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We explore the possibility of using harmonic analysis on GL1 to understand
Langlands automorphic L-functions in general, as a vast generalization of the
PhD Thesis of J. Tate in 1950. For a split reductive group G over a number
field k, let G∨(C) be its complex dual group and ρ be an n-dimensional
complex representation of G∨(C). For any irreducible cuspidal automorphic
representation σ of G(A), where A is the ring of adeles of k, we introduce the
space Sσ,ρ(A×) of (σ, ρ)-Schwartz functions on A× and (σ, ρ)-Fourier oper-
ator Fσ,ρ,ψ that takes Sσ,ρ(A×) to Sσ̃ ,ρ(A×), where σ̃ is the contragredient
of σ . By assuming the local Langlands functoriality for the pair (G, ρ), we
show that the (σ, ρ)-theta functions 2σ,ρ(x, φ) :=

∑
α∈k× φ(αx) converge

absolutely for all φ ∈ Sσ,ρ(A×). We state conjectures on the (σ, ρ)-Poisson
summation formula on GL1, and prove them in the case where G = GLn

and ρ is the standard representation of GLn(C). This is done with the help
of results of Godement and Jacquet (1972). As an application, we provide
a spectral interpretation of the critical zeros of the standard L-functions
L(s, π ×χ) for any irreducible cuspidal automorphic representation π of
GLn(A) and idele class character χ of k, extending theorems of C. Soulé
(2001) and A. Connes (1999). Other applications are in the introduction.
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1. Introduction

Let k be a number field and A be the ring of adeles of k. It is well known that
A is a locally compact abelian group and the diagonal embedding of k into A is
a lattice, i.e., the image, which is still denoted by k, is discrete and the quotient
k\A is compact. The classical theory of harmonic analysis on the quotient k\A —
in particular, the famous 1950 Princeton thesis of J. Tate [44] — has had a great
impact on the modern development of number theory, especially on the theory of
automorphic L-functions.

In Tate’s thesis, the classical Fourier transform and the associated Poisson summa-
tion formula are responsible for the meromorphic continuation and global functional
equation of the Hecke L-function L(s, χ) attached to an automorphic character χ
of k×

\A×.
In their pioneering work in 1972, R. Godement and H. Jacquet extended the

work of Tate on L(s, χ) (and also the work of T. Tamagawa in [43]) to the standard
automorphic L-function L(s, π) attached to any irreducible cuspidal automorphic
representation π of GLn(A) [16]. In their work, the Fourier transform and the
associated Poisson summation formula for Mn(k)\Mn(A) are responsible for the
meromorphic continuation and global functional equation of L(s, π). Here Mn

denotes the space of all n×n matrices.
In 2000, A. Braverman and D. Kazhdan [6] proposed that there should exist a

generalized Fourier transform Fρ,ψ on G(A) for any reductive group G defined
over k and any finite-dimensional complex representation ρ of the L-group L G;
and if the associated Poisson summation formula could be established, then there
is a hope to prove the Langlands conjecture [29] on meromorphic continuation
and global functional equation for automorphic L-function L(s, π, ρ) attached to
the pair (π, ρ), where π is any irreducible cuspidal automorphic representation of
G(A). In [33; 34], one may find careful discussions on the spherical case of and a
helpful introduction to the proposal. In his 2020 paper [37], B. C. Ngô suggests that
such generalized Fourier transforms could be put in a framework that generalizes the
classical Hankel transform for harmonic analysis on GL1 and might be more useful
in the trace formula approach to establish the Langlands conjecture of functoriality
in general.

1A. GL1-theory. We develop GL1-theory to explore a possibility of using har-
monic analysis on GL1 to understand Langlands automorphic L-functions in general,
which would be a vast generalization of the classical work of Tate in [44] or of the
more systematical treatment by A. Weil in [48]. The development goes in two steps.
The first step is to establish it for the standard automorphic L-function L(s, π)
associated with an irreducible cuspidal automorphic representation π of GLn(A).
When n = 1 and π is an automorphic character χ , it is the theory developed in Tate’s



FOURIER OPERATORS AND POISSON FORMULAE ON GL1 303

thesis. The second step is to formulate the framework for the general automorphic
L-function L(s, π, ρ) associated with a pair (π, ρ) as introduced above.

The GL1-theory for a standard L-function L(s, π) is a reformulation and refine-
ment of the Godement–Jacquet theory [16] for L(s, π) of GLn . It is based on the
determinant morphism

(1-1) det : Mn → Ga; GLn → Gm,

where Ga(k) = k and Gm(k) = GL1(k) = k×. We write π =
⊗

ν∈|k|
πν where |k|

is the set of local places of k and πν is an irreducible admissible representation of
GLn(kν), which is of Casselman–Wallach type if kν is an Archimedean local field.
For each πν , by taking the fiber integration along det as defined in (3-6), we define
in Definition 3.3 the πν-Schwartz space Sπν (k×

ν ). It is important to understand the
structure of the space Sπν (k×

ν ) of πν-Schwartz functions on k×
ν , whose properties are

discussed intensively in Section 3. In particular, by Proposition 3.2 and Corollary 3.8,
we have that

C∞

c (k
×

ν )⊂ Sπν (k
×

ν )⊂ C∞(k×

ν ).

It is important to mention that Theorem 7.1 provides a new characterization of
C∞

c (k
×
ν ) as a subspace of Sπν (k×

ν ) by means of the fiber integration along det in
(3-6). Through diagram (3-16), we define the πν-Fourier operator (or transform)
Fπν ,ψν , where ψν is the ν-component of a fixed nontrivial character ψ of k\A.
By the local GL1-theory (Theorems 3.4 and 3.10), there exists a so-called basic
function Lπν ∈ Sπν (k×

ν ) when ν < ∞ and πν is unramified, and the πν-Fourier
operator maps the πν-Schwartz space Sπν (k×

ν ) to the π̃ν-Schwartz space Sπ̃ν (k×
ν )

with Fπν ,ψν (Lπν )= Lπ̃ν . The global π -Schwartz space Sπ (A×) is defined to be the
restricted tensor product

Sπ (A×) :=

⊗
ν∈|k|

Sπν (k
×

ν )

with respect to the basic functions Lπν for almost all finite local places, and the
global π -Fourier operator Fπ,ψ is defined by

Fπ,ψ(φ) :=

⊗
ν∈|k|

Fπν ,ψν (φν)

for any factorizable functions φ =
⊗

ν∈|k|
φν ∈ Sπ (A×). One of the main results in

the global GL1-theory is the π -Poisson summation formula on GL1.

Theorem 1.1 (π-Poisson summation formula, Theorem 4.7). Let π be an irre-
ducible cuspidal automorphic representation of GLn(A). For any φ ∈ Sπ (A×), the
π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)
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converges absolutely and locally uniformly as a function in x ∈ A×, and we have
the identity

(1-2) 2π (x, φ)=2π̃ (x−1,Fπ,ψ(φ)) for x ∈ A×.

According to the tradition in literature, the π-Poisson summation formula in
(1-2) may also be called the π -theta inversion formula. Our proof of Theorem 1.1
(Theorem 4.7) is based on the work of Godement–Jacquet in [16].

The GL1-theory for general L-functions L(s, σ, ρ) is formulated by means of
the local Langlands functorial conjecture associated with ρ, which is the major
conjecture in the local theory of the Langlands program.

For a k-split reductive group G, let G∨(C) be its complex dual group and
ρ be an n-dimensional complex representation of G∨(C). For any irreducible
cuspidal automorphic representation σ =

⊗
ν∈|k|

σν of G(A), we assume that the
local Langlands functorial transfer πν = πν(σν, ρ) exists and is an irreducible
admissible representation of GLn(kν), which is of the Casselman–Wallach type if
kν is Archimedean. We define as in (6-5) the (σν, ρ)-Schwartz space on k×

ν to be

Sσν ,ρ(k
×

ν ) := Sπν (k
×

ν ),

and at unramified local places, the (σν, ρ)-basic function Lσν ,ρ is taken to be the
πν-basic function Lπν ∈Sπν (k×

ν ). Then we can define as in (6-6) the (σ, ρ)-Schwartz
space on A× to be

Sσ,ρ(A×) :=

⊗
ν

Sσν ,ρ(k
×

ν ),

which is the restricted tensor product with respect to the basic function Lσν ,ρ at
almost all finite local places, and define, as in (6-8), the (σ, ρ)-Fourier operator (or
transform) Fσ,ρ,ψ that takes Sσ,ρ(A×) to Sσ̃ ,ρ(A×), where σ̃ is the contragredient
of σ . The first result in the global GL1-theory for L(s, σ, ρ) is the following.

Theorem 1.2. With notations as introduced above, for all φ ∈ Sσ,ρ(A×), the (σ, ρ)-
theta function

2σ,ρ(x, φ) :=

∑
α∈k×

φ(αx)(1-3)

converges absolutely and locally uniformly as a function in x ∈ A×.

It is clear that Theorem 1.2 is a special case of Theorem 6.2, which asserts the
same result as in Theorem 1.2 for much more general σ . The proof of Theorem 6.2
is deduced from the technical result (Theorem 5.4), which can be stated as follows.

Theorem 1.3 (Theorem 5.4). Let π =
⊗

ν∈|k|
πν be an irreducible admissible

representation of GLn(A) with Assumption 5.1. Then for any φ ∈ Sπ (A×) :=
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ν∈|k|

Sπν (k×
ν ), the π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

We refer to Section 5 for notation not given here. Section 5 is devoted to develop
the basic properties of such general theta functions. Then we show that for any irre-
ducible admissible automorphic representation π of GLn(A), Assumption 5.1 holds
(Proposition 5.5). As a consequence, we obtain the following general assertion.

Corollary 1.4 (Corollary 5.6). Let π be any irreducible admissible automorphic
representation of GLn(A). For any φ ∈ Sπ (A×), the π -theta function

2π (x, φ)=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

It remains to be an interesting problem to establish the π-Poisson summation
formula for such general π -theta functions as in Corollary 1.4, although Theorem 7.3
obtains the π -Poisson summation formula as in Theorem 1.1 for 2π (x, φ) when π
is any irreducible square-integrable automorphic representation of GLn(A) and φ
has restrictions at two local places (see Theorem 7.3 for details).

The following is the main statement in the global GL1-theory for L(s, σ, ρ).

Conjecture 1.5 ((σ, ρ)-Poisson summation formula). Let ρ : G∨(C)→ GLn(C)

be any finite-dimensional representation of the complex dual group G∨(C) and σ
be an irreducible cuspidal automorphic representation of G(A). Then there exist
nontrivial k×-invariant linear functionals Eσ,ρ and Eσ̃ ,ρ on Sσ,ρ(A×) and Sσ̃ ,ρ(A×),
respectively, such that the (σ, ρ)-Poisson summation formula

Eσ,ρ(φ)= Eσ̃ ,ρ(Fσ,ρ,ψ(φ))

holds for φ ∈ Sσ,ρ(A×), where Sσ,ρ(A×) and Fσ,ρ,ψ are defined in Section 6B.

It is expected that such Poisson summation formulae on GL1 should be responsi-
ble for the Langlands conjecture on the global functional equation of automorphic
L-functions associated with the pairs (σ, ρ). Variants of Conjecture 1.5 will be dis-
cussed in Section 7C and see Conjecture 7.4 for details. It is clear that Theorem 1.1
proves Conjecture 1.5 for the case when σ is an irreducible cuspidal automor-
phic representation π of G(A) = GLn(A) and ρ is the standard representation
of G∨(C) = GLn(C) (Theorem 4.7). A variant of Theorem 4.7 (Theorem 1.1) is
established in Theorem 7.3 when π is an irreducible square-integrable automorphic
representation of GLn(A), based on the characterization in Theorem 7.1 of the
subspace C∞

c (k
×
ν ) in Sπν (k×

ν ) through the fiber integration.
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It is important to mention that according to the definition of Sσ,ρ(A×) and Fσ,ρ,ψ
in (6-6) and (6-8), respectively, if the image of σ under the Langlands functorial
transfer associated with ρ (if it exists) is an irreducible cuspidal automorphic
representation π of GLn(A), then the nontrivial k×-invariant linear functionals Eσ,ρ
and Eσ̃ ,ρ in Conjecture 1.5 can be taken to be

Eσ,ρ(φ)=2σ,ρ(1, φ) and Eσ̃ ,ρ(φ)=2σ̃ ,ρ(1, φ)

for any φ ∈ Sσ,ρ(A×) (see Corollary 6.3 for details). In this case, Conjecture 1.5
follows from Theorem 1.1 (Theorem 4.7). Therefore, Conjecture 1.5 is supported
by various known cases of the global Langlands functoriality conjecture associated
with ρ : G∨(C)→ GLn(C).

From the point of view of the global Langlands functoriality conjecture, it
is important to extend Theorem 1.1 (Theorem 4.7) to more general irreducible
automorphic representations of GLn(A), which may yield new understanding of
the nature of the both nontrivial k×-invariant linear functionals Eσ,ρ and Eσ̃ ,ρ in
Conjecture 1.5. At this point, we would also like to bring the attention of the reader
to the work of L. Lafforgue [27; 28] on the relations between the global Langlands
functoriality conjecture and a certain nonlinear Poisson formula conjecture.

The ultimate goal in the global theory for L(s, σ, ρ) is to prove Conjecture 1.5
without using the global Langlands functoriality. It is expected that Conjecture 1.5
can be proved directly for a split classical group G and the standard representation ρ
of the complex dual group G∨(C), by using the doubling method of I. Piatetski-
Shapiro and S. Rallis in [14] and the recent work of L. Zhang and the authors in
[26] and of J. Getz and B. Liu in [15].

As applications of the GL1-theory for automorphic L-functions and the π -Poisson
summation formulas, we are able to provide in Theorem 8.1 a spectral interpretation
of the critical zeros of the standard L-functions L(s, π × χ) for any irreducible
cuspidal automorphic representation π of GLn(A) and idele class character χ of k.
Theorem 8.1 is a reformulation of [40, Theorem 2] in the adelic framework of
A. Connes in [11] and is an extension of [11, Theorem III.1] from the Hecke
L-functions L(s, χ) to the automorphic L-functions L(s, π ×χ). In [24], Zhaolin
Li and Dihua Jiang provide a new proof of the Voronoi summation formula for
GLn [20, Theorem 1] by means of Theorem 4.7 (Theorem 1.1), in other words, by
means of the GL1-reformulation of the Godement–Jacquet theory for the standard
L-functions of GLn . This GL1-theory also proves in [24] the (GLn, π)-version with
the Godement–Jacquet kernels of the Clozel theorem [10, Theorem 1.1], which
was proved by L. Clozel for n = 1 and with the Tate kernels. In their upcoming
work [35], Ngô and Luo use the ideas and the methods of this paper and of [25] to
treat the local theory of the Braverman–Kazhdan–Ngô proposal for the torus case.
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1B. Brief explanation of each section. In Section 2, we reformulate the local
theory of Godement–Jacquet [16] in terms of the framework of the Braverman–
Kazhdan–Ngô proposal. We take F = kν for every ν ∈ |k| and recall the local theory
of the Mellin transforms, mainly from [21, Chapter I]. In general, it could be highly
nontrivial to reformulate the known Rankin–Selberg theory for certain automorphic
L-functions in terms of the framework of the Braverman–Kazhdan–Ngô proposal
as indicated in [26]. The key point is that one has to figure out the invariant
distribution 8ν on G(kν), which controls the local theory proposed by Braverman–
Kazhdan in [6] and by Ngô in [37]. Even in the case of Godement–Jacquet, the
candidate of such an invariant distribution 8GJ,ν is expected to the experts, but
there is no written document available. We provide the details in Section 2C and
the results are given in Proposition 2.8.

In Section 3, we fully develop the local theory of harmonic analysis on GL1 for
the Langlands local L-factors L(s, π) and γ -factors γ (s, π, ψ), attached to any
irreducible admissible representations π of GLn(F). When F is non-Archimedean,
we take π to be irreducible smooth representations of GLn(F); and when F is
Archimedean, we take π to be irreducible Casselman–Wallach representations of
GLn(F) [4; 9; 41; 46]. The set of equivalence classes of all such representations of
GLn(F) is denoted by 5F (GLn).

By Theorem 2.3, via the Mellin inversion, the local Godement–Jacquet L-
functions (or L-factors) (or even general local Langlands L-functions) could be
a GL1-object, i.e., there exists a subspace of smooth functions C∞(F×), whose
Mellin transform sees the corresponding local L-functions. One of the goals in
this section is to recover such a subspace associated to a local Godement–Jacquet
L-function L(s, π) by means of the matrix coefficients of π . More precisely,
we introduce the space of π-Schwartz functions on F× for any π ∈ 5F (GLn),
which is denoted by Sπ (F×) (Definition 3.3). By Proposition 3.2, we have that
Sπ (F×) ⊂ C∞(F×). The first local result is Theorem 3.4, which establishes the
local theory of zeta integrals on GL1 for the Langlands local L-function L(s, π)
for any π ∈5F (GLn). The relevant local functional equation and the properties
of the π-Fourier operator (transform) Fπ,ψ as defined in (3-17) is established in
Theorem 3.10, the second local result.

We note that in [25], a further local theory has been developed so that the
π-Fourier operator Fπ,ψ can be expressed as a convolution operator with kernel
functions kπ,ψ for any π ∈ 5F (GLn) [25, Theorem 5.1]. In [24], such kernel
functions are proved to be the normalized Bessel functions associated with π and
a certain Weyl group element of GLn . Hence, the π-Fourier operator Fπ,ψ is a
natural generalization of the classical Hankel transform.

In Section 4, we develop the global theory of harmonic analysis on GL1 for the
standard automorphic L-functions L(s, π) associated with any irreducible cuspidal
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automorphic representation π of GLn(A). To do this, we consider any irreducible
admissible representation π =

⊗
ν∈|k|

πν of GLn(A), with πν ∈ 5kν (GLn), and
introduce, for more general π , the π-Schwartz space Sπ (A×) =

⊗
ν∈|k|

Sπν (k×
ν )

in (4-1), where the restricted tensor product with respect to the basic function
Lπν (as defined in Theorem 3.4) is taken at almost all finite local places ν. The
π-Fourier operator Fπ,ψ(φ) =

⊗
ν∈|k|

Fπν ,ψν (φν) is defined in (4-3), with φ =⊗
ν φν ∈ Sπ (A×). The main global result in this section is Theorem 4.7, which is a

restatement of Theorem 1.1 and establishes the π-Poisson summation formula on
GL1 for any irreducible cuspidal automorphic representation π of GLn(A).

To understand the Poisson summation formulae in Conjecture 1.5, it is desirable to
explore variants of Theorem 4.7 when the automorphic representation π may not be
cuspidal, from the point of view of the global Langlands functoriality. In Section 5,
we first show that for any irreducible admissible representation π of GLn(A), which
may not be automorphic, but satisfies Assumption 5.1, the π -theta functions

2π (x, φ)=

∑
γ∈k×

φ(γ x) for φ ∈ Sπ (A×)

converge absolutely and locally uniformly as functions in x ∈ A× (Theorem 5.4).
Then we show that Assumption 5.1 holds for any automorphic representation π
of GLn(A) (Proposition 5.5). With Theorem 5.4, we are ready to explore a more
general situation in order to formulate Conjecture 1.5 and its variant (Conjecture 7.4).

In Section 6, we consider any k-split reductive group G. In Section 6B, for any
finite-dimensional representation ρ of the complex dual group G∨(C), we define the
relevant Schwartz spaces Sσ,ρ(A×), called the (σ, ρ)-Schwartz space, in (6-6), and
(σ, ρ)-Fourier operators Fσ,ρ,ψ in (6-8) for any irreducible cuspidal automorphic
representation σ of G(A), under the assumption (Assumption 6.1) that the local
Langlands reciprocity map exists for G over all finite local places ν of k. We
prove in such a generality the convergence properties of the (σ, ρ)-theta function
2σ,ρ(x, φ) as defined in (1-3) for any φ ∈ Sσ,ρ(A×) and any x ∈ A× (Theorem 6.2,
which contains Theorem 1.2 as a special case).

In Section 7, after we establish a new characterization of C∞
c (k

×
ν ) as a subspace

of Sπν (k×
ν ) in Theorem 7.1 at all local places of k, we prove a variant of Theorem 4.7

when π is an irreducible square-integrable automorphic representation of GLn(A)

(Theorem 7.3). Finally we write down a variant of Conjecture 1.5 with more details
in Conjecture 7.4.

In order to understand the Poisson summation formulae in Conjectures 1.5
and 7.4, we have to explore and develop harmonic analysis on GL1 initiated by
the (σ, ρ)-Fourier operator Fσ,ρ,ψ and the (σ, ρ)-Schwartz space Sσ,ρ(A×), both
locally and globally. We refer to [24; 25] for a further discussion of the local theory,
while a further global theory remains to be developed in our future work.
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In Section 8, as an application of the GL1-harmonic analysis we developed be-
forehand, we provide a spectral interpretation of the critical zeros of the automorphic
L-functions L(s, π ×χ) (Theorem 8.1) for any irreducible cuspidal automorphic
representation π of GLn(A) and any character χ of the idele class group of k. It
can be viewed as a reformulation of [40, Theorem 2] in the adelic framework of
A. Connes in [11] and an extension of [11, Theorem III.1] from Hecke L-functions
L(s, χ) to automorphic L-functions L(s, π ×χ). The proof uses a combination of
arguments in [40], and those in [11], together with the results developed before
Section 8. Further results along the line of [11] will be written in our forthcoming
work.

2. Godement–Jacquet theory and reformulation

2A. Mellin transforms. We recall the local theory of Mellin transforms from the
book of Igusa [21, Chapter I] and state them in a slightly more general situation in
order to treat the case that meromorphic functions may have poles that are not real
numbers. Since the proofs are almost the same, we omit the details.

