0, L0) = q = 0. Then we write

f (H0, L0) =

p∑
i=0

ci H i
0,

where p ∈ Z+, ci ∈ C with cp ̸= 0.
If p = 0, then ⟨ f (H0, L0)⟩ = �(λ, η1, σ1, 0) is clear. If p > 0, we deduce that

I1( f (H0, L0)) − λσ1 f (H0, L0)

= λσ1

p∑
i=0

ci (H0 − 1)i
− λσ1

p∑
i=0

ci H i
0

= −λσ1 pcp H p−1
0 + (lower − degree terms in H0).

Thus we can get 1 ∈ ⟨ f (H0, L0)⟩, which implies ⟨ f (H0, L0)⟩ = �(λ, η1, σ1, 0).
Hence �(λ, η1, σ1, 0) is irreducible.

(2) First, it is trivial to see that σ1�(λ, η1, σ1, 0) is a proper G-submodule of
�(λ, η1, σ1, 0). From equality (4-3), we see that the actions of G on the quotient
module �1(λ, η1, σ1, 0) are

Lm( f (L0)) = λm f (L0 − m)(L0 + mβ + mη1),

Hm( f (L0)) = −λmβ f (L0 − m),

Im(�1(λ, η1, σ1, 0)) = Jm(�1(λ, η1, σ1, 0)) = 0 for all m ∈ Z.

Then (i), (ii) follow from irreducibility of L-module �(λ, β + η1, −β), which was
introduced in Section 2B.

(3) It is clear that σ1i�(λ, η1, σ1, 0) is a proper G-submodule of �(λ, η1, σ1, 0).
The remaining parts are similar to (2). □
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Theorem 4.15. Let λ ∈ C∗, η2 ∈ C, σ2(̸= 0) ∈ C[H0].

(1) �(λ, η2, 0, σ2) is an irreducible G-module if and only if σ2 ∈ C∗.

(2) If σ2 = H0 + γ , where γ ∈ C, then �(λ, η2, 0, σ2) has a proper G-submodule
σ2�(λ, η2, 0, σ2). Moreover, denote the quotient module

�2(λ, η2, 0, σ2) = �(λ, η2, 0, σ2)/σ2�(λ, η2, 0, σ2) = C[L0].

(i) �2(λ, η2, 0, σ2) is irreducible if and only if (η2, γ ) ̸= (0, 0).
(ii) �2(λ, η2, 0, σ2) has an irreducible G-submodule L0�2(λ, η2, 0, σ2) with

codimension 1 when (η2, γ ) = (0, 0). Consequently,

�2(λ, η2, 0, σ2)/L0�2(λ, η2, 0, σ2)

is irreducible.

(3) If deg(σ2) = n > 1, we may write

σ2 = c′σ21σ22 · · · σ2n,

where σ2i = H0+γi , γi ∈C, c′
∈C∗, for i =1, 2, . . . , n. Then σ2i�2(λ,η2,0,σ2)

is a proper G-submodule of �2(λ, η2, 0, σ2) for i = 1, 2, . . . , n. Furthermore,
denote �2i (λ, η2, 0, σ2) = �2(λ, η2, 0, σ2)/σ2i�2(λ, η2, 0, σ2).
(i) �2i (λ, η2, 0, σ2) is irreducible if and only if (η2, γi ) ̸= (0, 0).

(ii) �2i (λ, η2, 0, σ2) has an irreducible G-submodule L0�2i (λ, η2, 0, σ2) with
codimension 1 when (η2, γi ) = (0, 0). Consequently,

�2i (λ, η2, 0, σ2)/L0�2i (λ, η2, 0, σ2)

is irreducible.

Proof. The proof is similar to that of Theorem 4.14. □

Remark 4.16. By Theorems 3.2, 4.13, 4.14 and 4.15, we may get many new
irreducible modules over the planar Galilean conformal algebra G.

4C. Isomorphism classes of U(h)-free modules over G. In Section 4A, we showed
that three families of modules �(λ, δ, 0, 0), �(λ, η1, σ1, 0) and �(λ, η2, 0, σ2)

exhaust all U(h)-free modules of rank 1 over G. Now we determine the isomorphism
classes of these modules.

