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Let µM,D be the planar self-affine measure generated by an expansive integer
matrix M ∈ M2(Z) and a noncollinear integer digit set

D =

{(
0
0

)
,

(
α1

α2

)
,

(
β1

β2

)
,

(
−α1−β1

−α2−β2

)}
.

We show that µM,D is a spectral measure if and only if there exists a matrix
Q ∈ M2(R) such that (M̃, D̃) is admissible, where M̃ = QMQ−1 and D̃ =

Q D. In particular, when α1β2 −α2β1 /∈ 2Z, µM,D is a spectral measure if and
only if M ∈ M2(2Z). This completely settles the spectrality of the self-affine
measure µM,D.

1. Introduction

Let µ be a Borel probability measure with compact support on Rn , and let ⟨ · , · ⟩

denote the standard inner product on Rn . We say that µ is a spectral measure
if there exists a countable set 3 ⊂ Rn such that the exponential function system
E3 := {e2π i⟨λ,x⟩

: λ ∈ 3} forms an orthonormal basis for the Hilbert space L2(µ).
In this case, we call 3 a spectrum of µ and (µ, 3) a spectral pair. In particular, if
µ is the normalized Lebesgue measure supported on a Borel set �, then � is called
a spectral set.

Spectral measure is a natural generalization of spectral set introduced by Fu-
glede [20], who proposed the famous conjecture that � is a spectral set if and only
if � is a translational tile. It is known [22] that a spectral measure µ must be of
pure type: µ is either discrete, or absolutely continuous or singularly continuous.
The first singularly continuous spectral measure was constructed by Jorgensen and
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Pedersen in 1998 [24]. They proved that the middle-fourth Cantor measure is a
spectral measure with a spectrum

3 =

{ n∑
k=0

4kℓk : ℓk ∈ {0, 1}, n ∈ N

}
.

Following this discovery, there is a considerable number of papers on the spectrality
of self-affine measures and the construction of their spectra; see [2; 3; 5; 6; 7; 8;
12; 13; 16; 18; 29]. These results are generalized further to some classes of Moran
measures (see, e.g., [1; 9; 19]), and some surprising convergence properties of the
associated Fourier series were discovered in [38; 39]. These fractal measures also
have very close connections with the theory of multiresolution analysis in wavelet
analysis; see [11].

In [14], Dutkay and Jorgensen summarized some known results regarding iterated
function systems (IFS); see [23] for details. Two approaches to harmonic analysis
on IFS have been popular: one based on a discrete version of the more familiar
and classical second-order Laplace differential operator of potential theory; see
[27; 28; 30]; and the other is based on Fourier series. The first model in turn is
motivated by infinite discrete network of resistors, and the harmonic functions are
defined by minimizing a global measure of resistance, but this approach does not
rely on Fourier series. In contrast, the second approach begins with Fourier series,
and it has its classical origins in lacunary Fourier series [26].

For an expansive real matrix M ∈ Mn(R) and a finite digit set D ⊂ Rn with
cardinality #D, the iterated function system (IFS) {φd(x)}d∈D is defined by φd(x) =

M−1(x + d) (x ∈ Rn , d ∈ D). By [23], there exists a unique probability measure
µM,D satisfying

(1-1) µM,D =
1

#D

∑
d∈D

µM,D ◦ φ−1
d .

It is supported on the unique nonempty compact set T (M, D)=
⋃

d∈D φd(T (M, D)).
Hence

T (M, D) =

{ ∞∑
k=1

M−kdk : dk ∈ D
}

:=

∞∑
k=1

M−k D.

The measure µM,D and the set T (M, D) are called self-affine measure and self-
affine set, respectively. It is known that a self-affine measure µM,D can be expressed
by the infinite convolution of discrete measures as

µM,D = δM−1 D ∗ δM−2 D ∗ δM−3 D ∗ · · · ,

where ∗ is the convolution sign, δE =
1

#E

∑
e∈E δe for a finite set E and δe is the

Dirac measure at the point e.
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Self-affine measures have the advantage that their Fourier transforms (see (2-1))
can be explicitly written down as an infinite product, which allows us to compute
their zeros. The previous research on self-affine measures µM,D and their Fourier
transform have revealed some surprising connections with a number of areas in
mathematics such as harmonic analysis, dynamical systems, number theory and
others (see, e.g., [21; 25; 37]).