Let F be a local field of characteristic zero. This means that it is either the
complex field C, the real field R, or a finite extension of the p-adic field Qp for
some prime p.

When F is non-Archimedean, let oF be the ring of integers with maximal
ideal pF and fix a uniformizer ϖF of pF . Let oF/pF = κF ≃ Fq . Fix the norm
|x |F = q−ordF (x) where ordF : F → Z is the valuation on F such that ordF (ϖF )= 1.
Fix the Haar measure d+x on F so that vol(d+x, oF ) = 1. Let ψ = ψF be an
additive character of F which is trivial on oF but nontrivial on ϖ−1

F · oF . In
particular the standard Fourier transform defined via ψF is self-dual w.r.t. d+x .
Similarly, fix a multiplicative Haar measure d×x on F×, which is normalized so
that vol(d×x, o×

F )= 1. In particular d×x = (1/ζF (1)) · (d+x/|x |F ), where ζF (s) is
the local Dedekind zeta factor attached to F .

When F is Archimedean, define on F the norm

|z|F =

{
absolute value of z, F = R,

zz̄, F = C.

Take the Haar measure d+x on F that is the usual Lebesgue measure on F , and set

d×x =

{
d+x

2|x |F
, F = R,

d+x
2π |x |F

, F = C,

the multiplicative Haar measures on F×. The additive character ψ = ψF of F is
chosen as

ψF (x)=

{
exp(2π i x), F = R,

exp(2π i(x + x̄)), F = C.
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For convenience, define on F the norm

| · | =

{
| · |F , F ̸= C,

| · |
1/2
F , F = C.

We denote by X(F×) the set of all quasicharacters of F×. Define the topological
group �F to be {±1} if F = R, C×

1 if F = C, and the unit group o×

F if F is
non-Archimedean. It is clear that any χ ∈ X(F×) can be written as

(2-1) χ(x)= χu(x)= χu,ω(x)= |x |
u
F ω(ac(x)),

for any x ∈ F×, with u ∈ C and ω ∈ �∧

F , the Pontryagin dual of �F . Here
ac(x)= x/|x |F ∈ o×

F if F is non-Archimedean, and

(2-2) ac(x)=

{ x
|x |F

∈ {±1}, F = R,
x
|x |

=
x

|x |
1/2
F

∈ C×

1 , F = C.

It is clear that the unitary character ω of �F is uniquely determined by χ ∈X(F×),
in particular, we have

ω(ac(x))= ac(x)p,(2-3)

with p ∈ {0, 1} if F = R and p ∈ Z if F = C. Hence, we may sometimes write
χ = (u, ω) and ω(x)= ω(ac(x)) for x ∈ F×.

For any local field F of characteristic zero, following [21, Sections I.4 and I.5],
we define the following two spaces of functions associated to the local field F .

Definition 2.1. Let F(F×) be the space of complex-valued functions f such that:

(1) f ∈ C∞(F×), the space of all smooth functions on F×.

(2) When F is non-Archimedean, f(x) = 0 for |x |F sufficiently large. When
F is Archimedean, we define f(n) := dnf/dxn if F = R, and f(n) = f(a+b)

:=

∂a+bf/(∂ax∂b x̄) if F = C and n = a + b. Then we have

f(n)(x)= o(|x |
ρ
F )

as |x |F → ∞ for any ρ and any n = a + b ∈ Z≥0 with a, b ∈ Z≥0.

(3) When F is Archimedean, there exists

• a sequence {mk}
∞

k=0 of positive integers,

• a sequence of smooth functions {ak,m} on {±1} if F = R and on C×

1 if F = C,
parameterized by m = 1, 2, . . . ,mk and k ∈ Z≥0,

• a sequence {λk}
∞

k=0 of complex numbers with {Re(λk)}
∞

k=0 a strictly increasing
sequence of real numbers with no finite accumulation point and Re(λ0)≥λ∈ R,
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such that

lim
|x |F →0

{
f(x)−

∞∑
k=0

mk∑
m=1

ak,m(ac(x))|x |
λk
F (ln |x |F )

m−1
}

= 0.

The limit is termwise differentiable and uniform (even after termwise differentiation)
in ac(x).

When F is non-Archimedean, one can take the sequence {λk} to be a finite
set 3 and the sequence {mk} to be a finite subset of Z≥0. The smooth functions
{ak,m(ac(x))} are on the unit group o×

F .

Since the topological group � is compact and abelian, we have the following
Fourier expansion for the smooth functions {ak,m(ac(x))} on �:

ak,m(ac(x))=

∑
ω∈�∧

ak,m,ωω(ac(x)).

In the Archimedean case, we may write ak,m,ω = ak,m,p with p ∈ {0, 1} if F = R

and p ∈ Z if F = C.

Definition 2.2. With the same notation as in Definition 2.1, let Z(X(F×)) be the
space of complex-valued functions z(χs,ω)= z

(
| · |

s
F ω(ac( · ))

)
on X(F×) such that:

(1) z(χs,ω) is meromorphic on X(F×) with poles at most for s = −λ j with λ j

belonging to the given set {λk}
∞

k=0 if F is Archimedean; and belonging to the given
finite set 3 if F is non-Archimedean.

(2) For any k ≥ 0, the difference

z(χs,ω)−

mk∑
m=1

bk,m,ω

(s + λk)m

is holomorphic for s in a small neighborhood of −λk if F is Archimedean; and is a
polynomial in C[qs, q−s

] if F is non-Archimedean.

(3) When F is non-Archimedean, the function z(χs,ω) is identically zero for almost
all characters ω ∈�∧ with �= o×

F . When F is Archimedean, for every polynomial
P(s, p) in s, p with coefficients in C, and every pair of real numbers a < b, the
function P(s, p)z(χs,ω) is bounded when s belongs to the vertical strip

Sa,b = {s ∈ C | a ≤ Re(s)≤ b},(2-4)

with neighborhoods of −λ0,−λ1, . . . removed therefrom. More precisely, there
exists a constant c depending only on P , z, a, b, but neither on s nor on p, such that

|P(s, p)z(χs,ω)| ≤ c
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when s runs in the vertical strip Sa,b with small neighborhoods of −λ0,−λ1, . . .

removed.

The main results on the local theory of Mellin transforms established in [21,
Chapter I] are as follows.

Theorem 2.3 (Mellin transforms). There is a bijective linear correspondence M =

MF between the space F(F×) and the space Z(X(F×)). More precisely, for
f ∈ F(F×),

M(f)(χs,ω)=

∫
F×

f(x)χs,ω(x) d×x

defines a holomorphic function on

X−σ0(F
×)= {χs,ω( · )= | · |

s
Fω(ac( · )) ∈ X(F×) | Re(s) >−σ0}

for some σ0 ∈ R, which has a meromorphic continuation to all characters χs,ω ∈

X(F×) and belongs to Z(X(F×)) after meromorphic continuation. Conversely, for
z ∈ Z(X(F×)) and x ∈ F×, the Mellin inverse transform M−1

F (z)(x) belongs to the
space F(F×). We have the identities

M(M−1(z))= z and M−1(M(f))= f

for any f∈F(F×) and z∈Z(X(F×)). Here the Mellin inverse transform is explicitly
given as follows.

When F is Archimedean, the Mellin inverse transform M−1
F (z)(x) is given by

(2-5) M−1(z)(x) :=

∑
ω∈�∧

F

1
2π i

∫ σ+i∞

σ−i∞
z(χs,ω)χs,ω(x)−1 ds

with ω(ac(x))= ac(x)p, which defines a function f in F(F×) independent of σ >
−σ0, and the coefficients ak,m,p and bk,m,p satisfy the relations

bk,m,p = (−1)m−1(m − 1)! · ak,m,−p

for every k ≥ 0,m ≥ 1 with p ∈ {0, 1} if F = R and p ∈ Z if F = C. The coefficients
ak,m,p and bk,m,p satisfy the relations

bλ,m,ω =

mλ∑
j=m

e j,m(− ln q) j−1aλ, j,ω−1

with e j,m defined by the following identity of polynomials in a formal unknown t :

tn−1
=

n∑
ℓ=1

en,ℓ

( t+ℓ−1
ℓ−1

)
.
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If F is non-Archimedean, the Mellin inverse transform M−1
F (z)(x) is given by

(2-6) M−1
F (z)(x) :=

∑
ω∈�∧

(
Resz=0(z(χs,ω)|x |

−s
F qs)

)
ω(ac(x))−1,

which defines a function f in F(F×). Here z = q−s for abbreviation.

2B. Local theory of Godement–Jacquet. Let Gn := GLn be the general linear
group defined over F . Fix the following maximal (open if F is non-Archimedean)
compact subgroup K of Gn(F)= GLn(F):

K =


GLn(oF ), F is non-Archimedean,
O(n), F = R,

U (n), F = C.

(2-7)

Fix the Haar measure dg = d+g/|det g|
n
F on Gn(F) where d+g is the measure

induced from the standard additive measure on Mn(F), the F-vector space of
n×n-matrices. In particular, Gn(F) embeds into Mn(F) in a standard way.

Let 5F (Gn) be the set of equivalence classes of irreducible smooth representa-
tions of Gn(F)when F is non-Archimedean; and of irreducible Casselman–Wallach
representations of Gn(F) when F is Archimedean. Let C(π) be the space of smooth
matrix coefficients attached to π .

Let S(Mn(F)) be the space of the standard Schwartz–Bruhat functions on Mn(F).
The standard Fourier transform Fψ acting on S(Mn(F)) is defined as

(2-8) Fψ( f )(x)=

∫
Mn(F)

ψ(tr(xy)) f (y) d+y,

where ψ is a nontrivial additive character of F . The standard Fourier transform Fψ
extends to a unitary operator on the space L2(M(F), d+x) and satisfies the identity

(2-9) Fψ ◦Fψ−1 = Id.

For any π ∈5F (Gn) and any quasicharacter χ ∈ X(F×), the local zeta integral
of Godement and Jacquet is defined by

(2-10) Z(s, f, ϕπ , χ)=

∫
Gn(F)

f (g)ϕπ (g)χ(det g)|det g|
s+(n−1)/2
F dg,

for any f ∈ S(Mn(F)) and ϕπ ∈ C(π). The following theorem contains the main
results in the local theory of the Godement and Jacquet zeta integrals [16, Chapter I].

Theorem 2.4. With the notation introduced above, the following statements hold
for any f ∈ S(Mn(F)) and ϕπ ∈ C(π):
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(1) The zeta integral Z(s, f, ϕπ , χ) defined in (2-10) is absolutely convergent for
Re(s) sufficiently large and admits a meromorphic continuation to s ∈ C.

(2) Z(s, f, ϕπ , χ) is a holomorphic multiple of the Langlands local L-function
L(s, π ×χ) associated to (π, χ) and the standard embedding

std : GLn(C)× GL1(C)→ GLn(C).

When F is non-Archimedean, the fractional ideal Iπ,χ that is generated by the local
zeta integrals Z(s, f, ϕπ , χ) is of the form

Iπ,χ = {Z(s, f, ϕπ , χ) | f ∈ S(Mn(F)), ϕπ ∈ C(π)} = L(s, π ×χ) · C[qs, q−s
];

and when F is Archimedean, the local zeta integrals Z(s, f, ϕπ , χ), with unitary
characters χ , have the following property. Let Sa,b be the vertical strip for any a<b,
defined in (2-4). If Pχ (s) is a polynomial in s such that the product Pχ (s)L(s, π×χ)

is bounded in the vertical strip Sa,b, then the product Pχ (s)Z(s, f, ϕπ , χ) must be
bounded in the same vertical strip Sa,b.

(3) The local functional equation

Z(1 − s,Fψ( f ), ϕ∨

π , χ
−1)= γ (s, π ×χ,ψ) ·Z(s, f, ϕπ , χ)

holds after meromorphic continuation, where the function ϕ∨
π (g) is defined as

ϕπ (g−1) ∈ C(π̃), and γ (s, π × χ,ψ) is the Langlands local gamma function
associated to (π, χ) and std.

(4) When F is non-Archimedean and π is unramified, take f ◦(g) = 1Mn(oF )(g)
to be the characteristic function of Mn(oF ) and ϕ◦

π (g) to be the zonal spherical
function associated to π . Then the identity

Z(s, f ◦, ϕ◦

π , χ)= L(s, π ×χ)

holds for any unramified characters χ and all s ∈ C as meromorphic functions in s.

For the statements of the current version of Theorem 2.4, we have some comments
in order. When F is non-Archimedean, the theorem is [16, Theorem 3.3]. When F
is Archimedean, the statements were established in [16] only for K -finite vectors f
in S(Mn(F)) and ϕπ in C(π), and were extended to general smooth vectors in [23,
Section 4.7] and also in [32, Theorem 3.10]. About the boundedness on vertical
strips, we refer to [23, Section 4].

2C. Reformulation of Godement–Jacquet theory. The local theory of Godement–
Jacquet zeta integrals can be reformulated within harmonic analysis and L2-theory.

For f ∈ S(Mn(F)), we define

(2-11) ξ f (g) := |det g|
n/2
F · f (g)
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for g ∈ Gn(F). Then we define the Schwartz space on Gn(F) to be

(2-12) Sstd(Gn(F)) := {ξ ∈ C∞(Gn(F)) | |det g|
−n/2

· ξ(g) ∈ S(Mn(F))}.

Proposition 2.5. The Schwartz space Sstd(Gn(F)) is a subspace of L2(Gn(F), dg),
which is the space of square-integrable functions on Gn(F).

Proof. For ξ ∈ Sstd(Gn(F)), write ξ(g)= |det g|
n/2
F · f (g) for some f ∈ S(Mn(F)).

We deduce the square-integrability of ξ by the computation∫
Gn(F)

ξ(g)ξ(g) dg =

∫
Gn(F)

f (g) f (g) d+g =

∫
Mn(F)

f (g) f (g) d+g <∞. □

Define the distribution kernel in the local theory of Godement–Jacquet to be

(2-13) 8GJ(g) := ψ(tr g) · |det g|
n/2
F ,

where ψ is a nontrivial additive character of F . We compute the convolution
8GJ ∗ ξ∨ for any ξ ∈ Sstd(Gn(F)) with ξ(g)= |det g|

n/2
F · f (g) for some f ∈

S(Mn(F)):

8GJ ∗ ξ∨(g)=

∫
Gn(F)

8GJ(h)ξ(g−1h) dh

=

∫
Gn(F)

ψ(tr h) · |det h|
n/2
F · |det g−1h|

n/2
F · f (g−1h) dh

=

∫
Gn(F)

f (h)ψ(tr gh) · |det gh|
n/2
F · |det h|

n/2
F dh

= |det g|
n/2
F

∫
Mn(F)

f (h)ψ(tr gh) d+h

= |det g|
n/2
F ·Fψ( f )(g).

Since Fψ( f )(g) belongs to S(Mn(F)), by definition, we must have that8GJ ∗ ξ∨(g)
belongs to Sstd(Gn(F)). We define the Fourier operator FGJ in the Godement–
Jacquet theory to be

(2-14) FGJ(ξ)(g) := (8GJ ∗ ξ∨)(g)

for any ξ ∈ Sstd(Gn(F)).

Proposition 2.6. For any ξ ∈ Sstd(Gn(F)) with ξ(g) = |det g|
n/2
F · f (g) for some

f ∈ S(Mn(F)), the Fourier operator FGJ on Sstd(Gn(F)) and the classical Fourier
transform Fψ on S(Mn(F)) are related by the identity

FGJ(ξ)(g)= (8GJ ∗ ξ∨)(g)= |det g|
n/2
F ·Fψ( f )(g)= |det g|

n/2
F ·Fψ

(
|det( · )|−n/2ξ

)
(g).
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For any ξ ∈ Sstd(Gn(F)) with ξ(g)= |det g|
n/2
F · f (g) for some f ∈ S(Mn(F)),

the zeta integral can be renormalized as

(2-15) Z(s, f, ϕπ , χ)=

∫
Gn(F)

|det g|
n/2
F f (g)ϕπ (g)χ(det g)|det g|

s−1/2
F dg

= Z(s, ξ, ϕπ , χ).

We compute the other side of the functional equation of the Godement–Jacquet zeta
integrals:

Z(1 − s,Fψ( f ),ϕ∨

π ,χ
−1)=

∫
Gn(F)

|det g|
n/2
F Fψ( f )(g)ϕ∨

π (g)χ
−1(g)|det g|

1/2−s
F dg

=

∫
Gn(F)

FGJ(ξ)(g)ϕ∨

π (g)χ
−1(g)|det g|

1/2−s
F dg

= Z(1 − s,FGJ(ξ),ϕ
∨

π ,χ
−1).

Proposition 2.7. For any ξ ∈ Sstd(Gn(F)), ϕπ ∈ C(π), and χ ∈ X(F×), the zeta
integral defined by

Z(s, ξ, ϕπ , χ)=

∫
Gn(F)

ξ(g)ϕπ (g)χ(det g)|det g|
s−1/2
F dg

satisfies the functional equation

Z(1 − s,FGJ(ξ), ϕ
∨

π , χ
−1)= γ (s, π ×χ,ψ) ·Z(s, ξ, ϕπ , χ),

which holds as meromorphic functions in s.

We are going to understand the Godement–Jacquet distribution 8GJ in terms of
the Bernstein center of Gn(F), when F is non-Archimedean. Recall from [3] that
the Bernstein center Z(G(F)) of a reductive group G(F) over a non-Archimedean
local field F is defined to be the endomorphism ring of the identity functor on the
category of smooth representations of G(F). It turns out that the Bernstein center
Z(G(F)) can be identified with the space of invariant and essentially compactly
supported distributions on G(F), where an invariant distribution 8 on G(F) is
called essentially compactly supported if 8 ∗ C∞

c (G(F)) ⊂ C∞
c (G(F)). It was

proved in [3] that through the Plancherel transform, the Bernstein center Z(G(F))
can also be identified with the space of regular functions on the Bernstein variety
�(G(F)) attached to G(F), where �(G(F)) is an infinite disjoint union of finite-
dimensional complex algebraic varieties.

Proposition 2.8. Let F be a non-Archimedean local field of characteristic zero. For
any m ∈ Z, define

Gn(F)m = {g ∈ Gn(F) | |det g|F = q−m
F }.

Let 1m := 1Gn(F)m be the characteristic function of Gn(F)m ⊂ Gn(F). Then the
following statements hold:
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(1) The invariant distribution

8GJ,m(g) :=8GJ(g)1Gn(F)m (g)=8GJ(g)1m(g)(2-16)

lies in the Bernstein center Z(Gn(F)) of Gn(F).

(2) Let fGJ,m be the regular function on �(Gn(F)) attached to 8GJ,m ∈ Z(Gn(F)).
For every π ∈5F (Gn), χ ∈ X(F×), and s ∈ C, define

πχs := π ⊗χs = π ⊗χ(det)|det|sF .

Then the Laurent series

fGJ(πχs )=

∑
m∈Z

fGJ,m(πχs )

is convergent for Re(s) sufficiently large, with a meromorphic continuation to s ∈ C,
and

fGJ(πχs )= γ
( 1

2 , π̃χs , ψ
)
= γ

( 1
2 − s, π̃ ×χ−1, ψ

)
.

Proof. For part (1), we have to show that the invariant distribution 8GJ,m(g) is
essentially compact on Gn(F). By a simple reduction, it suffices to show that, for
any open compact subgroup K of Gn(oF ), we have

8GJ,m ∗ 1K ∈ C∞

c (Gn(F)).

Since 1K(g)= 1K(g−1)= 1∨
K(g), the convolution 8GJ,m ∗ 1K =8GJ,m ∗ 1∨

K can be
written as

8GJ,m ∗ 1∨

K(g)=

∫
Gn(F)

8GJ,m(h)1K(g−1h) dh

=

∫
Gn(F)

8GJ,m(gh)1K(h) dh

=

∫
Gn(F)

ψ(tr gh)|det gh|
n/21m(gh)1K(h) dh.

By definition, 1K(h) ̸= 0 if and only if |det h|F = 1, and 1m(gh) ̸= 0 if and only
if |det g|F = q−m

F , i.e., g ∈ Gn(F)m . This implies that 1m(gh)= 1m(g). The last
integral can be written as

q−(mn)/2
F 1m(g)

∫
Gn(F)

ψ(tr(gh))1K(h) dh,

which can be written as

q−(mn)/2
F 1m(g)

∫
Mn(F)

ψ(tr(gh))1K(h) d+h = q−(mn)/2
F 1m(g)Fψ(1K)(g).
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Hence, we obtain that

8GJ,m ∗ 1K(g)= |det g|
n/2
F 1m(g)Fψ(1K)(g).

Since Fψ(1K)(g) ∈ S(Mn(F)) and |det g|
n/2
F 1m(g) is smooth on Mn(F), we ob-

tain that the convolution 8m,ψ ∗ 1K(g) belongs to C∞
c (Gn(F)) and the invariant

distribution 8GJ,m(g) is essentially compact on Gn(F).
For part (2), recall from [3] that the regular function fGJ,m attached to 8GJ,m is

defined as follows. For any π ∈5F (Gn) and v ∈ π , there exists an open compact
subgroup K of Gn(F), such that v ∈ πK, the subspace of K-fixed vectors in π . We
may define an action of 8GJ,m on π via

(2-17) π(8GJ,m)(v) := π(8GJ,m ∗ cK)(v),

where cK := vol(K)−11K is the normalized characteristic function of K. Since
8GJ,m ∗ cK lies in C∞

c (Gn(F)), the right-hand side is well defined, and so is the
left-hand side. It is clear that the action defined in (2-17) does not depend on the
choice of such an open compact subgroup K. By Schur’s lemma, there exists a
constant fGJ,m(π), depending on π , such that

(2-18) π(8GJ,m)= fGJ,m(π) · Idπ .