Theorem 4.17. Let λ, λ′
∈ C∗, δ, δ′

∈ C[H0], η1, η
′

1, η2, η
′

2 ∈ C, σ1, σ
′

1, σ2, σ
′

2 ∈

C[H0] \ {0}.

(1) �(λ, δ, 0, 0) ∼= �(λ′, δ′, 0, 0) if and only if λ = λ′, δ = δ′.

(2) �(λ, η1, σ1, 0) ∼= �(λ′, η′

1, σ
′

1, 0) if and only if λ = λ′, η1 = η′

1, σ1 = σ ′

1.

(3) �(λ, η2, 0, σ2) ∼= �(λ′, η′

2, 0, σ ′

2) if and only if λ = λ′, η2 = η′

2, σ2 = σ ′

2.

(4) Any two of �(λ, δ, 0, 0), �(λ, η1, σ1, 0), �(λ, η2, 0, σ2) are not isomorphic.
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Proof. (1) The “sufficiency” is trivial. We only need to show the “necessity”.
Suppose

ϕ : �(λ, δ, 0, 0) → �(λ′, δ′, 0, 0)

is a G-module isomorphism.

Claim 1. ϕ(1) ∈ C[H0].

Assume that ϕ(1) =
∑q

i=0 ai (H0)L i
0, where q > 0, ai (H0) ∈ C[H0] for 0 ≤

i ≤ q and aq(H0) ̸= 0. Since ϕ is a G-module isomorphism, we get H1(ϕ(1)) =

ϕ(H1(1)) = ϕ(λH0) = λH0(ϕ(1)). From equality (4-2) we obtain

H1(ϕ(1)) = λ′H0

q∑
i=0

ai (H0)(L0 −1)i

= λ′H0aq(H0)Lq
0 +λ′H0(−qaq(H0)+aq−1(H0))Lq−1

0

+(lower−degree terms in L0),

λH0(ϕ(1)) = λH0

q∑
i=0

ai (H0)L i
0

= λH0aq(H0)Lq
0 +λH0aq−1(H0)Lq−1

0 +(lower−degree terms in L0).

By comparing the coefficients of Lq
0 and Lq−1

0 , we deduce

λ = λ′, −λ′q H0aq(H0) = 0.

But −λ′q H0aq(H0) = 0 is impossible. So ϕ(1) ∈ C[H0]. Claim 1 is proved.
Now we may assume ϕ(1) =

∑p
j=0 c j H j

0 , where p ∈ Z+, c j ∈ C for 0 ≤ j ≤ p
and cp ̸= 0. We consider the equality

L1(ϕ(1)) = ϕ(L1(1)) = ϕ(λ(L0 + δ)) = λ(L0 + δ)(ϕ(1)).

It is clear that

L1(ϕ(1)) = λ′ϕ(1)(L0 + δ′), λ(L0 + δ)(ϕ(1)) = λϕ(1)(L0 + δ),

which imply λ = λ′, δ = δ′.

(2) The “sufficiency” is clear. We only need to show the “necessity”. Suppose that

ϕ′
: �(λ, η1, σ1, 0) → �(λ′, η′

1, σ
′

1, 0)

is a G-module isomorphism. Then ϕ′
: �(λ, η1, σ1, 0) → �(λ′, η′

1, σ
′

1, 0) is an
L-module isomorphism. From (1) and equalities (4-2), (4-3) it is not hard to see
that λ = λ′, η1 = η′

1 and ϕ′(1) ∈ C[H0].
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Set ϕ′(1) =
∑t

k=0 dk H k
0 , where t ∈ Z+, dk ∈ C for 0 ≤ k ≤ t and dt ̸= 0. Note

that ϕ′(λσ1) = ϕ′(I1(1)). We compute

ϕ′(λσ1) = λσ1ϕ
′(1) = λσ1

t∑
k=0

dk H k
0 ,

ϕ′(I1(1)) = I1(ϕ
′(1)) = λ′σ ′

1

t∑
k=0

dk(H0 − 1)k .

By comparing the coefficients of H t
0 we obtain σ1 = σ ′

1.

(3) is similar to (2).

(4) is trivial. □

Remark 4.18. We give a complete classification of U(CL0)-free modules of rank 1
and U(h)-free modules of rank 1 over G and G by Theorems 3.2, 3.3, 4.12, 4.17
and Corollary 2.3.
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