In the previous works, the spectral self-affine measures are usually generated by
compatible pairs (known also as Hadamard triples). The appearance of compatible
pairs stems from the terminology of [38].

Definition 1.1. Let M ∈ Mn(Z) be an expansive integer matrix, and let D, S ⊂ Zn

be two finite digit sets with #D = #S = N . We say that (M, D) is admissible (or
(M−1 D, S) forms a compatible pair or (M, D, S) forms a Hadamard triple) if the
matrix

H =
1

√
N

(
e2π i⟨M−1d,s⟩

)
d∈D,s∈S

is unitary, i.e., H∗H = I , where I is a n×n identity matrix.

The well-known result of Jorgensen and Pedersen [24] shows that if (M, D) is
admissible, then there are infinite families of orthogonal exponential functions in
L2(µM,D). Dutkay and Jorgensen [13; 15] formulated the famous conjecture that
if (M, D) is admissible, then µM,D is a spectral measure. It was first proved in one
dimension by Łaba and Wang [29]. The conjecture is true in higher dimensions
under some additional assumptions, introduced by Strichartz [38]. There are many
other papers that investigated it in higher dimensional cases; see [12; 32]. In the
end, Dutkay, Haussermann and Lai [16] proved that:

Theorem 1.2. Let M ∈ Mn(Z) be an expansive integer matrix, and let D ⊂ Zn be a
finite digit set. If (M, D) is admissible, then µM,D is a spectral measure.

In [18], Fu, He and Lau gave an example to illustrate that the sufficient condition
in Theorem 1.2 is not necessary in one dimension. For an expansive integer matrix
M ∈ M2(Z) and the classic digit set D =

{( 0
0

)
,
( 1

0

)
,
( 0

1

)}
, the spectrality and

nonspectrality of the corresponding self-affine measure µM,D has been widely
investigated by many researchers; see [12; 31; 32]. Eventually, An, He and Tao [2]
completely settled the spectrality of µM,D . More precisely, they showed that µM,D

is a spectral measure if and only if (M, D) is admissible. For a more general integer
digit set D with 0 ∈ D and #D = 3, there is also a complete spectral characterization;
see [4; 35; 36]. In addition to these, another important integer digit set is

(1-2) D =

{(
0
0

)
,

(
α1

α2

)
,

(
β1

β2

)
,

(
−α1−β1

−α2−β2

)}
,
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where α1β2 −α2β1 ̸= 0. The existence of infinitely many orthogonal exponentials
in L2(µM,D) has been fully studied in [33; 40; 41]. Recently, Fu and Tang [17]
considered the special case where α1 = 1, α2 = 0, β1 = 0 and β2 = 1. They fully
characterized the spectrality of the corresponding self-affine measures. However, to
the best of our knowledge, the complete description of spectral properties of the
general case (1-2) is not known yet. A natural subsequent question is:

Question 1. For an expansive integer matrix M ∈ M2(Z) and the digit set D given
by (1-2), what is the sufficient and necessary condition for µM,D to be a spectral
measure?

In the study of the spectrality of self-affine measures µM,D on Rn , the finiteness
and rationality of the set Zn

D :=
{

x ∈ [0, 1)n
:
∑

d∈D e2π i⟨d,x⟩
= 0

}
are pivotal.

Many classic digit sets, such as {0, 1, . . . , N − 1}, {(0, 0)t , (1, 0)t , (0, 1)t
} and the

digit set D given by (1-2), exhibit the desired property. This has attracted a large
number of researchers to study their spectrality of the corresponding self-affine
measures. However, if Zn

D is infinite or irrational, resolving the spectrality of the
corresponding self-affine measure becomes a formidable challenge. For instance,
consider M ∈ M2(Z) and D = {(0, 0)t , (1, 0)t , (0, 1)t , (1, 1)t

}. It is easy to get that

Z2
D =

{( 1
2
a

)
∪

(
a
1
2

)
: a ∈ [0, 1)

}
.

This means that Z2
D encompasses a submanifold characterized by the free variable

a ∈ [0, 1). For the more general digit set D = {0, u, v, u + v} ⊂ Z2, the set Z2
D

is infinite and includes free variables. The spectral properties of these self-affine
measures have not been resolved.

The cardinality #D of a digit set D significantly influences the properties of Zn
D .