For each m ∈ Z, we define, for any ξ ∈ C∞
c (Gn(F)),

(2-19) FGJ,m(ξ)(g) := (8GJ,m ∗ ξ∨)(g)=

∫
Gn(F)

8GJ,m(h)ξ(g−1h) dh.

In order to include the quasicharacters χ ∈ X(F×) in the gamma function, we
write

(2-20) ϕπ [χ ](g) := ϕπ [χ ](g) := ϕπ (g)χ(det g)= (χ(g)π(g)v, ṽ),

with v ∈ Vπ and ṽ ∈ Vπ̃ , which is a matrix coefficient of π twisted by χ . We may
denote the space of such twisted matrix coefficients of π by C(π [χ ]). It is clear
that we have

Z(s, ξ, ϕπ [χ ])= Z(s, ξ, ϕπ , χ).

For each m ∈ Z, ϕπ [χ ] ∈ C(π [χ ]), and χ ∈ X(F×), consider the zeta function of
Godement–Jacquet, with FGJ,m(ξ) defined as in (2-19),

Z(1 − s,FGJ,m(ξ), ϕ
∨

π [χ ]
)= Z(1 − s,8GJ,m ∗ ξ∨, ϕ∨

π [χ ]
).(2-21)

By part (1) as proved above, we obtain that 8GJ,m ∗ ξ∨
∈ C∞

c (Gn(F)) for any
ξ ∈ C∞

c (Gn(F)). Hence, the integral in (2-21) is absolutely convergent for any
s ∈ C when ξ ∈ C∞

c (Gn(F)).
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We write the right-hand side of (2-21) as

(2-22)
∫

Gn(F)
8GJ,m ∗ ξ∨(g)ϕπ (g−1)χ−1(det g)|det g|

1/2−s
F dg,

which is equal to

(2-23)
∫

Gn(F)
8GJ,m ∗ ξ∨(g)(v, π̃(g)ṽ)χs−1/2(det g)−1 dg

=

(
v,

∫
Gn(F)

8GJ,m ∗ ξ∨(g)π̃χs−1/2(g)ṽ dg
)
.

It is clear that∫
Gn(F)

8GJ,m ∗ ξ∨(g)π̃χs−1/2(g)ṽ dg = π̃χs−1/2(8GJ,m ∗ ξ∨)ṽ

= π̃χs−1/2(8GJ,m)(π̃χs−1/2(ξ
∨)ṽ).

Since ξ∨ belongs to C∞
c (Gn(F)), the vector π̃χs−1/2(ξ

∨)ṽ belongs to the space of
π̃χs−1/2 . By definition, we have

(2-24) π̃χs−1/2(8GJ,m)= fGJ,m(π̃χs−1/2) · Iπ̃χs−1/2
.

Hence, we can write the right-hand side of (2-23) as(
v,

∫
Gn(F)

8GJ,m ∗ ξ∨(g)π̃χs−1/2(g)ṽ dg
)

= fGJ,m(π̃χs−1/2) · (v, π̃χs−1/2(ξ
∨)ṽ).

Next we compute the twisted coefficient (v, π̃χs−1/2(ξ
∨)ṽ) on the right-hand side

of the above equation as

(v, π̃χs−1/2(ξ
∨)ṽ)

=

∫
Gn(F)

ξ∨(h)(v, π̃χs−1/2(h)ṽ) dh =

∫
Gn(F)

ξ(h−1)(πχs−1/2(h
−1)v, ṽ) dh

=

∫
Gn(F)

ξ(h)(πχs−1/2(h)v, ṽ) dh =

∫
Gn(F)

ξ(h)ϕπ [χ ](h)|det h|
s−1/2 dh

= Z(s, ξ, ϕπ [χ ]).

Hence, we obtain the functional equation

Z(1 − s,FGJ,m(ξ), ϕ
∨

π [χ ]
)= fGJ,m(π̃χs−1/2) ·Z(s, ξ, ϕπ [χ ])(2-25)

for any ξ ∈ C∞
c (Gn(F)), ϕπ ∈ C(π) and χ ∈ X(F×).

Theorem 2.4 implies that, when Re(s) is sufficiently small, the zeta integral
Z(1 − s,FGJ(ξ), ϕ

∨

π [χ ]
) converges absolutely for any ξ ∈ C∞

c (Gn(F)), any ϕπ ∈
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C(π) and any unitary character χ ∈ X(F×). We write it as

Z(1 − s,FGJ(ξ), ϕ
∨

π [χ ]
)

=

∑
m∈Z

Z(1 − s,FGJ,m(ξ), ϕ
∨

π [χ ]
)= Z(s, ξ, ϕπ [χ ]) ·

∑
m∈Z

fGJ,m(π̃χs−1/2).

By comparing with the right-hand side of the functional equation in Theorem 2.4,
we obtain that, whenever Re(s) is sufficiently small,

fGJ(π̃χs−1/2)=

∑
m∈Z

fGJ,m(π̃χs−1/2)= γ (s, π ⊗χ,ψ)= γ (s, πχ , ψ).(2-26)

By changing s → s +
1
2 , we get

fGJ(π̃χs )= γ
(
s +

1
2 , πχ , ψ

)
= γ

( 1
2 , πχs , ψ

)
.

By taking the contragredient of πχs , we obtain that

fGJ(πχs )= γ
( 1

2 , π̃χs , ψ
)
= γ

( 1
2 − s, π̃ ×χ−1, ψ

)
.

This finishes the proof of part (2). □

3. π -Schwartz functions and Fourier operators

3A. Two spaces associated to π . For any π ∈ 5F (Gn), we are going to define
two spaces associated to π : Lπ (X(F×)) and Sπ (F×).

The space Lπ = Lπ (X(F×)) consists of C-valued meromorphic functions z(χ)
on X(F×) that satisfy the following conditions:

(1) z(χs,ω) is a holomorphic multiple of the standard local L-function L(s, π×ω)

with χs,ω(x)= |x |
s
Fω(ac(x)).

(2) If F is non-Archimedean, z(χs,ω) is nonzero for finitely many ω ∈ �∧, and
for each ω ∈�∧, z(χs,ω) ∈ L(s, π ×ω) · C[qs, q−s

].

(3) If F is Archimedean, for any polynomial P(χs,ω) = Pω(s), if the function
P(χs,ω)L(s, π ×ω) is holomorphic in any vertical strip Sa,b as in (2-4), with
small neighborhoods at the possible poles of the L-function L(s, π × ω)

removed, then for any z(χs,ω) ∈ Lπ , the product P(χs,ω)z(χs,ω) is bounded
in the same strip Sa,b, with small neighborhoods at the possible poles of the
L-function L(s, π ×ω) removed.

From part (3), we define a seminorm to be

µa,b:P(z) := sup
a≤Re(s)≤b

|P(χs,ω) · z(χs,ω)|.

Then the space Lπ is complete under the topology that is defined by the family of
seminorms µa,b:P for all possible choice of data a, b; P as in part (3) [23, Section 4].
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Proposition 3.1. For any π ∈5F (Gn), the space Lπ is a subspace of Z(X(F×))

as defined in Definition 2.2.

Proof. When F is non-Archimedean, the statement is a consequence of Theorem 2.4.
We would like to focus on the case when F is Archimedean. In this case, it suffices
to estimate the boundedness condition. To do so, recall the classical Stirling formula
(see [23, p. 81], for instance)

(3-1) 0(x + iy)∼ (2π)1/2|y|
x−1/2e−(π/2)|y|

for x fixed and |y| → ∞.
Consider the Archimedean local L-functions L(s, π ×ω)= L(s, π × ac( · )p),

which can be explicitly expressed in terms of classical 0-functions with the local
Langlands parameter of π . For instance, from [16, Section 8], there exists a finite
family of pairs {(li , ui )}

t
i=1 with

ui ∈ C, li ∈

{
Z/2Z ≃ {0, 1}, F = R,

Z, F = C,

such that in the fixed bounded vertical strip

Sa,b = {s ∈ C | a ≤ Re(s)≤ b},

up to a bounded factor in Sa,b, we have

L(s, π × ac( · )p)∼

{∏t
i=1 0

( s+ui +li +p
2

)
, F = R,∏t

i=1 0
(
s + ui +

|li +p|

2

)
, F = C,

with p ∈ Z/2Z ≃ {0, 1} if F = R; and p ∈ Z if F = C. Here li + p is understood
to be zero if both li and p are equal to 1 when F = R.

It follows from the classical Stirling formula in (3-1), in particular the exponential
decay of0(x+iy) along the imaginary axis, for any polynomial Pω(s)= P(s)∈C[s]
when F = R, and Pω(s)= P(s, p) ∈ C[s, p], the product P(s, p)L(s, π×ac( · )p)

is bounded in vertical strip Sa,b with small neighborhoods at the possible poles
removed. Hence, from the definition of the space Lπ (X(F×)), for any z(χs,ω) ∈

Lπ (X(F×)), the product P(s, p)z(χ), with χ(x)= |x |
s
F ac(x)p is bounded in ver-

tical strip Sa,b with small neighborhoods at the possible poles of the L-function
L(s, π × ac( · )p) removed. Therefore, we obtain that the space Lπ = Lπ (X(F×))

is contained in the space Z(X(F×)), as defined in Definition 2.2. □

For any π ∈5F (Gn), we define (Definition 3.3) the π -Schwartz space Sπ (F×)⊂

C∞(F×) attached to π , by using the theory of local zeta integrals of Godement–
Jacquet, and prove that

(3-2) Sπ (F×)= M−1(Lπ )⊂ C∞(F×)

by Theorems 2.3 and 2.4.
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Consider the determinant map

(3-3) det = detF : Gn(F)= GLn(F)→ F×.

It is clear that the kernel ker(det) equals SLn(F). For each x ∈ F×, the fiber of the
determinant map det is

(3-4) Gn(F)x := {g ∈ Gn(F) | det g = x}.

It is clear that each fiber Gn(F)x is an SLn(F)-torsor. Hence, one has the SLn(F)-
invariant measure dx g that is induced from the (normalized) Haar measure d1g on
SLn(F).

For ξ ∈ Sstd(Gn(F)) as defined in (2-12), ϕπ ∈ C(π), and χ ∈ X(F×), the local
zeta integral of Godement and Jacquet, as normalized in (2-15), can be written as

(3-5) Z(s, ξ, ϕπ , χ)=

∫
F×

( ∫
Gn(F)x

ξ(g)ϕπ (g) dx g
)
χ(x)|x |

s−1/2
F d×x .

By part (1) of Theorem 2.4, the local zeta integral converges absolutely for Re(s)
large. Hence, the inner integral of (3-5) satisfies

(3-6) φξ,ϕπ (x) :=

∫
Gn(F)x

ξ(g)ϕπ (g) dx g = |x |
n/2
F

∫
Gn(F)x

f (g)ϕπ (g) dx g,

if ξ(g) = |det g|
n/2

· f (g) for some f ∈ S(Mn(F)), is absolutely convergent for
almost all x ∈ F× and defines the fiber integration along the fibration in (3-3).

Proposition 3.2. For ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π), the fiber integration in (3-6)
that defines the function φξ,ϕπ (x) is absolutely convergent for all x ∈ F×, and the
function φξ,ϕπ (x) is smooth over F×.

Proof. It is enough to show the proposition for the integral

(3-7)
∫

Gn(F)x
f (g)ϕπ (g) dx g

with any f ∈S(Mn(F)) and ϕπ ∈ C(π). In this case, the product f ·ϕπ is smooth on
Gn(F). Since the fiber Gn(F)x for any x ∈ F× is closed in Gn(F) and in Mn(F),
the restriction of f to the fiber Gn(F)x is a Schwartz function on Gn(F)x (see [5]
for F non-Archimedean and [1, Theorem 4.6.1] for F Archimedean).

When F is non-Archimedean, any ϕπ (g) ∈ C(π) is locally constant (smooth) on
Gn(F), and hence is smooth on the fiber Gn(F)x . This implies that the restriction
of f ·ϕπ is locally constant and compactly supported on the fiber Gn(F)x . Hence,
the integral in (3-7) is absolutely convergent for all x ∈ F×, and defines a smooth
function in x over F×.

When F is Archimedean, since π is a Casselman–Wallach representation of
Gn(F), the matrix coefficient ϕπ has at most polynomial growth on Gn(F) [45,
Theorem 4.3.5], as well as on the fiber Gn(F)x . This implies that the restriction of
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f ·ϕπ is a Schwartz function on the fiber Gn(F)x ([1, Definition 4.1.1]). Thus the
integral in (3-7) is absolutely convergent for all x ∈ F×. Now we write the integral
in (3-7) as

(3-8)
∫

Gn(F)x
f (g)ϕπ (g) dx g =

∫
SLn(F)

f (t1(x)g)ϕπ (t1(x)g) d1g,

where t1(x)= diag(x, 1, . . . , 1) ∈ Gn(F) and d1g is the Haar measure of SLn(F).
It is clear that the absolute convergence of the integral in (3-8) is uniform when x
runs in any compact subset of F×. Hence, the integral in (3-7) defines a smooth
function in x over F×. □

For ξ ∈Sstd(Gn(F)) and ϕπ ∈C(π), the function φξ,ϕπ (x) given in Proposition 3.2
via the fiber integration (3-6) is called a π -Schwartz function on F× associated to
the pair (ξ, ϕπ ). Here is the definition of π -Schwartz space.

Definition 3.3 (π -Schwartz space). For any π ∈5F (Gn), the space of π -Schwartz
functions is defined by

Sπ (F×)= Span{φξ,ϕπ ∈ C∞(F×) | ξ ∈ Sstd(Gn(F)), ϕπ ∈ C(π)},

where the π -Schwartz function φξ,ϕπ associated to a pair (ξ, ϕπ ) is defined in (3-6).

For any φ ∈ Sπ (F×) and a quasicharacter χ ∈X(F×), define a GL1 zeta integral
Z(s, φ, χ) associated to the pair (φ, χ) to be

(3-9) Z(s, φ, χ)=

∫
F×
φ(x)χ(x)|x |

s−1/2
F d×x .

When φ = φξ,ϕπ for some ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π), from Theorem 2.4, we
have the identity of local zeta integrals

(3-10) Z(s, φ, χ)= Z(s, ξ, ϕπ , χ),

which holds for Re(s) sufficiently large and then for all s ∈ C by meromorphic
continuation. Therefore, Theorem 2.4 can be restated for the GL1 zeta integrals
Z(s, φ, χ).

Theorem 3.4 (GL1 zeta integrals). The GL1 zeta integral Z(s, φ, χ) as defined in
(3-9) for any φ ∈ Sπ (F×) and any quasicharacter χ ∈X(F×) enjoys the properties:

(1) The zeta integral Z(s, φ, χ) is absolutely convergent for Re(s) sufficiently large,
and admits a meromorphic continuation to s ∈ C.

(2) The zeta integral Z(s, φ, χ) is a holomorphic multiple of the Langlands local
L-function L(s, π ×χ) associated to (π, χ) and the standard embedding

std : GLn(C)× GL1(C)→ GLn(C).
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When F is non-Archimedean, the fractional ideal generated by the local zeta
integrals Z(s, φ, χ) is of the form

{Z(s, φ, χ) | φ ∈ Sπ (F×)} = L(s, π ×χ) · C[qs, q−s
];

and when F is Archimedean, the GL1 zeta integrals Z(s, φ, χ), with unitary char-
acters χ , have the following property. Let Sa,b be the vertical strip for any a < b, as
defined in (2-4). If Pχ (s) is a polynomial in s such that the product Pχ (s)L(s, π×χ)

is bounded in the vertical strip Sa,b, with small neighborhoods at the possible poles
of the L-function L(s, π ×χ) removed, then the product Pχ (s)Z(s, φ, χ) must be
bounded in the same vertical strip Sa,b, with small neighborhoods at the possible
poles of the L-function L(s, π ×χ) removed.

(3) When F is non-Archimedean, and π is unramified, define

Lπ (x) := φξ◦,ϕ◦
π
(x),

where ξ ◦(g)= |det g|
n/21Mn(oF )(g), with 1Mn(oF )(g) being the characteristic func-

tion of Mn(oF ), and ϕ◦
π (g) is the zonal spherical function associated to π . Then the

identity

Z(s, Lπ , χ)= L(s, π ×χ)

holds for any unramified characters χ and all s ∈ C as meromorphic functions in s.

We are going to discuss the relation between the π-Schwartz functions and the
square-integrable functions in L2(F×, d×x).

Proposition 3.5. For any π ∈5F (Gn), there exists a real number απ such that for
any φ ∈ Sπ (F×) and for any κ ≥ απ + n/2, the function |x |

κ
Fφ(x) belongs to the

space L2(F×, d×x) of square-integrable functions on F×.

Proof. For any α0 ∈ R, we consider the following inner product of the function
|x |

α0/2φ(x) for any φ(x) ∈ Sπ (F×). We write φ = φξ,ϕπ for some ξ ∈ Sstd(Gn(F))
and ϕπ ∈ C(π) and write ξ(g)= |det g|

n/2
F f (g) with f ∈ S(Mn(F)). Then

(3-11)
∫

F×
φ(x)φ(x)|x |

α0
F d×x

=

∫
F×

|x |
α0+n
F d×x

∫
det g1=det g2=x

f (g1)ϕπ (g1) f (g2)ϕπ (g2) dx g1 dx g2

=

∫
(Gn(F)×Gn(F))◦

f (g1)ϕπ (g1) f (g2)ϕπ (g2)|det g1|
α0+n
F d(g1, g2)

◦,

where (Gn(F)× Gn(F))◦ := {(g1, g2) ∈ Gn(F)× Gn(F) | det g1 = det g2} and
d(g1, g2)

◦ is a Haar measure on (Gn(F)× Gn(F))◦, which makes the above fiber
integration factorization hold.
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We consider the natural embedding

(Gn(F)× Gn(F))◦ ↪→ (Mn(F)× Mn(F))◦

with an open dense image, where

(Mn(F)× Mn(F))◦ := {(X, Y ) ∈ Mn(F)× Mn(F) | det X = det Y },

which is the fiber product with respect to the determinant map X 7→ det X , and is a
closed subvariety of the affine space Mn(F)× Mn(F). The natural group action of
Gn × Gn on Mn × Mn via

(g, h)((X, Y ))= (gX, hY )

for (g, h)∈ Gn ×Gn and (X, Y )∈ Mn × Mn yields the action of (Gn(F)×Gn(F))◦

on (Mn(F)× Mn(F))◦ by restriction. Take d+X ∧ d+Y to be an additive Haar
measure on Mn(F)× Mn(F) with |det gh|

n
F the modulus function of the action of

Gn×Gn on Mn×Mn . Take the measure d+(X, Y )◦ on (Mn(F)×Mn(F))◦, which is
the pullback of the measure d+X ∧d+Y through the fiber product embedding. Then
the modulus function of the action of (Gn(F)×Gn(F))◦ on (Mn(F)× Mn(F))◦ is

|det gh|
n
F = |det g|

2n
F = |det h|

2n
F

for any (g, h) ∈ (Gn(F)× Gn(F))◦. It is easy to check that d+(g, h)◦/|det gh|
n
F is

a Haar measure on (Gn(F)× Gn(F))◦. Hence, there is a constant c > 0, such that

d(g, h)◦ = c ·
d+(g, h)◦

|det gh|
n
F
.

The integral in (3-11) can be written as

(3-12)
∫
(Mn(F)×Mn(F))◦

f (X)ϕπ (X) f (Y )ϕπ (Y )|det X |
α0−n
F d+(X, Y )◦.

Here we assume that α0 ≥ n and both ϕπ (g1) and ϕπ (g2) are viewed as measurable
functions on Mn(F) that extend by zero to the boundary Mn(F)\GLn(F).

Since the F-analytical manifold (Mn(F)×Mn(F))◦ is closed in Mn(F)×Mn(F),
the restriction of the Schwartz function f (g1)× f (g2) to (Mn(F)× Mn(F))◦ is
still a Schwartz function, which is smooth and compactly supported when F
is non-Archimedean, and is in the sense of [1] when F is Archimedean. By
Theorem 2.4, the zeta integral of Godement–Jacquet Z(s, f, ϕπ , χ) converges
absolutely for Re(s) sufficiently large. It follows that for any π ∈5F (Gn), there
exists a real number απ such that for any ϕπ ∈ C(π) and any Re(s) ≥ απ , the
product |det(g)|sFϕπ (g) is bounded when det g tends to zero.
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We write the F-analytical closed submanifold (Mn(F)× Mn(F))◦ as a union of
two closed submanifolds:

(Mn(F)× Mn(F))◦ = (Mn(F)× Mn(F))◦≥ε ∪ (Mn(F)× Mn(F))◦≤ε,

where

(Mn(F)× Mn(F))◦≥ε = {(g1, g2) ∈ Mn(F)1 det
| |det g1|F ≥ ε}

and

(Mn(F)× Mn(F))◦≤ε = {(g1, g2) ∈ Mn(F)1 det
| |det g1|F ≤ ε}.

For any π ∈5F (Gn), the restriction of the product ϕπ (g1)ϕπ (g2) · |det g1|
s−n
F to the

closed submanifold (Mn(F)× Mn(F))◦≥ε is of moderate growth and its restriction
to the closed submanifold (Mn(F)× Mn(F))◦≤ε is bounded whenever Re(s) ≥

2απ+n. It is also clear the Schwartz function f (g1)× f (g2) on (Mn(F)×Mn(F))◦

remains a Schwartz function when restricted to either the closed submanifold
(Mn(F)× Mn(F))◦≥ε or the closed submanifold (Mn(F)× Mn(F))◦≤ε. Hence, for
any α0 ∈ R with α0 ≥ 2απ + n, the integral∫

(Mn(F)×Mn(F))◦
f (X)ϕπ (X) f (Y )ϕπ (Y )|det X |

α0−n
F d+(X, Y )◦

converges absolutely, and so does the integral∫
F×
φ(x)φ(x)|x |

α0
F d×x .

It follows that the product φ(x)|x |
κ
F is square integrable on F× for κ = α0/2 ≥

απ + n/2. □

Corollary 3.6. If π ∈5F (Gn) is unitarizable, then for any φ ∈ Sπ (F×), the func-
tion |x |

n/2
F ·φ(x) belongs to the space L2(F×, d×x) of square-integrable functions

on F×.

Proof. If π ∈5F (Gn) is unitarizable, then the matrix coefficient ϕπ (g) is bounded
above over Gn(F). For φ ∈ Sπ (F×), we write φ = φξ,ϕπ with ξ ∈ Sstd(Gn(F)) and
ϕπ ∈ C(π), and write ξ(g)= |det g|

n/2
F · f (g) with f ∈ S(Mn(F)). We compute

the inner product of |x |
n/2
F ·φ(x) as

(3-13)
∫

F×
φ(x)φ(x)|x |

n
F d×x

≤

∫
F×

|x |
2n
F

∫
Gn(F)x

| f (g1)ϕπ (g1)| dx g1

∫
Gn(F)x

| f (g2)ϕπ (g2)| dx g2 d×x

≤ c(ϕπ ) ·
∫

F×
|x |

2n
F

∫
Gn(F)x

| f (g1)| dx g1

∫
Gn(F)x

| f (g2)| dx g2 d×x
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for some positive constant c(ϕπ ) depending on ϕπ . By following the proof of
Proposition 3.5, we obtain that

(3-14)
∫

F×
φ(x)φ(x)|x |

n
F d×x ≤c·c(ϕπ )

∫
(Mn(F)×Mn(F))◦

| f (X)|·| f (Y )| d(X, Y )◦.

The integral on the right-hand side of (3-14) comes from the integral in (3-12) with
α0 = n. As explained in the proof of Proposition 3.5, the product f (X)× f (Y ) is
a Schwartz function on (Mn(F)× Mn(F))◦. Hence, the integral on the right-hand
side of (3-14) converges. □

By using Proposition 3.5 and Theorem 3.4, together with Theorem 2.3, we are
able to understand the π-Schwartz space Sπ (F×) by means of the L-functions
L(s, π ×χ) for any π ∈5F (n).

Proposition 3.7. For any π ∈5F (Gn), the π -Schwartz space Sπ (F×) is contained
in the space F(F×) as defined in Definition 2.1

Proof. Note first that the GL1 zeta integral attached to φ ∈Sπ (F×) is the same as the
Mellin transform of φ up to a shift in s by the unramified part of χ . By Theorem 3.4
and Proposition 3.1, the image of Sπ (F×) under Mellin transform is contained in
the space Lπ (X(F×)) and hence in the space Z(X(F×)). By Theorem 2.3, for any
φ ∈ Sπ (F×), there exists φ0 ∈ F(F×), such that

M(φ−φ0)(χ)= 0(3-15)

holds identically for any quasicharacter χ ∈ X(F×). It remains to show that
φ−φ0 = 0 holds identically. By smoothness of φ and φ0, it suffices to show that
after unramified twist, both φ and φ0 are square integrable on F×.

For φ0 ∈ F(F×), there exists s0 ∈ R such that, for any Re(s) > s0,

lim
x→0

φ0(x)|x |
s+1
F = 0,

and the limit is preserved by differentiation on both sides when F is Archimedean.
It follows that φ0(x)|x |

s
F is indeed square integrable on F× for Re(s) > s0, via the

asymptotic formula appearing in the definition of F(F×).
For any φ ∈ Sπ (F×), by Proposition 3.5, there exists απ ∈ R>0 such that

the function |x |
s
Fφ(x) is square integrable if Re(s) ≥ απ + n/2. By taking κ >

max{s0, απ + n/2}, we obtain that both φ0(x)|x |
κ
F and φ(x)|x |

κ
F are square inte-

grable over F×. From (3-15), we obtain that the Mellin transform

M
(
φ(x)|x |

κ
F −φ0(x)|x |

κ
F
)
(χ)= 0

for all quasicharacters χ ∈ X(F×), in particular, for all unitary characters χ of F×.
Therefore, by the Mellin inversion formula (Theorem 2.3), we obtain that

φ(x)|x |
κ
F −φ0(x)|x |

κ
F = 0
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as functions in the space L2(F×, d×x). Since both φ(x) and φ0(x) are smooth, we
must have that φ(x)= φ0(x) ∈ F(F×). □

Finally we are ready to characterize the Mellin inversion M−1(Lπ ) in terms of
the π -Schwartz space Sπ (F×) as in (3-2).

Corollary 3.8. For any π ∈ 5F (Gn), the Mellin inversion M−1(Lπ ) coincides
with the space Sπ (F×) defined by

Sπ (F×)= M−1(Lπ )⊂ C∞(F×).

In particular, the space C∞
c (F

×) of smooth compactly supported functions on F×

is contained in the π -Schwartz space Sπ (F×).

Proof. By Proposition 3.7, we have that the space Sπ (F×) is contained in the
space F(F×). By Theorem 3.4, the Mellin transform (GL1 zeta integral) of the
space Sπ (F×) is equal to the space Lπ = Lπ (X(F×)). Hence, we obtain that
Sπ (F×)= M−1(Lπ ), because the Mellin transform is a bijective correspondence
between the space F(F×) and the space Z(X(F×)) (Theorem 2.3). Finally, since
the space Lπ contains the space of holomorphic functions on X(F×) that are of
Paley–Wiener type along the vertical strips, it is clear from Theorem 2.3 again that
C∞

c (F
×) is contained in the π -Schwartz space Sπ (F×). □

The relevant functional equation for GL1 zeta integrals will be discussed in the
next section.

3B. Fourier operators. We define a Fourier operator Fπ,ψ from the π-Schwartz
space Sπ (F×) to the π̃ -Schwartz space Sπ̃ (F×) for any π ∈5F (Gn) with smooth
contragredient π̃ and prove the functional equation for GL1 zeta integrals Z(s, φ, χ).

The Fourier operator (transform) Fπ,ψ is defined by the diagram

Sstd(Gn(F))⊗ C(π)

��

(FGJ,( · )
∨)

// Sstd(Gn(F))⊗ C(π̃)

��

Sπ (F×)
Fπ,ψ

// Sπ̃ (F×)

(3-16)

where ψ is a nontrivial additive character of F . More precisely, for φ = φξ,ϕπ ∈

Sπ (F×) with a ξ ∈ Sstd(Gn(F)) and a ϕπ ∈ C(π), we define

Fπ,ψ(φ)= Fπ,ψ(φξ,ϕπ ) := φFGJ(ξ),ϕ∨
π
,(3-17)

where ϕ∨
π (g)= ϕπ (g−1) ∈ C(π̃). Hence, we obtain that

Fπ,ψ(φ)= Fπ,ψ(φξ,ϕπ ) ∈ Sπ̃ (F×).(3-18)

It remains to check that the definition of the Fourier operator in (3-17) is independent
of the choice of ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π).
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Proposition 3.9. The Fourier operator Fπ,ψ as in (3-17) is independent of the
choice of ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π).

Proof. Assume that φξ1,ϕπ,1 =φξ2,ϕπ,2 for some ξ1, ξ2 ∈Sstd(Gn(F)) and ϕπ,1, ϕπ,2 ∈

C(π). We want to show that Fπ,ψ(φξ1,ϕπ,1)= Fπ,ψ(φξ2,ϕπ,2).
From (3-10), we must have that

Z(s, ξ1, ϕπ,1, χ)= Z(s, ξ2, ϕπ,2, χ)

for all quasicharacters χ ∈ X(F×) and all s ∈ C. Of course, the identity holds for
Re(s) large and then for all s ∈ C by meromorphic continuation. By the functional
equation in Proposition 2.7, we obtain the identity

Z(1 − s,FGJ(ξ1), ϕ
∨

π,1, χ
−1)= Z(1 − s,FGJ(ξ2), ϕ

∨

π,2, χ
−1)

for all χ ∈X(F×) with Re(s) sufficiently small first and then all s ∈ C by meromor-
phic continuation. It follows by the identity in (3-10) again that, for all χ ∈ X(F×)

and for Re(s)+ Re(χ) sufficiently large, the identity∫
F×
(φFGJ(ξ1),ϕ

∨

π,1
(x)−φFGJ(ξ2),ϕ

∨

π,2
(x))χ(x)|x |

s−1/2
F d×x = 0

holds. By Proposition 3.7, we have that φFGJ(ξ1),ϕ
∨

π,1
(x)−φFGJ(ξ2),ϕ

∨

π,2
(x) belongs to

F(F×). Finally, by Theorem 2.3, we must have that

φFGJ(ξ1),ϕ
∨

π,1
(x)−φFGJ(ξ2),ϕ

∨

π,2
(x)= 0

as functions on F×. Therefore, we proved that

φFGJ(ξ1),ϕ
∨

π,1
(x)= φFGJ(ξ2),ϕ

∨

π,2
(x)

as functions on F×, and Fπ,ψ(φξ1,ϕπ,1)= Fπ,ψ(φξ2,ϕπ,2). □

The following theorem on the local functional equation for the GL1 zeta integrals
Z(s, φ, χ) is a direct consequence of Theorem 2.4 and Proposition 3.9.

Theorem 3.10 (GL1 functional equation). For any π ∈5F (Gn) and its contragre-
dient π̃ ∈5F (Gn), there exists a Fourier operator Fπ,ψ , which takes φ ∈ Sπ (F×)

to Fπ,ψ(φ) ∈ Sπ̃ (F×), such that, after meromorphic continuation, the functional
equation

Z(1 − s,Fπ,ψ(φ), χ−1)= γ (s, π ×χ,ψ) ·Z(s, φ, χ),

holds for any φ ∈ Sπ (F×). The identities

Fπ̃ ,ψ−1 ◦Fπ,ψ = Id and Fπ,ψ ◦Fπ̃ ,ψ−1 = Id
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hold. When F is non-Archimedean, and π is unramified, the Fourier operator Fπ,ψ
takes the basic function Lπ ∈ Sπ (F×) to the basic function Lπ̃ ∈ Sπ̃ (F×):

Fπ,ψ(Lπ )= Lπ̃ ,

where the basic function Lπ is defined in Theorem 3.4.

4. π -Poisson summation formula on GL1

Let k be a number field and A be the ring of adeles of k. Denote by |k| the set of
all local places of k and by |k|∞ the set of all Archimedean local places of k. We
may write

|k| = |k|∞ ∪ |k| f ,

where |k| f is the set of non-Archimedean local places of k. For each ν ∈ |k|,
we write F = kν . Let 5A(Gn) be the set of equivalence classes of irreducible
admissible representations of Gn(A). If we write π =

⊗
ν∈|k|

πν , then we assume
that πν ∈5kν (Gn), where at almost all finite local places ν, the local representations
πν are unramified. When ν is a finite local place, πν is an irreducible admissible rep-
resentation of Gn(kν), and when ν is an infinite local place, we assume that πν is of
Casselman–Wallach type as representation of Gn(kν). Let A(Gn)⊂5A(Gn) be the
subset consisting of equivalence classes of irreducible admissible automorphic repre-
sentations of GLn(A), and Acusp(Gn) be the subset of cuspidal members of A(Gn).

4A. π -Schwartz space and Fourier operator. Take any π =
⊗

ν∈|k|
πν ∈5A(Gn).

At each ν ∈ |k|, the πν-Schwartz space Sπν (k×
ν ) is defined in Definition 3.3. Recall

from Theorems 3.4 and 3.10 the basic function Lπν ∈ Sπν (k×
ν ) of πν when the local

component πν of π is unramified. It is clear from the definition that Lπν (1) = 1
(We have to normalize various local measures in the computations. Actually it
follows from the fact that the Laurent expansion of the unramified local L-factor
has constant term 1.)

For the given π =
⊗

ν πν ∈5A(Gn), we define the π -Schwartz space on A× to be

Sπ (A×) :=

⊗
ν∈|k|

Sπν (k
×

ν ),(4-1)

which is the restricted tensor product of the local πν-Schwartz space Sπν (k×
ν ) with

respect to the family of the basic functions Lπν for the local places ν at which πν
are unramified. The factorizable vectors φ =

⊗
ν φν in Sπ (A×) can be written as

φ(x)=

∏
ν∈|k|

φν(xν).(4-2)

Here for almost all finite local places ν, φν(xν) = Lπν (xν). According to our
normalization, we have Lπν (xν)= 1 when xν ∈ o×

ν , the unit group of the ring oν of
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integers at ν. Hence, for any given x ∈ A×, the product in (4-2) is a finite product
over Archimedean local places and finitely many non-Archimedean local places
containing all ramified local places of π .

For any factorizable vectors φ =
⊗

ν φν in Sπ (A×), we define the π-Fourier
operator

Fπ,ψ(φ) :=

⊗
ν∈|k|

Fπν ,ψν (φν),(4-3)

where for each ν ∈ |k|, Fπν ,ψν is the local Fourier operator as defined in (3-16)
and (3-17). It is clear that Fπν ,ψν takes the πν-Schwartz space Sπν (k×

ν ) to the
π̃ν-Schwartz space Sπ̃ν (k×

ν ) and enjoys the property

Fπν ,ψ(Lπν )= Lπ̃ν

when the data are unramified at ν. Hence, the Fourier operator Fπ,ψ as defined in
(4-3) maps the π -Schwartz space Sπ (A×) to the π̃ -Schwartz space Sπ̃ (A×).

4B. Global zeta integral. For any π =
⊗

ν πν ∈ 5A(Gn), we define the global
zeta integrals to be

(4-4) Z(s, φ, χ) :=

∫
A×

φ(x)χ(x)|x |
s−1/2
A d×x

for any φ ∈ Sπ (A×) and characters χ of k×
\A×. When φ =

⊗
ν φν , we have

Z(s, φ, χ)=

∏
ν∈|k|

Z(s, φν, χν).

Let S be a finite subset of |k|, which contains all Archimedean local places and all
the finite local places ν at which πν or χν is ramified. Then we write

Z(s, φ, χ)= L S(s, π ×χ) ·
∏
ν∈S

Z(s, φν, χν),

according to Theorem 3.4. If π is unitarizable, the partial L-function L S(s, π ×χ)

converges absolutely for Re(s) large. By Theorem 3.4 again, the finite Euler product∏
ν∈S Z(s, φν, χν) converges absolutely for Re(s) large. We deduce the following

proposition.

Proposition 4.1. Let π ∈ 5A(Gn) be unitarizable. Then for any φ ∈ Sπ (A×)

and any character χ of k×
\A×, the zeta integral Z(s, φ, χ) as defined in (4-4)

converges absolutely for Re(s) sufficiently large.

We apply Proposition 4.1 to the case that π ∈ Acusp(Gn)⊂ A(Gn)⊂5A(Gn).
If π ∈ Acusp(Gn), then it is unitary. In this case, the zeta integral Z(s, φ, χ) can be
identified with the Godement–Jacquet global zeta integral. For any f =

⊗
ν fν ∈
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S(Mn(A)) and any ϕπ ∈ C(π), the Godement–Jacquet global zeta integral is defined
to be

(4-5) Z(s, f, ϕπ , χ) :=

∫
GLn(A)

f (g)ϕπ (g)χ(det g)|det g|
s+(n−1)/2
F dg,

Theorem 4.2 [16, Theorem 13.8]. For π ∈Acusp(Gn) and any unitary automorphic
character χ of k×

\A×, the global zeta integral Z(s, f, ϕπ , χ) converges absolutely
for Re(s) > (n + 1)/2, admits analytic continuation to an entire function in s ∈ C,
and satisfies the global functional equation

(4-6) Z(s, f, ϕπ , χ)= Z(1 − s,Fψ( f ), ϕ∨

π , χ
−1),

where Fψ is the global Fourier transform from S(Mn(A)) to S(Mn(A)) associated
to the additive character ψ of k\A.

For Re(s) > (n + 1)/2, we write

(4-7) Z(s, f, ϕπ , χ)=

∫
A×

(
|x |

n/2
A

∫
Gn(A)x

f (g)ϕπ (g) dx g
)
χ(x)|x |

s−1/2
A d×x,

where Gn(A)x := {g ∈ Gn(A) | det g = x} is an SLn(A)-torsor, and the measure
dx g is SLn(A)-invariant. As in the local situations, we define, for any x ∈ A×,

(4-8) φξ,ϕπ (x) :=

∫
Gn(A)x

ξ(g)ϕπ (g) dx g = |x |
n/2
A

∫
Gn(A)x

f (g)ϕπ (g) dx g,

where ξ(g) := |det g|
n/2
A · f (g) belongs to the space

(4-9) Sstd(Gn(A))= {ξ ∈ C∞(Gn(A)) | ξ(g) · |det g|
−n/2
A ∈ S(Mn(A))}.

It is clear that

(4-10) Sstd(Gn(A))=

⊗
ν∈|k|

Sstd(Gn(kν)).

Write Gn(A) as a direct product decomposition:

(4-11) Gn(A)= An(R)
+

· Gn(A)
1,

where Gn(A)
1
:= {g ∈ Gn(A) | |det g|A = 1} and An(R)

+ is the identity connected
component of the center ZGn (R) of Gn(R). As in [16, Section 13], any matrix
coefficient ϕπ of π ∈ Acusp(Gn) can be written as

(4-12) ϕπ (g)=

∫
An(R)+Gn(k)\Gn(A)

απ (hg)απ̃ (h) dh =

∫
Gn(k)\Gn(A)1

απ (hg)απ̃ (h) dh

for some απ ∈ Vπ and απ̃ ∈ Vπ̃ , where Vπ is the cuspidal automorphic realization
of π in L2(Gn(k)\Gn(A), ω) with central character ωπ = ω. In this case, we
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have ωπ̃ = ω−1. In the integral in (4-8), the coefficient ϕπ (g) is bounded over
Gn(A). Since f ∈ S(Mn(A)) and Gn(A)x is a closed submanifold in Mn(A), the
restriction to Gn(A)x of the Schwartz function f is still a Schwartz function on
Gn(A)x . Hence, the integral in (4-8) converges absolutely for any x ∈ A×, and the
convergence is uniform when x runs in any given compact neighborhood of A×.

Proposition 4.3. For π ∈ Acusp(Gn), the function φξ,ϕπ (x) as defined in (4-8) is
smooth on A×. If ξ(g)=

⊗
ν ξν =|det g|

n/2
· f (g)∈Sstd(Gn(A)) with f =

⊗
ν fν ∈

S(Mn(A)) and ϕπ =
⊗

ν ϕπν , then the function defined by

φξ,ϕπ (x)=

∏
ν∈|k|

φξν ,ϕπν (xν)

for any x ∈ A× belongs to Sπ (A×).

Proof. Since the integral in (4-8) converges absolutely for any x ∈ A×, and the
convergence is uniform when x runs in any given compact neighborhood of A×,
the function φξ,ϕπ (x) is smooth on A×.

To prove the second statement, we take f =
⊗

ν fν ∈ S(Mn(A)). Since C(π)=⊗
ν C(πν), we take ϕπ =

⊗
ν ϕπν with ϕπν ∈ C(πν). Then there exists a finite

subset S0 which contains all Archimedean local places of k such that for any finite
local place ν of k, if ν ̸∈ S0, then fν = f ◦

ν = 1Mn(oν), πν is unramified and ϕπν = ϕ◦
πν

,
which is the zonal spherical function on Gn(kν) associated to πν . For any x ∈ A×,
and for any finite subset S of |k| that contains S0 and xν ∈ o×

ν if ν ̸∈ S, we have

(4-13) φξ,ϕπ (x)=
∫

det g=x
ξ(g)ϕπ (g) dx g = lim

S

∏
ν∈S

∫
det gν=xν

ξν(gν)ϕπν (gν) dxνgν

with ξ(g) = |det g|
n/2
A · f (g) and ξ =

⊗
ν ξν , where ξν(g) = |det g|

n/2
ν · fν(g). At

ν ̸∈ S, we have |xν |ν = 1 and the local integral identity∫
det gν=xν

ξν(gν)ϕπν (gν) dxνgν

=

∫
det gν=xν

1Mn(oν)(gν)ϕ
◦

πν
(gν) dxνgν = vol(Gn(oν)xν )= 1.

Hence, we obtain that φξ,ϕπ (x)=
∏
ν φξν ,ϕπν (xν). □

Hence, we obtain the relation between the global GL1 zeta integrals defined in
(4-4) and the global Godement–Jacquet zeta integrals defined in (4-5).

Corollary 4.4. If π ∈ Acusp(Gn), then for any φ = φξ,ϕπ ∈ Sπ (A×) with ξ(g) =

|det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some f ∈ S(Mn(A)) and ϕπ ∈ C(π), the identity

Z(s, φ, χ)= Z(s, f, ϕπ , χ)

holds for any character χ of k×
\A× and Re(s) sufficiently large.
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Proposition 4.5. If π ∈ Acusp(Gn), then for any φ = φξ,ϕπ ∈ Sπ (A×) with ξ(g)=

|det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some f ∈ S(Mn(A)) and ϕπ ∈ C(π), the identity

Fπ,ψ(φξ,ϕπ )(x)= φFGJ(ξ),ϕ∨
π
(x)

holds for any x ∈ A×. For any x ∈ A×, the A×-equivariant property

Fπ,ψ(φx)(y)= Fπ,ψ(φ)(yx−1)

holds, where φx(y) := φ(yx).