In [3], An, He and Lai extensively classified four-element digit spectral self-similar
measures on R. They showed that if #D = 4 and the corresponding self-similar
measure is a spectral measure, then D is rational and Z1

D is finite and rational.
However, if D does not have any special structures and #D ≥ 5, the set Zn

D is
hard to calculate and may be irrational. For example, let D = {0, 1, 3, 5, 6}. Then
Z1

D ⊂ R\Q by [3, Example 5.2]. This makes it very difficult to study the spectrality
of the corresponding self-similar measure.

Inspired by the above researches and due to the finiteness and rationality of the
set Z2

D corresponding to the digit set D given by (1-2), we can give an answer to
Question 1. Before presenting our results, a reasonable assumption for the digit set D
is necessary. Without loss of generality, we can assume that gcd(α1, α2, β1, β2) = 1
by Lemma 2.2.

Our first main result is as follows:
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Theorem 1.3. Let µM,D be defined by (1-1), where M ∈ M2(Z) is an expansive
integer matrix and D is given by (1-2). Then µM,D is a spectral measure if and
only if there exists a matrix Q ∈ M2(R) such that (M̃, D̃) is admissible, where
M̃ = QMQ−1 and D̃ = Q D.

We remark that Theorem 1.3 gives a complete answer to the spectral Question 1.
We now outline the strategy of the proof of Theorem 1.3. The sufficiency of
Theorem 1.3 follows directly from Theorem 1.2 and Lemma 2.2. The more chal-
lenging part of the proof is the necessity. The key point is to construct a self-affine
measure µM̃,D̃ so that it has the same spectrality as the measure µM,D, and then
the necessity follows immediately from Theorems 1.5 and 1.6. What is exciting
is that the proof method of the necessity is new and completely different from the
previous work proving spectral self-affine measures.

It is worth noting that if D satisfies α1β2 −α2β1 /∈ 2Z, we can give more explicit
sufficient and necessary conditions for µM,D to be a spectral measure. Before
presenting them, some notation is needed. For any integer p ≥ 2, we define

(1-3) F2
p :=

1
p

{(
l1

l2

)
: 0 ≤ l1, l2 ≤ p − 1, li ∈ Z

}
and F̊2

p := F2
p \ {0}.

Under the above notation and the assumption of α1β2 − α2β1 /∈ 2Z, we give the
second main result:

Theorem 1.4. Let µM,D and F̊2
p be defined by (1-1) and (1-3), respectively, where

M ∈ M2(Z) is an expansive integer matrix and D is given by (1-2). If α1β2 −α2β1 /∈

2Z, then the following statements are equivalent:

(i) µM,D is a spectral measure.

(ii) M ∈ M2(2Z).

(iii) MF̊2
2 ⊂ Z2.

(iv) (M, D) is admissible.

We point out that the proofs of Theorems 1.3 and 1.4 are based on the precise
form of the matrix M̃ in Theorem 1.3. Before giving the form, some technical work
needs to be done. For an expansive integer matrix M ∈ M2(Z) and the digit set D
given by (1-2), we can let M =

(a
c

b
d

)
and α1β2 −α2β1 = 2ηγ with η ≥ 0 and γ /∈ 2Z.

Without loss of generality, we assume gcd(α1, α2) = α with α /∈ 2Z (otherwise, we
can choose α =gcd(β1, β2) with α /∈2Z since gcd(α1, α2, β1, β2)=1). Let α1 =αt1
and α2 = αt2 with gcd(t1, t2) = 1. Then there exist p, q ∈ Z such that pt1 +qt2 = 1.
Clearly, α = pα1 + qα2 and α | γ . For convenience, we define ω = pβ1 + qβ2 and
β = γ /α. It is easy to check that t1α2 = t2α1 and t1β2 − t2β1 = 2ηβ with β /∈ 2Z.
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Define Q =
( p

−t2
q
t1

)
. Then one has

(1-4) M̃ := QM Q−1
=

(
(pa+qc)t1+(pb+qd)t2 (pb+qd)p−(pa+qc)q
(ct1−at2)t1+(dt1−bt2)t2 (dt1−bt2)p−(ct1−at2)q

)
and

(1-5) D̃ := Q D =

{(
0
0

)
,

(
α

0

)
,

(
ω

2ηβ

)
,

(
−α−ω

−2ηβ

)}
⊂ Z2.

Obviously, M̃ is an expansive integer matrix with det(M̃) = det(M). Also, η = 0
and η > 0 are equivalent to α1β2 − α2β1 /∈ 2Z and α1β2 − α2β1 ∈ 2Z, respectively.