Proof. Assume that φ=φξ,ϕπ ∈Sπ (A×) with ξ(g)= |det g|
n/2
A · f (g)∈Sstd(Gn(A))

for some f ∈ S(Mn(A)) and ϕπ ∈ C(π) is factorizable: φ =
⊗

ν φν . By definition
(4-3), we have

Fπ,ψ(φ)(x)=

∏
ν∈|k|

Fπν ,ψν (φν)(xν).

Write φν(xν)= φξν ,ϕπν (xν). Then we have

Fπν ,ψν (φν)(xν)= φFGJ,ν(ξν),ϕ∨
πν
(xν).

When the data involved are unramified, we have from the simple calculation below
(4-13) that Fπν ,ψν (φν)(xν)= 1. Hence, we obtain

Fπ,ψ(φ)(x)=

∏
ν

Fπν ,ψν (φν)(xν)=

∏
ν

φFGJ,ν(ξν),ϕ∨
πν
(xν)= φFGJ(ξ),ϕ∨

π
(x)

as in (4-13).
In order to verify the A×-equivariant property Fπ,ψ(φx)(y)=Fπ,ψ(φ)(yx−1) for

any x, y ∈ A×, it is enough to verify that the local Fourier operators Fπν ,ψν for all lo-
cal place ν ∈ |k| enjoy the same equivariant property. This local equivariant property
for the Fourier operators Fπν ,ψν can be deduced from the local functional equation
for the zeta integral Z(s, φ, χ) in Theorem 3.10 through a simple computation. □

We can deduce the following result from Theorem 4.2.

Theorem 4.6. Let π be an irreducible unitary cuspidal automorphic representation
of Gn(A) with the local component πν being of Casselman–Wallach type at all
ν ∈ |k|∞. For any φ ∈ Sπ (A×) and any unitary character χ of k×

\A×, the global
zeta integral Z(s, φ, χ) converges absolutely for Re(s)> (n+1)/2, admits analytic
continuation to an entire function in s ∈ C, and satisfies the functional equation

Z(s, φ, χ)= Z(1 − s,Fπ,ψ(φ), χ−1),

where Fπ,ψ is the Fourier operator as defined in (4-3) that takes Sπ (A×) to Sπ̃ (A×).
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4C. π-Poisson summation formula. We establish here the Poisson summation
formula on GL1 for the Fourier operator Fπ,ψ , which is associated to any π ∈

Acusp(Gn), and takes Sπ (A×) to Sπ̃ (A×). Technically, it is possible to establish
such a summation formula from the global functional equation in Theorem 4.6.
However, we are going to take a slightly different way below.

Theorem 4.7 (π-Poisson summation formula). For any π ∈ Acusp(Gn), take π̃ to
be the contragredient of π . For any φ ∈ Sπ (A×), the π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly for any x ∈ A×, and we have the identity

2π (x, φ)=2π̃ (x−1,Fπ,ψ(φ)),

as functions in x ∈ A×, where Fπ,ψ is the Fourier operator as defined in (4-3) that
takes Sπ (A×) to Sπ̃ (A×).

Proof. It is clear that2π (x, φ)=2π (1, φx)with φx(y)=φ(xy). By Proposition 4.5,
we have 2π̃ (x−1,Fπ,ψ(φ))=2π̃ (1,Fπ,ψ(φx)). Since φ ∈ Sπ (A×) is arbitrary, it
is enough to show that

2π (1, φ) :=

∑
α∈k×

φ(α)

converges absolutely and the identity

2π (1, φ)=2π̃ (1,Fπ,ψ(φ))

holds.
In order to prove that the summation 2π (1, φ) is absolutely convergent, we

write φ = φξ,ϕπ ∈ Sπ (A×) with ξ(g)= |det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some

f ∈ S(Mn(A)) and ϕπ ∈ C(π). From (4-12) we have

(4-14) ϕπ (g)=

∫
An(R)+Gn(k)\Gn(A)

β1(hg)β2(h) dh =

∫
Gn(k)\Gn(A)1

β1(hg)β2(h) dh

for some β1 ∈ Vπ and β2 ∈ Vπ̃ , where Vπ is the cuspidal automorphic realization
of π in L2(Gn(k)\Gn(A), ω) and so is Vπ̃ .

First, we have that

(4-15) 2π (1, φ)=

∑
α∈k×

φξ,ϕπ (α)

=

∑
α∈k×

∫
Gn(A)α

ξ(g)
∫

Gn(k)\Gn(A)1
β1(hg)β2(h) dh dαg.
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By changing variable g →h−1g, we have that det g =α·det h and the last expression
in (4-15) becomes∫

Gn(k)\Gn(A)1

∑
α∈k×

∫
Gn(A)α·det h

ξ(h−1g)β1(g)β2(h) dα·det hg dh.(4-16)

For g ∈ Gn(A)α·det h , we change g to t1(α) · y with det y = det h, where t1(α) =

diag(α, In−1) ∈ Gn(k). Then (4-16) can be written as∫
Gn(k)\Gn(A)1

∑
α∈k×

∫
GLn(A)det h

ξ(h−1t1(α)g)β1(g)β2(h) ddet hg dh,(4-17)

since β1 is automorphic. For any h ∈ Gn(A)
1, we have |det h|A = 1. Hence, we

must have that Gn(A)det h ⊂ Gn(A)
1. It is clear that Gn(A)det h is an SLn(A)-torsor

and the measure ddet hg is left-SLn(k)-invariant. Hence, (4-17) can be written as∫
Gn(k)\Gn(A)1

∑
α∈k×

∑
ϵ∈SLn(k)

∫
SLn(k)\Gn(A)det h

ξ(h−1t1(α)ϵg)β1(g)β2(h) ddet hg dh.

Since any element γ ∈ Gn(k) can be written as a product of t1(α) and ϵ in a unique
way, we obtain that the above expression is equal to

(4-18)
∫

Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

( ∑
γ∈Gn(k)

ξ(h−1γ g)
)
β1(g)β2(h) ddet hg dh.

Since ξ(g) = |det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some f ∈ S(Mn(A)), and h ∈

Gn(A)
1 and g ∈ Gn(A)det h , we must have that

(4-19) ξ(h−1γ g)= |det(h−1γ g)|n/2A · f (h−1γ g)= f (h−1γ g).

Hence, we obtain that ∑
γ∈Gn(k)

ξ(h−1γ g)=

∑
γ∈Gn(k)

f (h−1γ g).(4-20)

By [16, Lemma 11.7], for any f ∈ S(Mn(A)), the summation
∑

γ∈Gn(k) f (h−1γ g)
is of moderate growth in g, h ∈ Gn(k)\Gn(A) as an automorphic function on
Gn(k)\Gn(A)×Gn(k)\Gn(A), and so is the summation

∑
γ∈Gn(k) ξ(h

−1γ g) as an
automorphic function in g, h ∈ Gn(k)\Gn(A)

1. Since both β1(g) and β2(h) are
cuspidal, we obtain that the integral in (4-18) converges absolutely, and so does the
π -theta function 2π (1, φ) at x = 1.

Now we continue with the integral in (4-18) to prove the identity

(4-21) 2π (1, φ)=2π̃ (1,Fπ,ψ(φ)).
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Recall from [16, Section 11; 34, Theorem 4.0.1] the classical Poisson summation
formula

(4-22)
∑

γ∈Mn(k)

f (h−1γ g)=

∑
γ∈Mn(k)

|det gh−1
|
−n
A Fψ( f )(g−1γ h)

for any f ∈ S(Mn(A)) and h, g ∈ Gn(A). When g, h ∈ Gn(A)
1, it can be rewritten

according to the rank of γ ∈ Mn(k) as∑
γ∈Gn(k)

f (h−1γ g)

=

∑
γ∈Gn(k)

Fψ( f )(g−1γ h)+
∑

γ∈Mn(k)
rank(γ )<n

Fψ( f )(g−1γ h)−
∑

γ∈Mn(k)
rank(γ )<n

f (h−1γ g).

We denote the boundary terms by

(4-23) B f (h, g) :=

∑
γ∈Mn(k)

rank(γ )<n

Fψ( f )(g−1γ h)−
∑

γ∈Mn(k)
rank(γ )<n

f (h−1γ g).

Then (4-18) can be written as a sum of the two terms

(4-24)
∫

Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

( ∑
γ∈Gn(k)

Fψ( f )(g−1γ h)
)
β1(g)β2(h) ddet hg dh,

and

(4-25)
∫

Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

B f (h, g)β1(g)β2(h) ddet hg dh.

From the proofs of [16, Lemma 12.13; 34, Lemma 4.1.4], we must have that the
term in (4-25) is zero, because of the cuspidality of both β1(g) and β2(h). Hence,
we obtain that 2π (1, φ)=2π (1, φξ,ϕπ ) is equal to the term in (4-24).

Now we write (4-24) as∫
Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

( ∑
γ∈Gn(k)

Fψ( f )((γ g)−1h)
)
β1(g)β2(h) ddet hg dh.

By writing back that γ = t1(α) · ϵ with α ∈ k× and ϵ ∈ SLn(k), we obtain that the
above expression is equal to

(4-26)
∫

Gn(k)\Gn(A)1

∫
Gn(A)det h

( ∑
α∈k×

Fψ( f )((t1(α)g)−1h)
)
β1(g)β2(h) ddet hg dh.
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By changing t1(α)g to g, we write (4-26) as∑
α∈k×

∫
Gn(k)\Gn(A)1

∫
Gn(A)α·det h

Fψ( f )(g−1h)β1(g)β2(h) dα·det hg dh.(4-27)

After changing variable g → hg, (4-27) can be written as∑
α∈k×

∫
Gn(A)α

Fψ( f )(g−1)

∫
Gn(k)\Gn(A)1

β1(hg)β2(h) dh dαg,(4-28)

which is equal to ∑
α∈k×

∫
Gn(A)α

Fψ( f )(g−1)ϕπ (g) dαg.(4-29)

Finally, by changing g to g−1, we obtain that (4-18) is equal to∑
α∈k×

∫
Gn(A)α

Fψ( f )(g)ϕπ (g−1) dαg.(4-30)

By Proposition 2.6, when det g = α ∈ k×, we have

Fψ( f )(g)= FGJ(ξ)(g)

for ξ(g)= |det g|
n/2

· f (g). Hence, the summation in (4-30) is equal to∑
α∈k×

Fπ,ψ(φξ,ϕπ )(1)=2π̃ (1,Fπ,ψ(φξ,ϕπ )).

This proves the π -Poisson summation formula

2π (1, φ)=2π̃ (1,Fπ,ψ(φ))
for all φ ∈ Sπ (A×).

For the locally uniform convergence of the π-theta function 2π (x, φ), since
2π (x, φ)=2π (1, φx), it is enough to prove the locally uniform convergence of
the π -theta function 2π (x, φ) around x = 1. One may verify this directly from the
discussion in the proof given above. It also follows directly from Proposition 4.8
below in this case. We are done. □

Similar to the work of [40], we obtain the following uniform estimate of the
π -theta function 2π (x, φ), which is important to the application in Section 8.

Proposition 4.8. For any π ∈ Acusp(Gn), take any φ ∈ Sπ (A×). For any κ > 0,
there exists a positive constant cκ,φ such that the π -theta function 2π (x, φ) enjoys
the property

|2π (x, φ)| ≤ cκ,φ · min{|x |A, |x |
−1
A }

κ .
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Proof. This is a reformulation of part (ii) of [40, Theorem 1] and can be proved
accordingly. We omit the details. □

Remark 4.9. The proof of the π -Poisson summation formula in Theorem 4.7 uses
the Poisson summation formula associated to the classical Fourier transform Fψ
over the affine space Mn(A), without using the global functional equation for the
global zeta integrals Z(s, φ, χ) in Theorem 4.6. Hence, we are able to obtain the
global functional equation for the global zeta integrals Z(s, φ, χ) as in Theorem 4.6
by using the π-Poisson summation formula in Theorem 4.7. Of course, this is
essentially the same proof as the one that uses the global functional equation
of Godement–Jacquet zeta functions in Theorem 4.2. However, it seems still
meaningful to point out the contribution of the π -Poisson summation formulae on
GL1 in the theory of the global functional equation for the standard automorphic
L-function L(s, π×χ) for any automorphic characters χ of A× and any irreducible
cuspidal automorphic representations π of GLn(A), as an extension in a different
perspective of Tate’s thesis to the study of higher degree automorphic L-functions.

5. Convergence of generalized theta functions

In order to prove Theorem 1.2 and explore other possible cases of Conjecture 1.5,
beyond Theorem 4.7 (or Theorem 1.1), we study the convergence issue of general
π -theta functions associated with π ∈5A(Gn), which may not be automorphic.

5A. Convergence of π -theta functions. Recall from Section 4, if π =
⊗

ν∈|k|
πν ∈

5A(Gn), then for every ν ∈ |k|, πν ∈ 5kν (Gn), the set of equivalence classes of
irreducible admissible representations of Gn(kν), where at almost all finite local
places ν, πν is unramified and at any infinite local place ν, πν is of Casselman–
Wallach type as representation of Gn(kν). As in (4-1), for any π=

⊗
ν πν ∈5A(Gn),

we have that

Sπ (A×)=

⊗
ν∈|k|

Sπν (k
×

ν ).

For φ ∈ Sπ (A×), we are going to show that the π -theta function

(5-1) 2π (x, φ)=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×, under an
assumption (Assumption 5.1) on the unramified local components πν of π .

For any π =
⊗

ν πν ∈ 5A(Gn), let Sπ be a finite subset of local places of k
containing |k|∞ such that for any finite local place ν ̸∈ Sπ , the local component πν
is unramified. For any πν with ν ̸∈ Sπ , via the Satake isomorphism, one has the
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Frobenius–Hecke conjugacy class c(πν) in G∨
n (C) associated to πν . We write

(5-2) c(πν) := diag(qs1(πν)
ν , . . . , qsn(πν)

ν ) ∈ GLn(C)= G∨

n (C),

up to the adjoint action of G∨
n (C), with s j (πν) ∈ C for j = 1, 2, . . . , n, where qν is

the cardinality of the residue field κν = oν/pν . The following is the assumption we
take on the unramified local components πν of π .

Assumption 5.1 (uniform bound). Let π =
⊗

ν πν ∈ 5A(Gn) be an irreducible
admissible representation of Gn(A). There exists a positive real number κπ , which
depends only on π , such that

max
1≤ j≤n

{Re(s j (πν))}< κπ

for every ν ̸∈ Sπ .

Then we need to prove some technical local results.

Lemma 5.2. For any π =
⊗

ν πν ∈ 5A(Gn) with Assumption 5.1, there exists a
positive real number sπ ≥ κπ such that, for any real number a0 > sπ , the limit

lim
|x |ν→0

φν(x)|x |
a0
ν = 0

holds, as a function in x ∈ k×
ν , for any φν ∈ Sπν (k×

ν ) and any local place ν ∈ |k|. In
particular, φν(x)|x |

a0
ν extends to a continuous function on kν , which is compactly

supported on kν if ν ∈ |k| f and is of Schwartz type at ∞ of kν if ν ∈ |k|∞.

Proof. By Proposition 3.7, at any ν ∈ |k|, we have that Sπν (k×
ν )⊂ F(k×

ν ), which is
defined in Definition 2.1. In the following we discuss separately for ν ∈ |k|∞ and
for ν ∈ |k| f .

When ν ∈ |k|∞, the asymptotic of φν ∈ Sπν (k×
ν ) near x = 0 is characterized in

Definition 2.1. In particular, following the notation in Definition 2.1, the fixed
sequence {λk}

∞

k=0 has strictly increasing real part {Re(λk)}
∞

k=0. Hence, for any
positive real number s0 ∈ R satisfying the inequality

s0 + Re(λ0) > 0,

the limit

(5-3) lim
|x |ν→0

φν(x) · |x |
s0
ν = 0

holds, because the limit formula in Definition 2.1 is termwise differentiable and
uniform (even after termwise differentiation). Hence, the function φν(x) · |x |

s0
ν is

continuous over kν for any positive real number s0 satisfying s0 + Re(λ0) > 0. It
is clear that the function φν(x) · |x |

s0
ν is still of Schwartz type at ∞. Since the set

|k|∞ is finite, it is possible to choose a sufficiently positive s∞ ∈ R such that the
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prescribed property holds for all functions φν(x) · |x |
a0
ν with φν ∈ Sπν (k×

ν ) at all
ν ∈ |k|∞, as long as a0 ≥ s∞.

It remains to treat the case when ν ∈ |k| f , the finite local places of k. We consider
the local zeta integrals Z(s, φν, ων) for any φν ∈ Sπν (k×

ν ), and any unitary character
ων ∈�∧

ν . By Theorem 3.4, it converges absolutely for Re(s) sufficiently positive
and admits a meromorphic continuation to s ∈ C. For each ν ∈ |k| f , we take cπν to
be a sufficiently positive real number, such that Z(s, φν, ων) converges absolutely
for Re(s) > cπν . If ν ̸∈ Sπ , then πν is unramified. In this case, the zeta integral
Z(s, φν, ων) converges absolutely for Re(s) > κπ , where the positive real number
κπ depends on π only, according to Assumption 5.1. Hence, if we take a positive
real number cπ with

(5-4) cπ := max{κπ , cπν | ν ∈ Sπ ∩ |k| f },

then for any φν ∈Sπν (k×
ν ), and any unitary character ων ∈�∧

ν , the local zeta integral
Z(s, φν, ων) converges absolutely for Re(s) > cπ at all finite local places ν ∈ |k| f .

By the Mellin inversion formula as displayed in (2-6), we have

(5-5) φν(x) · |x |
d
ν =

∑
ων∈�∧

ν

(
Resz=0(Z(s + d, φν, ων)|x |

−s
ν qs

ν)
)
ων(ac(x))−1,

where z = q−s
ν and d > cπ . Since the summation on the right-hand side is finite, it

suffices to show that the limit formula

(5-6) lim
|x |ν→0

Resz=0(Z(s + d, φν, ων)|x |
−s
ν qs

ν)= 0

holds for each ων ∈�∧
ν .

It is clear that Z(s + d, φν, ων) is holomorphic for Re(s) > −(d − cπ ). By
Theorem 3.4, we have

Z(s + d, φν, ων)= pν(s) · L(s + d, πν ×ων),

where pν(s) ∈ C[qs
ν, q−s

ν ], depending on φν . By the supercuspidal support of
πν⊗ων , we obtain that the representation πν⊗ων can be embedded, as an irreducible
subrepresentation, into the induced representation

πν ⊗ων ↪→5ν := IndGn(kν)
P(kν) τν,1 ⊗ · · · ⊗ τν,tν ,

where τν, j is an irreducible supercuspidal representation of Gaν, j (kν) with n =

aν,1 + · · · + aν,tν (see [22]). By [16, Theorem 3.4], we have

L(s,5ν)= L(s, τν,1) · · · L(s, τν,tν ).
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By [16, Corollary 3.6], we have

L(s, πν ×ων)

L(s,5ν)

is a polynomial in q−s
ν . Hence, we obtain that for the given φν ∈ Sπν (k×

ν ), there
exists a polynomial Pv(s) in qs

ν and q−s
ν , depending on πν ⊗ων and φν , such that

Z(s + d, φν, ων)= Pν(s)L(s + d,5ν).(5-7)

By applying [16, Proposition 5.11] to the local L-functions L(s, τν, j ), we obtain
that L(s, τν, j )=1 when τν, j is either supercuspidal (aν, j ≥2) or a ramified character
(aν, j = 1). Hence, there exists an integer 1 ≤ rν ≤ tν ≤ n, such that

(5-8) Z(s + d, φν, ων)= Pν(s)
rν∏

j=1

1

1 − q−s−d+sν, j
ν

=

rν∏
j=1

( ∞∑
ℓ j =0

q−(s+d−sν, j )ℓ j
ν

)
for some sν, j ∈ C, with j = 1, 2, . . . , rν .

Now we are ready to discuss the limit in (5-6). For z = q−s
ν , we have

(5-9) Z(s + d, φν, ων)|x |
−s
ν qs

ν = Pν(z) ·

∏rν
j=1

(∑
∞

ℓ j =0 q−ℓ j (d−sν, j )
ν · zℓ j

)
zordν(x)+1 ,

where Pν(z) is a polynomial function in z, z−1. By taking the residue at z = 0, we
obtain that

(5-10) Resz=0(Z(s + d, φν, ων)|x |
−s
ν qs

ν)= C0(x),

where C0(x) is the coefficient of the constant term of

(5-11) Pν(z) ·

∏rν
j=1

(∑
∞

ℓ j =0 q−ℓ j (d−sν, j )
ν · zℓ j

)
zordν(x)

.

Since Pν(z) is a polynomial function in z, z−1 with degree depending on π , without
loss of generality, we may assume that Pν(z)≡ 1 when we compute C0(x). In this
case, the constant term of (5-11) with Pν(z)≡ 1 is equal to

(5-12)
∑

ℓ1+···+ℓrν=ordν(x)
ℓ1,...,ℓrν≥0

q
−ℓ1(d−sν, j )−···−ℓt0 (d−sν, j )
ν .

When ν /∈ Sπ , πν is unramified,

diag(qsν,1
ν , . . . , qsν,n

ν )= c(πν)

is the Frobenius–Hecke conjugacy class associated to πν in G∨
n (C)with sν, j =s j (πν)

for j =1, 2, . . . , n. By Assumption 5.1 and the definition of the positive real number
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cπ as in (5-4), we take d0 = 0 and have

d − Re(sν, j ) > cπ − Re(sν, j )≥ 0(5-13)

for all j = 1, 2, . . . , n. For the remaining finite local places ν, we may choose a
positive real number d0 such that

d + d0 − Re(sν, j ) > cπ + d0 − Re(sν, j )≥ 0(5-14)

for all j = 1, 2, . . . , rν and all ν ∈ Sπ ∩|k| f . Hence, with the choice of d0, we have

(5-15)
∣∣Resz=0(Z(s + d + d0, φν, ων)|x |

−s
ν qs

ν)
∣∣

≤

∑
ℓ1+···+ℓrν=ordν(x)

ℓ1,...,ℓrν≥0

q
−

∑rν
j=1 ℓ j (d+d0−Re(sν, j ))

ν

≤

∑
ℓ1+···+ℓrν=ordν(x)

ℓ1,...,ℓrν≥0

q−ordν(x)(d+d0−max j {Re(sν, j )})
ν

=

(ordν(x)+rν−1
rν−1

)
· q−ordν(x)(d+d0−max j {Re(sν, j )})
ν .

Since d + d0 − max j {Re(sν, j )}> 0, and the function
(ordν(x)+rν−1

rν−1

)
is a polynomial

in ordν(x), we must have that

lim
ordν(x)→+∞

(ordν(x)+rν−1
rν−1

)
· q−ordν(x)(d+d0−max j {Re(sν, j )})
ν = 0.

By (5-5), if d > cπ + d0, then we must have that

lim
xν→0

φν(x) · |x |
d
ν = 0

for all φν ∈ Sπν (k×
ν ) and at all ν ∈ |k| f . It is clear that the function φν(x) · |x |

d
ν is

continuous over kν and has compact support.
Finally, by taking a positive real number sπ = max{s∞, cπ + d0}, we obtain that

for any a0 > sπ , the function φν(x)|x |
a0
ν is continuous over kν and has the limit

lim
|x |ν→0

φν(x)|x |
a0
ν = 0,

for any φν ∈ Sπν (k×
ν ) and at any local place ν ∈ |k|. We are done. □

Lemma 5.3. Let π =
⊗

ν πν ∈ 5A(Gn) satisfy Assumption 5.1. For any ν /∈ Sπ ,
the basic function Lπν ∈ Sπν (k×

ν ) is supported on oν − {0} with

Lπν (o
×

ν )= 1.
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There exists a positive real number bπ ≥ sπ , which is independent of ν, such that,
for any b0 > bπ , ∣∣Lπν (x) · |x |

b0
ν

∣∣ ≤ 1

holds, as a function in x ∈ k×
ν , for all ν /∈ Sπ .

Proof. We continue with the proof of Lemma 5.2 for the non-Archimedean case, and
specialize it to the unramified situation. Note that the basic function Lπν ∈ Sπν (k×

ν )

is the Mellin inversion of the local unramified L-factor

Z(s, Lπν )= L(s, πν),

whose Mellin inversion can be calculated by (5-5) after setting Pν(s)= 1. In other
words, taking the constant sπ as in Lemma 5.2, we have, for any a0 > sπ ,

Lπν (x) · |x |
a0 = Resz=0(Z(s + a0, Lπν )|x |

−s
ν qs

ν).

As in (5-9), we write

(5-16) Z(s +a0, Lπν )=
1∏n

j=1(1 − q−s−a0+s j (πν)
ν )

=

n∏
j=1

( ∑
ℓ j ≥0

qℓ j (s j (πν)−a0)
ν zℓ j

)
,

where we write z = q−s
ν and c j (πν)= qs j (πν)

ν . From the Laurent expansion on the
right-hand side, we obtain that the function

Z(s + a0, Lπν )|x |
−s
ν qs

ν

is holomorphic in z = q−s
ν whenever x /∈ oν . By taking the residue at z = 0, we

obtain that
Lπν (x) · |x |

a0 = 0 for x /∈ oν .

Hence, the basic function Lπν (x) has support included in oν . Similarly, we apply
the Mellin inversion, as calculated by (5-5), to the case x ∈ o×, and obtain that the
residue picks up the constant term of the right-hand side of (5-16) as a function of
z = q−s , which is equal to 1. Therefore, we obtain

Lπν (o
×

ν )= 1.

Finally, whenever x ∈ oF ∖ {0}, we apply (5-15) to the unramified case, and
obtain that∣∣Lπν (x) · |x |

b
∣∣ ≤

(ordν(x)+n−1
n−1

)
· q−ordν(x)·min j {b−Re(s j (πν))}
ν ,

as long as b > sπ . By Assumption 5.1, we have

min1≤ j≤n{b − s j (πν)}>min1≤ j≤n{κπ − s j (πν)}> 0.
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Therefore, whenever ordν(x)≥ 1,(ordν(x)+n−1
n−1

)
· q−ordν(x)·min j {b−Re(s j (πν))}
ν

≤

(ordν(x)+n−1
n−1

)
· 2−ordν(x)·min j {b−Re(s j (πν))}

since qν ≥ 2 for any ν /∈ Sπ . It turns out that we only need to find a positive integer
bπ ≥ sπ ∈ R such that, for any b > bπ ,(ordν(x)+n−1

n−1

)
· 2−ordν(x)·min j {b−Re(s j (πν))} ≤ 1

holds for any ν /∈ Sπ and ordν(x) ≥ 1. Equivalently, after applying the function
log2 on both sides, the above inequality becomes

log2

(ordν(x)+n−1
n−1

)
− ordν(x) · min

j
{b − Re(s j (πν))} ≤ 0.

Hence, it suffices to show the existence of bπ ∈ R so that

min
j

{b − Re(s j (πν))} = b − max
j

{Re(s j (πν))}

> bπ − κπ ≥
log2

(ordν(x)+n−1
n−1

)
ordν(x)

for any ordν(x)≥ 1, i.e.,

(5-17) bπ ≥ κπ +
log2

(ordν(x)+n−1
n−1

)
ordν(x)

for any ordν(x)≥ 1. As a function of t ≥ 1,

log2

( t+n−1
n−1

)
= log2

∏n−1
k=1(t + k)
(n − 1)!

≥ log2

∏n−1
k=1(1 + k)
(n − 1)!

≥ log2 n ≥ 0.

Thus we obtain that
log2

(t+n−1
n−1

)
t

≥ 0

for any t ≥ 1. On the other hand, by L’Hôspital’s rule, one must have that

lim
t→∞

log2
(t+n−1

n−1

)
t

= 0.

It follows, as a continuous function in t ≥ 1, there exists a constant c0 ∈ R such that

log2
(t+n−1

n−1

)
t

< c0
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for any t ≥ 1. It is clear now that the inequality in (5-17) holds for any

bπ ≥ κπ + c0.

Therefore it suffices to take bπ = max{sπ , κπ + c0}. We are done. □

We are ready to establish the first property for the π -theta functions 2π (x, φ) in
such generality.

Theorem 5.4 (convergence of π-theta functions). Fix any π =
⊗

ν πν ∈5A(Gn)

with Assumption 5.1. Then, for any φ ∈ Sπ (A×), the π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

Proof. For any π =
⊗

ν πν ∈5A(Gn), let Sπ be a finite subset of local places of k
containing |k|∞ and for any finite local place ν ̸∈ Sπ , the local component πν is
unramified. We may assume that φ ∈ Sπ (A×) is a pure restricted tensor of the form

(5-18) φ =

( ⊗
ν /∈Sπ

Lπν

)
⊗

( ⊗
ν∈Sπ

φν

)
= φ∞ ⊗φ f

with φν ∈ Sπν (k×
ν ) for all ν ∈ Sπ , φ∞ =

⊗
ν∈|k|∞

φν and φ f =
⊗

ν∈|k| f
φν .

Fix a positive real number s0 > bπ ≥ sπ ≥ κπ where the constants κπ , sπ , and
bπ are as given in Assumption 5.1, Lemma 5.2, and Lemma 5.3, respectively. By
Lemma 5.3, for any ν /∈ Sπ , we have the function Lπν (x)|x |

s0
ν is continuous on kν

and supported on oν . We have

(5-19)
∣∣Lπν (x)|x |

s0
ν

∣∣ ≤ 1

for every ν /∈ Sπ . Similarly, for any finite ν ∈ Sπ ∩ |k| f , the function φν(x)|x |
s0
ν

is continuous on kν with compact support. We may assume that the support of
φν(x)|x |

s0
ν is contained in a fractional ideal pmν

ν for some integer mν ∈ Z. Write
oφ :=

∏
ν /∈Sπ oν and mφ :=

∏
ν∈Sπ∩|k| f

pmν . Then, by the weak approximation
theorem [48], the product

(5-20) m(φ) := oφ ·mφ

is a fractional ideal of o = ok , the ring of integers in k.
For any α ∈ k×, the Artin product formula shows that |α|A = 1 [48]. Hence, we

obtain that

(5-21) 2π (1, φ)=

∑
α∈k×

φ(α)=

∑
α∈k×

φ(α) · |α|
s0
A .
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From the support of the functions φν · | · |
s0 for all ν ∈ |k| f , we write

2π (1, φ)=

∑
α∈k×∩m(φ)

(φ∞(α) · |α|
s0
∞
) · (φ f (α) · |α|

s0
f ).(5-22)

It is clear that for α ∈ k×
∩m(φ), we have that∣∣φ f (α) · |α|

s0
f

∣∣ =

( ∏
ν ̸∈Sπ

∣∣Lπν (α) · |α|
s0
ν

∣∣) ·

( ∏
ν∈Sπ∩|k| f

∣∣φν(α) · |α|
s0
ν

∣∣)
≤

∏
ν∈Sπ∩|k| f

∣∣φν(α) · |α|
s0
ν

∣∣,
because of (5-19). By Lemma 5.2, there exists a real constant cφ , such that

(5-23)
∏

ν∈Sπ∩|k| f

∣∣φν(α) · |α|
s0
ν

∣∣ ≤ cφ.

Hence, we obtain that

(5-24)
∣∣2π (1, φ)∣∣ ≤ cφ ·

∑
α∈k×∩m(φ)

|φ∞(α)| · |α|
s0
∞
.

Since the fractional ideal m(φ) of k is a lattice in A∞ =
∏
ν∈|k|∞

kν , it suffices to
show that the summation

(5-25)
∑

α∈m(φ)

|φ∞(α)| · |α|
s0
∞

is absolutely convergent.
Consider the compact set

B∞(1) := {(αν) ∈ A∞ | |αν |ν ≤ 1, ∀ν ∈ |k|∞}.(5-26)

We write (5-25) as∑
α∈m(φ)∩B∞(1)

|φ∞(α)| · |α|
s0
∞

+

∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(α)| · |α|
s0
∞
.(5-27)

It is clear that the intersection of m(φ) with B∞(1) is a finite set. By Lemma 5.2,
the function φ∞(x)|x |

s0
∞ is continuous over A∞, and hence is bounded over B∞(1).

Thus, in (5-27), the first summation∑
α∈m(φ)∩B∞(1)

|φ∞(α)| · |α|
s0
∞

is bounded. The second summation in (5-27), which is∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(α)| · |α|
s0
∞
,
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where the function φ∞(x) · |x |
s0
∞ is of Schwartz type over A∞ ∖B∞(1), is bounded

by the same proof for the absolute convergence of the classical Poisson summation
formula [21, Chapter 4; 47]. This proves the absolute convergence of 2π (x, φ) for
any φ ∈ Sπ (A×).

For any x ∈ A×, we have 2π (x, φ) =2π (1, φx) with φx(y) = φ(yx). Hence,
2π (x, φ) converges absolutely for any φ ∈ Sπ (A×).

For the locally uniform convergence of the π-theta function 2π (x, φ) at any
x ∈ A×, by using 2π (x, φ) = 2π (1, φx) again, it is enough to show the locally
uniform convergence of 2π (x, φ) at x = 1 for any given factorizable function φ as
in (5-18). As in (5-21), we may write

2π (x, φ)=

∑
α∈k×

φ(αx) · |α|
s0
A .(5-28)

Since φ =
(⊗

ν /∈Sπ Lπν
)
⊗

(⊗
ν∈Sπ φν

)
as in (5-18), we have m(φ)=

∏
ν∈|k| f

m(φ)ν
as in (5-20), where m(φ)ν is a fractional ideal of kν containing the support of the
function φν(x) · |x |

s0
ν . As in (5-22), we write

(5-29) 2π (x, φ)=

∑
α∈k×∩m(φ)

(φ∞(αx∞) · |α|
s0
∞
) · (φ f (αx f ) · |α|

s0
f ).

Take a compact open neighborhood � f (φ) of x f = 1 in A×

f to be

� f (φ)=

( ∏
ν /∈Sπ

o×

ν

)
·

( ∏
ν∈|k| f ∩Sπ

(1 + pdν
ν )

)
,

where dν is a positive integer for ν ∈ |k| f ∩ Sπ . For any x f ∈ � f (φ), if ν /∈ Sπ ,
then xν ∈ o×

ν and α ̸= 0 and α ∈ oν . Hence, αxν ̸= 0 and αxν ∈ oν . In this case, we
have that ∣∣φν(αxν) · |α|

s0
ν

∣∣ =
∣∣Lπν (αxν) · |αxν |s0

ν

∣∣ ≤ 1

by (5-19). If ν ∈ Sπ ∩ |k| f , then α ∈ pmν
ν and xν ∈ 1 + pdν

ν , and hence we have that
αxν ∈ pmν

ν . In this case, we have that∣∣φν(αxν) · |α|
s0
ν

∣∣ =
∣∣φν(αxν) · |αxν |s0

ν

∣∣.
As in (5-23), there exists a real constant cφ , which is independent of x f ∈� f (φ),
such that ∣∣φ f (αx f ) · |α|

s0
f

∣∣ ≤

∏
ν∈Sπ∩|k| f

∣∣φν(αxν) · |α|
s0
ν

∣∣ ≤ cφ.

Hence, we obtain that

(5-30) |2π (x, φ)|≤cφ ·
∑

α∈k×∩m(φ)

∣∣φ∞(αx∞)·|α|
s0
∞

∣∣≤cφ ·
∑

α∈m(φ)

∣∣φ∞(αx∞)·|α|
s0
∞

∣∣.
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When x∞ runs over a compact neighborhood�∞ of 1 in A∞, by the same argument,
we are reduced to showing that∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(αx∞)| · |α|
s0
∞

= |x∞|
−s0
∞

·

∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(αx∞)| · |αx∞|
s0
∞

converges uniformly. Since the function φ∞(x) · |x |
s0
∞ is of Schwartz type over

A∞∖B∞(1), the uniform convergence of the last summation with x∞ ∈�∞ follows
from the same proof of that for the classical theta functions. We omit the details
and finish the proof. □

5B. Justification of Assumption 5.1. We prove Assumption 5.1 when π ∈A(Gn) is
any irreducible admissible automorphic representation of Gn(A), which is contained
in 5A(Gn).

Proposition 5.5. For any π ∈ A(Gn), Assumption 5.1 holds.

Proof. A cuspidal datum (P, ε) of Gn consists of a standard parabolic subgroup P of
Gn with Levi decomposition P = M ·N with the Levi subgroup M and the unipotent
radical N , and an irreducible cuspidal automorphic representation ε of M(A), which
is square integrable up to a twist of automorphic character of M(A). For any
π =

⊗
ν∈|k|

πν ∈ A(Gn), by [30], there exists a cuspidal datum (P, ε) of Gn , such
that π can be realized as an irreducible subquotient of the induced representation
IndGn(A)

P(A) (ε) of Gn(A). It follows that for any ν ∈ |k|, the ν-component πν can be
realized as an irreducible subquotient of the induced representation IndGn(kν)

P(kν) (εν)

of Gn(kν), where εν is the ν-component of ε =
⊗

ν εν .
Let T be the maximal torus of Gn , consisting of all diagonal matrices, and

B = T · U be the Borel subgroup of Gn , consisting of all upper-triangular matrices.
Take S to be a finite subset of |k|, such that S contains |k|∞ and for any ν /∈ S,
πν and εν are unramified. It is well known (see [7], for instance) that there exists
an unramified character ην of the maximal torus T (kν), such that εν embeds as a
subrepresentation into the unramified induced representation IndM(knu)

(M∩B)(kν)(ην). By
induction in stages, we have IndGn(kν)

P(kν) (εν) embeds as a subrepresentation into the
spherical induced representation IndGn(kν)

B(kν) (ην) of Gn(kν). Hence, the irreducible
spherical representation πν is the unique spherical subquotient of IndGn(kν)

B(kν) (ην). Via
the Satake isomorphism, the Frobenius–Hecke conjugacy class of πν in Gn(C) is

c(πν)= diag(η1
ν(ϖν), . . . , η

n
ν (ϖν)).

Here ϖν is the uniformizer of the prime ideal pν , and for any t = diag(t1, . . . , tn) ∈
T (kν), the unramified character ην is given by

ην(t)= η1
ν(t1) · · · η

n
ν (tn).
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It is clear that the conjugacy class of the semisimple element c(πν) in the complex
dual group M∨(C) of the Levi subgroup M is the Frobenius–Hecke conjugacy class
c(εν) of εν . In other words, both πν and εν share the same Satake parameter in
T ∨(C)Wn , where Wn is the Weyl group of G∨

n (C).
Take δε to be an automorphic character of M(A) such that δε ⊗ ε is square

integrable modulo the center of M . Then for ν /∈ S, the ν-component (δε ⊗ ε)ν is
spherical and unitary. By the classification of the spherical unitary dual of GLn

over a non-Archimedean local field kν [42], we obtain∣∣logqν max
1≤ j≤n

{
|(δε)

j
ν(ϖν)η

j
ν (ϖν)|

}∣∣ ≤
n − 1

2
.

Since the unramified part of the automorphic character δε is completely determined
by ε and the cuspidal datum (P, ε) of π is uniquely determined by π , up to
conjugation, we obtain that there exists a positive real number κπ , depending only
on π ∈ A(Gn), such that ∣∣logqν max

1≤ j≤n

{
|η j
ν (ϖν)|

}∣∣< κπ .
This justifies the assumption. □

By Theorem 5.4 and Proposition 5.5, we obtain the following absolute conver-
gence.

Corollary 5.6. For any π ∈ A(Gn) and for any φ ∈ Sπ (A×), the π -theta function

2π (x, φ)=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

Another consequence of Proposition 5.5 is the absolute convergence of the global
zeta integral of Godement–Jacquet type for any π ∈ A(Gn).

Corollary 5.7. For any π ∈A(Gn), there exists a positive real number rπ ∈ R, such
that the global zeta integral

Z(s, f, ϕπ )=
∫

GLn(A)

f (g)ϕπ (g)|det g|
s+(n−1)/2
A dg, f ∈ S(Mn(A)), ϕπ ∈ C(π)

is absolutely convergent for any Re(s) > rπ .

Proof. There is no harm to assume that f =
⊗

ν fν is a pure restricted tensor.
Similarly, one can write ϕπ =

∏
ν ϕπν . For the given π ∈ A(Gn), take the finite

subset S of |k| as in the proof of Proposition 5.5. Then for ν /∈ S, the function fν
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is the characteristic function of Mn(oν), and ϕπν is the zonal spherical function
attached to the unramified representation πν . From [16, Chapter I, §7], we have

Z(s, fν, ϕπν )=
1

det(In −α(πν)q−s
ν )

= L(s, πν),

where the left-hand side is absolutely convergent whenever Re(s) > κπ , where κπ
is determined in the proof of Proposition 5.5. It follows that∏

ν /∈S

Z(s, fν, ϕπν )=

∏
ν /∈S

1
det(In −α(πν)q−s

ν )
= L S(s, π)

is absolutely convergent for Re(s) > κπ + 1. As S is a finite set, it is clear that one
can choose a real number rπ to be sufficiently positive (depending on π only) such
that the global zeta integral

Z(s, f, ϕπ )= L S(s, π) ·
∏
ν∈S

Z(s, fν, ϕπν )

converges absolutely for Re(s) > rπ . We are done. □

6. (σ, ρ)-theta functions on GL1

For any k-split reductive group G, as in Section 4, we denote by 5A(G) the set
of irreducible admissible representations of G(A). If we write σ =

⊗
ν∈|k|

σν ,
then we assume that σν ∈ 5kν (G), where at almost all finite local places ν, the
local representations σν are unramified. When ν is a finite local place, σν is an
irreducible admissible representation of G(kν), and when ν is an infinite local place,
we assume that σν is of Casselman–Wallach type as a representation of G(kν). Let
A(G) ⊂ 5A(Gn) be the subset consisting of equivalence classes of irreducible
admissible automorphic representations of G(A), and Acusp(G) be the subset of
cuspidal members of A(G).

For any σ ∈ 5A(G) and ρ : G∨
→ GLn(C), we are going to introduce the

(σ, ρ)-Schwartz space Sσ,ρ(A×), the (σ, ρ)-Fourier operator Fσ,ρ,ψ and (σ, ρ)-theta
functions 2σ,ρ(x, φ) by means of the existence of the local Langlands reciprocity
map as in the local Langlands conjecture for G. The idea is to use the local
Langlands conjecture for the pair (G, ρ) as input and to formulate the global
statements, such as the (σ, ρ)-Poisson summation formula, which is expected to
be responsible for the global functional equation for the Langlands L-function
L(s, σ, ρ) as predicted by the Langlands conjecture, as output. The goal in this
section is to prove Theorem 6.2, which contains Theorem 1.2 as a special case and
serves a base for the discussion on Conjecture 1.5 and its refinement in Section 7.
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6A. On the local Langlands conjecture. We briefly review the local Langlands
conjecture for G over any local field F = kν for any local place ν ∈ |k|.

For any Archimedean local field, the local Langlands conjecture for G is a
theorem of Langlands, which follows from the Langlands classification theory [31].
At any non-Archimedean local places, for unramified representations, their local
Langlands parameters are uniquely determined by the Satake isomorphism [7; 38].
In the following we review the local Langlands conjecture for an F-split reductive
group G over a non-Archimedean local field F of characteristic zero.

Let WF be the Weil group attached to F . The set of local Langlands parame-
ters is denoted by 8F (G), which consists of continuous, Frobenius semisimple
homomorphisms

ς : WF × SL2(C)→ G∨,(6-1)

up to conjugation by G∨. The local Langlands conjecture asserts that there exists a
reciprocity map

RF,G : Rep(G(F))→8F (G),(6-2)

where Rep(G(F)) is the set of equivalence classes of smooth representations of
G(F) of finite length. RF,G is expected to be surjective with finite fibers, and
to satisfy a series of compatibility conditions. Beyond the existence, one has to
formulate and prove the uniqueness of such a local Langlands reciprocity map.

When G = GLn , it is a theorem of Harris–Taylor [17], of G. Henniart [19] and
of P. Scholze [39] that the local Langlands reciprocity map exists and is unique
with compatibility of local factors, plus other conditions. Note that in this case, the
uniqueness of such a local Langlands reciprocity map is proved by Henniart using
the special case of the local converse theorem [18]. However, such a uniqueness is
not known in general. When G is an F-quasisplit classical group, then such a local
Langlands reciprocity map exists due to the endoscopic classification of J. Arthur [2].

In their recent work [13], L. Fargues and P. Scholze use the geometrization
method to understand the local Langlands conjecture. In particular, they establish a
local Langlands reciprocity map for any F-split reductive groups considered in this
paper. More precisely, Theorem I.9.6 of [13] asserts that for any F-split reductive
group G, there exists a local Langlands reciprocity map RF,G from Rep(G(F))
to 8F (G), satisfying nine compatibility conditions. In particular when G = GLn ,
the reciprocity map of Fargues and Scholze coincides with the unique one for GLn .
When G is an F-quasisplit classical group, the reciprocity map of Fargues and
Scholze coincides with the one by Arthur. Although it is still not known (as far as
the authors know) if the reciprocity map of Fargues and Scholze is unique, it is the
most promising one towards the local Langlands conjecture in great generality.

From now on, we are going to take the following assumption.
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Assumption 6.1. Over any non-Archimedean local field F of characteristic zero,
for any F-split reductive group G, the reciprocity map RF,G exists for the local
Langlands conjecture for G.

We may simply take the reciprocity map RF,G as defined in [13, Theorem I.9.6]
for the local Langlands conjecture. In fact, the relevant discussions in the rest of
this paper make no essential difference on which reciprocity map RF,G we are
going to take. Of course, the difference may occur if one discuss the definition of
local L-functions L(s, σ, ρ) or γ -functions γ (s, σ, ρ, ψ). but we are not going to
discuss those objects in the rest of this paper.

6B. Convergence of (σ, ρ)-theta functions. Let G be a k-split reductive group.
Take ρ : G∨(C) → GLn(C) to be any finite-dimensional representation of the
complex dual group G∨(C). For any σ ∈ 5A(G), we write σ =

⊗
ν σν with

σν ∈5kν (G). By Assumption 6.1, for any local place ν ∈ |k|, there exists a local
L-parameter ςν = ςν(σν) such that the composition ρ ◦ ςν is a local L-parameter
for Gn(kν)= GLn(kν). By the local Langlands conjecture for GLn [17; 19; 31; 39],
there exists a unique irreducible admissible representation

πν = πν(σ, ρ,Rkν ,G)(6-3)

belonging to 5F (Gn), which we may simply denote, if there is no confusion, by

πν = πν(σν, ρ).(6-4)

According to the Langlands functoriality conjecture, it makes sense to define the
(σν, ρ)-Schwartz space on k×

ν to be

Sσν ,ρ(k
×

ν ) := Sπν (k
×

ν ).(6-5)

At unramified local places, the (σν, ρ)-basic function Lσν ,ρ is taken to be the πν-
basic function Lπν ∈ Sπν (k×

ν ). Then we can define the (σ, ρ)-Schwartz space on
A× to be the restricted tensor product

Sσ,ρ(A×) :=

⊗
ν

Sσν ,ρ(k
×

ν )(6-6)

with respect to the basic function Lσν ,ρ at almost all finite local places. Note that
the definition of the (σ, ρ)-Schwartz space Sσ,ρ(A×) may rely on the assumption
of the local Langlands reciprocity map (Assumption 6.1) at the ramified finite local
places of σ , when G is a general k-split reductive group.

Let ψ =
⊗

ν ψν be a nontrivial additive character of A with ψ(a)= 1 for any
a ∈ k. Define the (σν, ρ)-Fourier operator Fσν ,ρ,ψν on k×

ν to be

(6-7) Fσν ,ρ,ψν := Fπν ,ψν ,
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which is a linear transformation from the (σν, ρ)-Schwartz space Sσν ,ρ(k×
ν ) to the

(σ̃ν, ρ)-Schwartz space Sσ̃ν ,ρ(k×
ν ). Then we define the (σ, ρ)-Fourier operator

Fσ,ρ,ψ :=

⊗
ν

Fσν ,ρ,ψν ,(6-8)

which is a linear transformation from the (σ, ρ)-Schwartz space Sσ,ρ(A×) to the
(̃σ , ρ)-Schwartz space Sσ̃ ,ρ(A×). Again, the definition of the (σ, ρ)-Fourier op-
erator Fσ,ρ,ψ may rely on the assumption of the local Langlands reciprocity map
(Assumption 6.1) at the ramified finite local places of σ , when G is a general k-split
reductive group.

Theorem 6.2 (convergence of (σ, ρ)-theta functions). Let ρ : G∨(C)→ GLn(C)

be any finite-dimensional representation of the complex dual group G∨(C). Take
Assumption 6.1 for G. Then, for any given unitary σ ∈ 5A(G), the (σ, ρ)-theta
function

2σ,ρ(x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly for any φ ∈ Sσ,ρ(A×) and x ∈ A×.

Proof. As discussed above, under Assumption 6.1 for G, for any σ =
⊗

ν σν ∈

5A(G), we obtain πν = πν(σν, ρ) of GLn(kν) for all ν ∈ |k|. Note that at ν ∈ |k|∞,
πν is taken to be of Casselman–Wallach type. Hence, π :=

⊗
ν πν is an irreducible

admissible representation of Gn(A) and belongs to 5A(Gn). From (6-5) and (6-6),
we have that

2σ,ρ(x, φ)=2π (x, φ)

for any φ ∈ Sσ,ρ(A×) = Sπ (A×). By Theorem 5.4, it is sufficient to verify
Assumption 5.1 for this π .

Since σ =
⊗

ν σν is unitary as a representation of G(A), we must have that σν
is an irreducible admissible unitary representation of G(kν) at every ν ∈ |k|, and
is unramified for almost all ν ∈ |k|. Since G is k-split, we can fix a Borel pair
(B, T ) of G defined over k, with a fixed maximal k-split torus T of G. Let ϱ be
the half-sum of positive roots with respect to the given pair (B, T ) and let δB be
the modular character of B(kν). Then, for any coweight ω∨

∈ Hom(Gm, T ),

δB(ω
∨(ϖν))

1/2
= q⟨ϱ,ω∨

⟩

ν ,

where ϖν is a fixed uniformizer in oν and ω∨ is viewed as a cocharacter from k×
ν

to T (kν).
Let S be a finite subset of |k| containing |k|∞, such that for any ν /∈ S, both σν

and πν are unramified. For any ν /∈ S, σν is unitary and unramified. Then the zonal
spherical function attached to σν , which is the normalized matrix coefficient of σν
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attached to spherical vectors in σν , is bounded by 1 — see [7, p. 151, (40)], for
instance. Now let

c(σν)= (qs1(σν)
ν , . . . , qsr (σν)

ν )

be the Frobenius–Hecke conjugacy class of σν inside T ∨(C)≃ (C×)r , where r is
the k-rational rank of G. Then, by [36, Theorem 4.7.1],

max
1≤ j≤r

{|s j (σν)|} ≤ max
1≤ j≤r

{|⟨ϱ, ω∨

j ⟩|},

where {ω∨

j }
r
j=1 is a fixed set of fundamental coweights. Note that the result of

[36] assumes G to be simple-connected. But if we go over the proof of [36,
Theorem 4.7.1], the only result used is the explicit formula for zonal spherical
functions when the Frobenius–Hecke conjugacy class c(σν) of σν is nonsingular.
Hence, it suffices to apply the general formula appearing in [8, Theorem 4.2] to the
proof of [36, Theorem 4.7.1]. Therefore max1≤ j≤r {|s j (σν)|} has an upper bound
which is independent of the local places ν.

At unramified local places, we obtain the Frobenius–Hecke conjugacy class
c(πν) of πν to be

c(πν)= ρ(c(σν))

for all ν /∈ S. It is clear that for this π =
⊗

ν πν ∈ 5A(Gn), the family of the
Frobenius–Hecke conjugacy classes

{c(πν) | ∀ν /∈ S}

associated to the irreducible admissible representation π satisfies Assumption 5.1.
We are done. □

Note that the definition of the (σ, ρ)-theta function 2σ,ρ(x, φ) may depend
on the existence of the local Langlands reciprocity map RF,G for general G
(Assumption 6.1), However, the absolute convergence of2σ,ρ(x, φ) in Theorem 6.2
only depends on the unramified data, and hence is independent of Assumption 6.1.
As a consequence of Theorem 4.7, we have:

Corollary 6.3. Assume the global Langlands functoriality is valid for (G, ρ). For
σ ∈ Acusp(G), if its functorial transfer π is cuspidal on Gn(A), then Conjecture 1.5
holds with Eσ,ρ(φ)=2σ,ρ(1, φ) for any φ ∈ Sσ,ρ(A×).

7. Variants of Conjecture 1.5

In Theorem 4.7, we established a π-Poisson summation formula (Conjecture 1.5)
for any π ∈ Acusp(Gn) and ρ = std. We explore the possibilities when π is not
cuspidal.
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7A. Certain special Schwartz functions. As before, we take F to be any local
field of characteristic zero. For any π ∈ 5F (Gn), recall from Definition 3.3 the
space of π -Schwartz functions

Sπ (F×)= Span{φξ,ϕπ ∈ C∞(F×) | ξ ∈ Sstd(Gn(F)), ϕπ ∈ C(π)},

where the π -Schwartz function φξ,ϕπ associated to a pair (ξ, ϕπ ) is defined in (3-6).
We introduce here a subspace of Sπ (F×):

S◦

π (F
×) := Span{φξ,ϕπ | ξ ∈ C∞

c (Gn(F)), ϕπ ∈ C(π)}.(7-1)

We prove the following result, which provides a new description of the test functions
in C∞

c (F
×), the space of all smooth, compactly supported functions on F×.

Theorem 7.1. Let F be any local field of characteristic zero. For any π ∈5F (Gn),
the subspace S◦

π (F
×) of Sπ (F×) as defined in (7-1) is equal to the space C∞

c (F
×),

i.e.,
S◦

π (F
×)= C∞

c (F
×).

First of all, via the determinant morphism det : Gn → Gm , it is not hard to verify
that the fiber integration

ξ 7→

∫
det g=x

ξ(g) dx g

yields a surjective homomorphism from C∞
c (Gn(F)) to C∞

c (F
×). For any ξ ∈

C∞
c (Gn(F)) and ϕπ ∈ C(π), the product ξ(g)ϕπ (g) belongs to C∞

c (Gn(F)). With
the fiber integration through det, the function φξ,ϕπ (x) belongs to C∞

c (F
×). Hence,

we obtain that

S◦

π (F
×)⊂ C∞

c (F
×)(7-2)

for any π ∈5F (Gn). To prove the converse of (7-2), we are going to use different
arguments for the non-Archimedean case and the Archimedean case.

We first consider the non-Archimedean case. For any quasicharacter χ ∈X(F×),
it can be written in a unique way as χ(x) = |x |

s
F ·ω(x) with s ∈ C and ω ∈ �∧.

We may write χ = χs,ω and X(F×) = C ×�∧. Furthermore, we write the space
Z(X(F×)) defined in Definition 2.2 as Z(C×�∧). We denote by Lcpt the subspace
of Z(C ×�∧) consisting of functions z(χs,ω)= z(s, ω) ∈ Z(C ×�∧) with the two
properties

(1) z(s, ω) is nonzero at finitely many ω ∈�∧;

(2) for any ω ∈�∧, z(s, ω) ∈ C[qs, q−s
].

By Theorem 2.3, the subspace Lcpt is in one-to-one correspondence with C∞
c (F

×)

via the Mellin transform and its inversion. Denote by L◦
π the subspace of Lcpt that
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is in one-to-one correspondence with the subspace S◦
π (F

×). From the discussion
right after [34, Theorem 3.1.1], for any given ω ∈�∧, the subspace

I◦

π,ω := {Z(s, ξ, ϕπ , ω) | ξ ∈ C∞

c (Gn(F)), ϕπ ∈ C(π)}

of the fractional ideal Iπ,ω as in Theorem 2.4 is equal to C[qs, q−s
]. For the fixed

ω ∈�∧, the space I◦
π,ω consists of the restriction of functions in Lcpt to the slice

C × {ω}, according to the definition of the space Lcpt. In other words, for any
fixed ω ∈ �∧ and z(s, ω) ∈ Lcpt, there exists finitely many ξ j

ω ∈ C∞
c (Gn(F)) and

ϕ
j
π,ω ∈ C(π), such that

z(s, ω)=

∑
j

Z(s, ξ j
ω, ϕ

j
π,ω, ω)=

∑
j

Z(s, φ
ξ

j
ω,ϕ

j
π,ω
, ω)

for any s ∈ C. Hence, with any fixed ω ∈ �∧, for any z(s, ω) ∈ Lcpt, there exists
z◦(s, ω) ∈ L◦

π such that

z(s, ω)= z◦(s, ω)(7-3)

as functions in s ∈ C.
Define, for each ω0 ∈�∧, a function zω0(s, ω) with the property

zω0(s, ω)=

{
1, if ω = ω0,

0, if ω ̸= ω0.

By definition, the function zω0(s, ω) belongs to Lcpt for each ω0 ∈�∧. Hence, from
(7-3), we have

z(s, ω)=

∑
ω0∈�∧

zω0(s, ω) · z(s, ω)=

∑
ω0∈�∧

zω0(s, ω) · z
◦(s, ω0),(7-4)

for any z(s, ω) ∈ Lcpt. Note here that the summations only take finitely many
ω0 ∈�∧. Hence, to prove the converse of (7-2), it is enough to show that

zω0(s, ω) · z
◦(s, ω0) ∈ L◦

π(7-5)

for every ω0 ∈ �∧. It is clear that (7-5) is an easy consequence of the following
proposition.

Proposition 7.2. The space Lcpt is an associative algebra without identity, and the
space L◦

π is an Lcpt-module under multiplication.

Proof. From the definition of Lcpt, it is clear that Lcpt is an associative algebra under
the multiplication and has no identity.

To prove that L◦
π is an Lcpt-module, we take z(s, ω) ∈ Lcpt and write φ as the

Mellin inversion of z(s, ω). Via the determinant morphism det : Gn(F)→ F×, we
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write
φ(x)=

∫
det g=x

f (g) dx g

for some f ∈ C∞
c (Gn(F)). For any ξ ∈ C∞

c (Gn(F)) and ϕπ ∈ C(π), we write
z◦(s, ω) ∈ L◦

π to be the Mellin transform of the function φξ,ϕπ ∈ S◦
π (F

×). It is
enough to show that

z(s, ω) · z◦(s, ω) ∈ L◦

π .(7-6)

It is clear that

z(s, ω) · z◦(s, ω)= Z(s, φ ∗φξ,ϕπ , ω).(7-7)

Now we compute the right-hand side of (7-7) with a fixed ω ∈�∧:

(7-8) Z(s, φ ∗φξ,ϕπ , ω)=

∫
x∈F×

ω(x)|x |
s−1/2
F d×x

∫
y∈F×

φ(y)φξ,ϕπ (y
−1x) d×y

=

∫
F×
ω(x)|x |

s−1/2
F d×x

∫
F×

d×y
∫

det g=y
f (g) dyg

·

∫
det h=y−1x

ξ(h)ϕπ (h) dy−1x h.

After changing variable g → gh−1, the right-hand side of (7-8) is equal to

(7-9)
∫

F×
ω(x)|x |

s−1/2
F d×x

∫
F×

d×y
∫

det g=x
f (gh−1) dx g

·

∫
det h=y−1x

ξ(h)ϕπ (h) dy−1x h.

In (7-9), the integration in y ∈ F× yields the identity

(7-10)
∫

y∈F×
d×y

∫
det h=y−1x

f (gh−1)ξ(h)ϕπ (h) dy−1x h

=

∫
Gn(F)

f (gh−1)ξ(h)ϕπ (h) dh.

By applying (7-10) to (7-9), we can write (7-9) as∫
F×
ω(x)|x |

s−1/2
F d×x

∫
det g=x

∫
Gn(F)

f (gh−1)ξ(h)ϕπ (h) dh dx g,

which is equal to

(7-11)
∫

g∈Gn(F)

∫
h∈Gn(F)

f (gh−1)ξ(h)ϕπ (h)ω(det g)|det g|
s−1/2
F dh dg.

By taking a change of variable h → h−1g, (7-11) can be written as

(7-12)
∫

g∈Gn(F)

∫
h∈Gn(F)

f (h)ξ(h−1g)ϕπ (h−1g)ω(det g)|det g|
s−1/2
F dh dg.
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Since f, ξ ∈ C∞
c (Gn(F)), the function

(g, h) 7→ f (h)ξ(h−1g)

belongs to the space C∞
c (Gn(kν)× Gn(kν)). By [5, 1.22], we have

C∞

c (Gn(kν)× Gn(kν))≃ C∞

c (Gn(kν))⊗ C∞

c (Gn(kν)).

We may write

f (h)ξ(h−1g)=

r∑
j=1

ξ j (g)ξ j (h)

for some ξ j (g) and ξ j (h) in C∞
c (Gn(F)). Meanwhile, we write

(7-13) ϕπ (h−1g)= ⟨π(h−1g)v, ṽ⟩ = ⟨π(g)v, π̃(h)ṽ⟩, v ∈ π, ṽ ∈ π̃ .

By applying those explicit expressions to the integral in (7-12), we obtain that
(7-12) is equal to

r∑
j=1

∫
g∈Gn(F)

∫
h∈Gn(F)

ξi (g)ξ i (h)⟨π(g)v, π̃(h)ṽ⟩ω(det g)|det g|
s−1/2
F dh dg

=

r∑
j=1

∫
g∈Gn(F)

ξi (g)ω(det g)|det g|
s−1/2
F dg

∫
h∈Gn(F)

ξ i (h)⟨π(g)v, π̃(h)ṽ⟩ dh

=

r∑
j=1

∫
Gn(F)

ξi (g)⟨π(g)v, π̃(ξ j )ṽ⟩ω(det g)|det g|
s−1/2
F dg.

By writing ϕπ, j (g) := ⟨π(g)v, π̃(ξ j )ṽ⟩, we obtain that

(7-14) Z(s, φ ∗φξ,ϕπ , ω)=

r∑
j=1

∫
Gn(F)

ξi (g)ϕπ, j (g)ω(det g)|det g|
s−1/2
F dg

=

r∑
j=1

Z(s, φξ j ,ϕπ, j , ω).

By definition of L◦
π , we obtain that the right-hand side of (7-14) belongs to the

space L◦
π , and so does the function Z(s, φ∗φξ,ϕπ , ω). Therefore we have established

(7-6). We are done. □

We have finished the proof of Theorem 7.1 for the non-Archimedean case.
Now we turn to the proof the converse of (7-2), and hence Theorem 7.1 for the
Archimedean case.
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We first treat the case when F ≃ C. It is clear that the multiplication map

(7-15)
m : C×

× SLn(C)→ Gn(C)

(a, h) 7→ a · h

provides a surjective group homomorphism with finite kernel, which in particular
is a smooth (covering) map. The push-forward map along m, which we denote by

m∗ : C∞

c (C
×

× SLn(C))→ C∞

c (Gn(C))(7-16)

is surjective. In fact, the surjectivity can be easily verified as follows. For any
f ∈ C∞

c (Gn(C)), let m∗( f ) be the pull-back of f along m, which is given by

m∗( f )(a, h)= f (a · h), (a, h) ∈ C×
× SLn(C).

Then we obtain that

m∗(m
∗( f ))(h)=

∑
(a,h)∈C×

×SLn(C)
a·h=g

f (a · h)= |ker(m)| · f (g), g ∈ Gn(C).

It is clear now that the subspace S◦
π (C

×) of Sπ (C×) is equal to the space spanned
by the functions

(7-17) φm∗( f ),ϕπ (x)=

∫
det g=x

m∗( f )(g)ϕπ (g) dx g

=

∫
det g=x

∑
(a,h)∈C×

×SLn(C)
a·h=g

f (a, h)ϕπ (g) dx g

with all f ∈ C∞
c (C

×
×SLn(C)) and ϕπ ∈ C(π). Thus, in order to show the converse

of (7-2), it suffices to show that any function in C∞
c (C

×) is of the form as in the
last line of (7-17).

Let χπ be the central character of π . By a change of variable, we write (7-17) as

(7-18) φm∗( f ),ϕπ (x)=

∫
SLn(C)

∑
an=x

f (a, h) ·χπ (a) ·ϕπ (h) d1h.

Assume that f ∈ C∞
c (C

×
× SLn(C)) is given by a pure tensor

f (a, h)= f1(a) · f2(h)

with f1 ∈ C∞
c (C

×) and f2 ∈ C∞
c (SLn(C)). Then (7-18) can be written as

(7-19) φm∗( f ),ϕπ (x)=

( ∑
an=x

f1(a)χπ (a)
)

·

∫
SLn(C)

f2(h)ϕπ (h) d1h.
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It is clear that multiplying by the character χπC
stabilizes the space C∞

c (C
×), which

means that f1(a)χπ (a) ∈ C∞
c (C

×) for any f1 ∈ C∞
c (C

×). The map

C∞

c (C
×)→ C∞

c (C
×) with f 7→

(
x 7→

∑
an=x

f (a)
)

is surjective, since it is the push-forward map along the surjective covering map

C×
→ C× with a 7→ an.

Therefore, any function in C∞
c (C

×) can be written as φm∗( f ),ϕπ (x) for some ϕπ ∈

C(π) and f ∈ C∞
c (C

×
× SLn(C)). This finishes the proof of the converse of (7-2).

We now turn to the case when F = R and treat the cases of n odd and of n even
separately.

When n is odd, the multiplication map

m : R×
× SLn(R)→ Gn(R)

(a, g) 7→ a · g

is surjective, the proof in the complex case is applicable and yields a proof for this
case. We omit the details here.

When n is even, we write Gn(R) as a disjoint union two real smooth manifolds:

Gn(R)= G+

n (R)⊔ G−

n (R),

where G+
n (R) (resp. G−

n (R)) consists of elements in Gn(R) with positive (resp.
negative) determinant.

By the surjectivity of the map

R>0 × SLn(R)→ G+

n (R) with (a, g) 7→ a · g,

the proof in the complex case shows that the space S◦
π (R

×) contains the space
C∞

c (R>0). Since R×
= R>0 ⊔ R<0, we have that

C∞

c (R
×)= C∞

c (R>0)⊕ C∞

c (R<0).

It remains to show that

C∞

c (R<0)⊂ S◦

π (R
×).(7-20)

Take θ = diag(−1, 1, . . . , 1) ∈ Gn(R) and consider the map

m−
: R>0 × SLn(R)→ G−

n (R) with (a, h) 7→ a · h · θ.
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As the complex situation, for any f ∈ C∞
c (R>0 × SLn(R)), we set

(7-21) φm−
∗ ( f ),ϕπ (x)=

∫
det g=x

∑
(a,h)∈R>0×SLn(R)

a·h·θ=g

f (a, h) ·ϕπ (g) dx g,

for x ∈ R<0. We only need to show the space spanned by the functions of the form

(7-22) {x 7→ φm−
∗ ( f ),ϕπ (x) | f ∈ C∞

c (R>0 × SLn(R)), ϕπ ∈ C(π)}

with x ∈ R<0 contains (and hence is equal to) the space C∞
c (R<0).

By a simple change of variable, we obtain that

φm−
∗ ( f ),ϕπ (x)=

∫
SLn(R)

∑
an=−x

f (a, h) ·χπ (a)ϕπ (h · θ) d1h,(7-23)

where χπ is the central character of π ∈5R(n). Assume that f (a, h)= f1(a)· f2(h)
is a pure tensor with f1 ∈ C∞

c (R>0) and f2 ∈ C∞
c (SLn(R)). Then (7-23) can be

written as

φm−
∗ ( f ),ϕπ (x)=

∑
an=−x

f1(a)χπR
(a) ·

∫
SLn(R)

f2(h)ϕπ (h · θ) d1h,(7-24)

with x ∈ R<0. For y = −x > 0, the functions of the form∑
an=y

f1(a)χπR
(a) ·

∫
SLn(R)

f2(h)ϕπ (h · θ) d1h

recover the space C∞
c (R>0), as treated in the previous case. Thus, the functions

of the form in (7-24) recover the space C∞
c (R<0). This completes the proof for

the converse of (7-2) for the Archimedean case. Therefore, we finish the proof of
Theorem 7.1.

7B. A variant of π -Poisson summation formulae. For any π =
⊗

ν∈|k|
∈5A(Gn),

we define in (4-1) the space of π -Schwartz functions on A×:

Sπ (A×)=

⊗
ν

Sπν (k
×

ν ).

We define S◦
π (A

×) to be the subspace of Sπ (A×) that is spanned by the functions
of the form φ =

⊗
ν φν ∈ Sπ (A×) with at least one local component φν belonging

to C∞
c (k

×
ν ). Note that for any φ =

⊗
ν φν ∈ Sπ (A×), there are at most finitely many

local components from C∞
c (k

×
ν ). It is also easy to verify from the definition of

the π -Fourier operator Fπ,ψ as in (4-3) and Theorem 7.1 that there exist functions
φ =

⊗
ν φν ∈ Sπ (A×), such that

Fπ,ψ(φ)=

⊗
ν∈|k|

Fπν ,ψν (φν) ∈ S◦

π̃ (A
×).
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We define S◦◦
π (A

×) to be the subspace of S◦
π (A

×) that is spanned by the functions
of the form φ =

⊗
ν φν ∈ S◦

π (A
×) with the property that Fπ,ψ(φ) ∈ S◦

π̃ (A
×).

Theorem 7.3. Assume that π ∈ A(Gn) is square integrable. For any φ ∈ S◦◦
π (A

×),
the π -Poisson summation formula

2π (x, φ)=2π̃ (x−1,Fπ,ψ(φ))

holds as functions in x ∈ A×.

Proof. By Corollary 5.6, both 2π (x, φ) and 2π̃ (x−1,Fπ,ψ(φ)) are absolutely
convergent. It suffices to show the equality. The proof goes in the same way as
Theorem 4.7 when π ∈ Acusp(Gn). The first key point is that when π is square
integrable, its matrix coefficients can also be realized as the integrals in (4-14), with
β1, β2 ∈ Vπ being not necessarily cuspidal.

The second key point is to prove that the boundary terms defined in (4-23) vanish
automatically by the local assumption on φ at the two local places ν1 and ν2. More
precisely, take φ = φξ,ϕπ ∈ Sπ (A×) and assume that

φ =

⊗
ν

φν =

⊗
ν

φξν ,ϕπν

with ξν(g) = |det g|
n/2
ν fν(g) for some fν ∈ S(Mn(kν)), and ϕπν ∈ C(πν). The

assumption at the two local places ν1 and ν2 is the same as that fν1 ∈ C∞
c (Gn(kν1))

and Fψν2 ( fν2) ∈ C∞
c (Gn(kν2)). For f =

⊗
ν fν and Fψ( f ) =

⊗
ν Fψν ( fν) with

the above fν1 at the given local place ν1 and Fψν2 ( fν2) at the given local place ν2,
the boundary terms B f (h, g) in (4-23) must vanish automatically. Therefore, the
summation identity is established. We refer the other details of the proof to the
proof of Theorem 4.7. □

7C. Refinement of Conjecture 1.5. We are going to state our conjecture on (σ, ρ)-
Poisson summation formula on GL1 with more details, which refines Conjecture 1.5.
We will continue with the discussions in Section 6B. By Assumption 6.1, for
σ ∈ Acusp(G), there exists a π =

⊗
ν πν ∈5A(Gn) with πν = πν(σν, ρ) for all ν.

We define the space Sσ,ρ(A×) of (σ, ρ)-Schwartz functions as in (6-5) and (6-6);
and the (σ, ρ)-Fourier operator Fσ,ρ,ψ as in (6-7) and (6-8). Finally we define the
space S◦◦

σ,ρ(A
×) to be equal to the space S◦◦

π (A
×), which is defined in Section 7B.

Conjecture 7.4 (refinement of Conjecture 1.5). Let G be a k-split reductive group,
and ρ : G∨(C)→ GLn(C) be a representation of the complex dual group G∨(C).
With Assumption 6.1, for any σ ∈ Acusp(G), there exist k×-invariant linear func-
tionals Eσ,ρ and Eσ̃ ,ρ on Sσ,ρ(A×) and Sσ̃ ,ρ(A×), respectively, such that the (σ, ρ)-
Poisson summation formula

(7-25) Eσ,ρ(φ)= Eσ̃ ,ρ(Fσ,ρ,ψ(φ))
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holds for φ ∈ Sσ,ρ(A×). If φ ∈ S◦◦
σ,ρ(A

×), then the identity in (7-25) holds for

Eσ,ρ(φ)(x)=2σ,ρ(x, φ)=

∑
α∈k×

φ(αx)

with x ∈ A×.

We make remarks on Conjecture 1.5 and its refinement Conjecture 7.4.

Remark 7.5. In Corollary 6.3, we have proved that if the global Langlands functo-
riality is valid for (G, ρ) and the image of σ under the functorial transfer is cuspidal
on Gn(A), then Conjectures 1.5 and 7.4 hold with

Eσ,ρ(φ)(x)=2σ,ρ(x, φ)=

∑
α∈k×

φ(αx)

for any φ ∈ Sσ,ρ(A×) and any x ∈ A×. If the global Langlands functoriality is valid
for (G, ρ) and the image of σ under the functorial transfer is square integrable
on Gn(A), then by Theorem 7.3, a similar (σ, ρ)-Poisson summation formula in
Conjecture 7.4 holds for φ ∈ S◦◦

π (A
×).

8. Critical zeros of L(s, π ×χ)

We provide a spectral interpretation of critical zeros of the automorphic L(s, π×χ)

for any π ∈ Acusp(Gn) and character χ of the idele class group Ck = k×
\A× for

a number field k. This can be viewed as a reformulation of [40, Theorem 2] (see
also [12]) in the adelic formulation of A. Connes [11], and is a extension of [11,
Theorem III.1] from the Hecke L-functions L(s, χ) to the standard automorphic
L-functions L(s, π ×χ).

8A. Pólya–Hilbert–Connes pairs. For a number field k, denote by A1
= A1

k :=

ker(| · |A) the norm one ideles of k. Denote by Ck := k×
\A× the idele class group

of k, and define C1
k := k×

\A1. Then A× has a noncanonical decomposition

A×
= A1

× R×

+
,(8-1)

where R×

+ = |A×
|A is the connected component of 1. In the following, we choose

and fix a section of the short exact sequence

1 → A1
→ A×

→ R×

+
→ 1.

This gives a fixed noncanonical decomposition

Ck = C1
k × R×

+
.(8-2)

For any δ > 0, define L2
δ(Ck) to the space consisting of measurable functions

θ : Ck → C
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with a finite Sobolev norm ∥ · ∥δ as defined by

(8-3) ∥θ∥2
δ :=

∫
Ck

|θ(x)|2(1 + (log |x |A)
2)δ/2 d×x .

It is clear that the space L2
δ(Ck) is a Ck-module via the right translation rδ defined by

rδ(a)(θ)(x) := θ(xa)(8-4)

for any θ ∈ L2
δ(Ck) and a, x ∈ Ck . Note that the Ck-module L2

δ(Ck) is not unitary,
but has the property

∥rδ(x)∥ = o(log |x |A)
δ/2, |x |A → ∞.(8-5)

For any π ∈Acusp(Gn), take any φ ∈ Sπ (A×). By Proposition 4.8, for any κ > 0,
there exists a positive constant cκ,φ such that the π -theta function 2π (x, φ) enjoys
the property

|2π (x, φ)| ≤ cκ,φ · min{|x |A, |x |
−1
A }

κ ,

in particular, 2π (x, φ) decays rapidly when |x |A → 0 or |x |A → ∞, and hence
belongs to L2

δ(Ck). Define

(8-6) ∥φ∥
2
δ :=

∫
Ck

|2π (x, φ)|2(1 + (log |x |A)
2)δ/2 d×x

for any φ ∈ Sπ (A×). Then we have the embedding

(8-7) 2π : φ ∈ Sπ (A×) 7→2π ( · , φ) ∈ L2
δ(Ck)

with respect to the Sobolev norms defined in (8-3) and (8-6), respectively.
Denote by 2π the completion of the image 2π (Sπ (A×)) in L2

δ(Ck). Since

rδ(y)(2π ( · , φ))(x)=2π (x, rδ(y)φ)

for any φ ∈ Sπ (A×), with x, y ∈ Ck , the closed subspace 2π is also a Ck-module.
Define the quotient space

Hπ,δ := L2
δ(Ck)/2π ,(8-8)

which is also a Ck-module. The associated representation is denoted by rπ,δ. It is
clear that the restriction of the Ck-module to C1

k is unitary and has the decomposition

Hπ,δ|C1
k
=

⊕
χ∈Ĉ1

k

Hπ,δ,χ .(8-9)

By the fixed (noncanonical) decomposition in (8-2), each eigenspace Hπ,δ,χ is a
module of R×

+. The associated representation is denoted by rπ,δ,χ . Note that rπ,δ,χ
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is also a representation of Ck = C1
k × R×

+ on Hπ,δ,χ . The action of R×

+ on Hπ,δ,χ

generates a flow with the infinitesimal generator

(8-10) Dπ,δ,χ (θ) := lim
ϵ→0

1
ϵ

(
rπ,δ,χ (exp(ϵ)− 1)

)
θ

for any θ ∈ Hπ,δ,χ . As in [11], one should take the pair

(Hπ,δ,χ ,Dπ,δ,χ )(8-11)

to be a candidate of the Pólya–Hilbert space. We call it a Pólya–Hilbert–Connes
pair.

For any χ ∈ Ĉ1
k , by the fixed noncanonical decomposition Ck = C1

k × R×

+ as in
(8-2), the character χ has a unique extension to Ck by defining that it is trivial on R×

+.
We may still denote the extended character by χ .

Theorem 8.1 (critical zeros of L(s, π × χ)). Given any π ∈ Acusp(Gn) and any
character χ ∈ Ĉ1

k , take Dπ,δ,χ as in (8-10) with δ > 1.

(1) The spectrum Sp(Dπ,δ,χ ) is discrete and is contained in i · R with i =
√

−1.

(2) µ ∈ Sp(Dπ,δ,χ ) if and only if L
( 1

2 +µ, π ×χ
)
= 0.

(3) The multiplicity mSp(Dπ,δ,χ )(µ) is equal to the largest integer m < 1
2(1 + δ) with

m ≤ mL(s,π×χ)

( 1
2 +µ

)
, the multiplicity of 1

2 +µ as a zero of the automorphic
L-function L(s, π ×χ).

Note Theorem 8.1 can be viewed as a reformulation of [40, Theorem 2] in the
adelic framework of [11] and is an extension of [11, Theorem III.1] from the Hecke
L-functions L(s, χ) to the standard automorphic L-functions L(s, π×χ). See also
[12] for relevant discussion.

8B. Proof of Theorem 8.1. We are going to prove Theorem 8.1 by using an
argument that combines the approach of [11] and that of [40].

Consider the pairing

L2
δ(Ck)× L2

−δ(Ck)→ C with (θ, η) 7→ ⟨θ, η⟩,(8-12)

where the pairing is defined by the integral

⟨θ, η⟩ :=

∫
Ck

θ(x)η(x) d×x .

For any y ∈ Ck , we have

⟨rδ(y)θ, η⟩ = ⟨θ, r−δ(y−1)η⟩

for any θ ∈ L2
δ(Ck) and η ∈ L2

−δ(Ck).
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Consider a function η∈ L2
−δ(Ck) as a distribution on the eigenspace Hπ,δ,χ . Then

⟨θ, η⟩ = 0(8-13)

for any θ ∈2π , and, for any t ∈ C1
k ,

r−δ(t)η = χ−1(t)η

as a distribution on Hπ,δ,χ . Hence, we may write, for x = ta ∈ Ck = C1
k × R×

+, the
fixed noncanonical decomposition, that

η(x)= χ−1(t)β(a),(8-14)

where β(a) is a measurable function on R×

+ with

∥β∥δ =

∫
R×

+

|β(a)|2(1 + (log |a|)2)−δ/2 d×a <∞.

The orthogonality in (8-13) can be written as

(8-15)
∫
Ck

2π (x, φ)η(x) d×x = 0

for any φ ∈ Sπ (A×). As in [40], we prove the following lemma, which is a
reformulation of Lemma 1 of [40].

Lemma 8.2. The subspace of 2π generated by functions of type

(b ∗2π ( · , φ))(t)=

∫
Ck

b(x)2π (x−1t, φ) d×x

with all b(x) ∈ C∞
c (Ck) is dense in 2π .

Proof. We reformulate the proof of [40, Lemma 1]. For any θ ∈2π , we have

(b ∗ θ)(t)=

∫
Ck

b(x)θ(x−1t) d×x =

∫
Ck

b(x)θ∨(t−1x) d×x = rδ(b)(θ∨)(t−1)

for any b(x)∈ C∞
c (Ck). Since2π is a closed subspace of L2

δ(Ck) and is a Ck-module,
it is clear that b ∗θ belongs to 2π . In particular, we have that b ∗2π ( · , φ) belongs
to 2π for all b(x) ∈ C∞

c (Ck) and all φ ∈ Sπ (A×).
Next, by [11, Lemma 5], there exists a sequence of functions { fn} with fn

belonging to the space S(Ck) of the Bruhat–Schwartz functions on Ck , such that
rδ( fn) tends strongly to 1 in L2

δ(Ck) and the norm of rδ( fn) are bounded. Now
following the same argument as in the proof of [40, Lemma 1], we obtain that there
exists a sequence of functions bn ∈ C∞

c (Ck) with the properties

(1) rδ(bn) converges strongly to 1;

(2) the norm of rδ(bn) is bounded;

(3) bn ∗2π ( · , φ) converges to 2π ( · , φ) for any φ ∈ Sπ (A×).
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Therefore the linear span of b ∗2π ( · , φ) with b(x) ∈ C∞
c (Ck) and φ ∈ Sπ (A×) is

dense in 2π . We are done. □

By Lemma 8.2, it is enough to consider the orthogonality

(8-16)
∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x = 0

for any φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck).

Lemma 8.3. For any η ∈ L2
−δ(Ck), the integral∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x

is zero for any b ∈ C∞
c (Ck) and any φ ∈ Sπ (A×) if and only if

L
( 1

2 + iµ, π ×χ
)
·M(η)(χiµ)

is zero as a function in χiµ, where χiµ is any unitary character of Ck that can be
written as χiµ(x) = χ(t)aiµ for x = ta ∈ Ck = C1

k × R×

+, the fixed noncanonical
decomposition.

Proof. We are going to apply the Parseval formula for the Fourier transform from
Ck to its unitary dual Ĉk to (8-16). Since χiµ(x)= χ(t)aiµ, the Fourier transform
for Ck is

M(θ)(χiµ)=

∫
Ck

θ(x)χ−1
iµ (x) d×x .

By applying the Parseval formula to the integral∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x,

we obtain that (8-16) is equivalent to

(8-17)
∫
Ĉk

M(b)(χiµ)M(2π ( · , φ))(χiµ)M(η)(χiµ) dχiµ = 0

for any φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck). It is easy to verify from definition that

M(2π ( · , φ))(χiµ)= Z
( 1

2 + iµ, φ, χ
)
,

where the right-hand side is the global (GL1) zeta integral as defined in (4-4). From
Corollary 4.4 and [16, Proposition 13.9], the global zeta integral Z

(1
2 + iµ, φ, χ

)
is a bounded function in µ. Hence, the product

Tφ,η(χiµ) := Z
( 1

2 + iµ, φ, χ
)
·M(η)(χiµ)

is a tempered distribution on Ĉk . It follows that (8-17) is the same as

(8-18)
∫
Ĉk

M(b)(χiµ)Tφ,η(χiµ) dχiµ = 0
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for any φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck). Denote by T̂φ,η(x) the (inverse) Fourier

transform of Tφ,η(χiµ). By using the Parseval formula for the (inverse) Fourier
transform, we obtain that (8-18) is equivalent to

(8-19)
∫
Ck

b(x)T̂φ,η(x) d×x = 0

for all φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck). Hence, we must have that (8-19) holds if

and only if T̂φ,η(x)= 0 as distribution on Ck , which is equivalent to Tφ,η(χiµ)= 0 as
distribution on Ĉk . In other words, we obtain that for any η ∈ L2

−δ(Ck), the integral∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x

is zero for any b ∈ C∞
c (Ck) and any φ ∈ Sπ (A×) if and only if

(8-20) Z
( 1

2 + iµ, φ, χ
)
·M(η)(χiµ)= 0

for all φ ∈ Sπ (A×). By Corollary 4.4 and [16, Theorem 13.8], there exist finitely
many φ1, . . . , φℓ ∈ Sπ (A×) such that

Z
( 1

2 + iµ, φ1, χ
)
+ · · · +Z

( 1
2 + iµ, φℓ, χ

)
= L

( 1
2 + iµ, π ×χ

)
.

Thus we obtain that (8-20) implies

L
( 1

2 + iµ, π ×χ
)
·M(η)(χiµ)= 0(8-21)

as a function in χiµ.
To prove the converse, we consider factorizable data φ =

⊗
ν φν ∈ Sπ (A×) and

χ =
⊗

ν χν . The global zeta integral factorizes into an Euler product

Z(s, φ, χ)=

∏
ν

Z(s, φν, χν).

By Theorem 3.4, we obtain that

Z(s, φ, χ)= L(s, π ×χ) ·
∏
ν∈S

Z(s, φν, χν)
L(s, πν ×χν)

,

where S is the finite set of local places, including all Archimedean local places
of k, such that for any ν ̸∈ S, the data πν and χν are unramified, and the quotient
Z(s, φν, χν)/L(s, πν ×χν) is holomorphic in s ∈C. Hence, if η∈ L2

−δ(A
×) satisfies

L
( 1

2 + iµ, π ×χ
)
·M(η)(χiµ)= 0

as a function in χiµ, i.e., (8-21) holds, then (8-20) holds for factorizable data
φ =

⊗
ν φν ∈ Sπ (A×) and χ =

⊗
ν χν . Hence, it holds for all φ ∈ Sπ (A×) and

all χ . We are done. □
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The rest of the proof of Theorem 8.1 is exactly the same as the proof of [40,
Theorem 2, page 178], which follows from the same argument of Connes (in the
proof of [11, Theorem III.1, pp. 86–87]). We omit the details.
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