For η = 0 in D̃, we have the following conclusion, which is equivalent to
Theorem 1.4 by using the property of similarity transformation.

Theorem 1.5. Let µM̃,D̃ and F̊2
p be defined by (1-1) and (1-3), respectively, where

M̃ and D̃ are given by (1-4) and (1-5), respectively. If η = 0, then the following
statements are equivalent:

(i) µM̃,D̃ is a spectral measure.

(ii) M̃ ∈ M2(2Z).

(iii) M̃F̊2
2 ⊂ Z2.

(iv) (M̃, D̃) is admissible.

On the other hand, if η > 0 in D̃, the form of M̃ is different from that in the case
η = 0.

Theorem 1.6. Let µM̃,D̃ be defined by (1-1), where M̃ and D̃ are given by (1-4)
and (1-5), respectively. If η > 0, then µM̃,D̃ is a spectral measure if and only if the
matrix M̃ =

( ã
c̃

b̃
d̃

)
satisfies ã, d̃ ∈ 2Z and 2η+1

| c̃.

We now give a brief explanation of the proofs of Theorems 1.5 and 1.6. The
main technical difficulty in the proofs lies in “(i) H⇒ (ii)” of Theorem 1.5 and the
necessity of Theorem 1.6. More precisely, the key point is to construct a Moran
measure µA,M̃,D̃ (see (3-1)) so that it has the same spectrality as µM̃,D̃. For the
matrix A, we need to cleverly describe its complete residue system (Proposition 3.3).
We carefully investigate the structure of the spectrum of µA,M̃,D̃ (see (3-11)). And
then we get a property of decomposition on the spectrum of µM̃,D̃ under the
assumption that µA,M̃,D̃ is a spectral measure (Lemma 3.5). With their help, the
proof becomes within reach.

The paper is organized as follows. In Section 2, we introduce some basic
definitions and lemmas. In Section 3, we focus on proving Theorems 1.5 and 1.6.
Finally, we prove Theorems 1.3 and 1.4, and give some concluding remarks in
Section 4.
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2. Preliminaries

For the self-affine measure µM,D defined by (1-1), the Fourier transform of µM,D

is defined by

(2-1) µ̂M,D(ξ) =

∫
e2π i⟨x,ξ⟩ dµM,D(x) =

∞∏
j=1

m D(M∗− j
ξ), ξ ∈ Rn,

where M∗ denotes the transpose of M and m D( · ) =
1

#D

∑
d∈D e2π i⟨d,· ⟩ is the

mask polynomial of D. We denote the set of all the roots of f (x) by Z( f ), i.e.,
Z( f ) = {x : f (x) = 0}. Using (2-1), one has

(2-2) Z(µ̂M,D) =

∞⋃
j=1

M∗ j (Z(m D)).

For a countable set 3 ⊂ Rn , E3 = {e2π i⟨λ,x⟩
: λ ∈ 3} is an orthogonal family of

L2(µM,D) if and only if µ̂M,D(λ1 −λ2) = 0 for any λ1 ̸= λ2, which is equivalent to

(2-3) (3 − 3) \ {0} ⊂ Z(µ̂M,D).

If E3 forms an orthogonal family of L2(µM,D), then 3 is called an orthogonal set
of µM,D. Note that the properties of spectra are invariant under a translation, so
we can always assume that 0 ∈ 3.

In a number of applications, one encounters a measure µ and a subset 3 such
that the functions e2π i⟨λ,x⟩ indexed by 3 are orthogonal in L2(µ), but a separate
argument is needed in order to show that the family is complete. Let

(2-4) Qµ,3(ξ) =

∑
λ∈3

|µ̂(ξ + λ)|2, ξ ∈ Rn.

The following result is a basic criterion for the spectrality of µ.

Theorem 2.1 [24]. Let µ be a Borel probability measure with compact support
on Rn , and let 3 ⊂ Rn be a countable set. Then:

(i) 3 is an orthogonal set of µ if and only if Qµ,3(ξ) ≤ 1 for ξ ∈ Rn .

(ii) 3 is a spectrum of µ if and only if Qµ,3(ξ) ≡ 1 for ξ ∈ Rn .

The following lemma indicates that the spectrality of µM,D is invariant under a
similarity transformation.

Lemma 2.2 [12]. Let D1, D2 ⊂ Rn be two finite digit sets with the same cardinality,
and let M1, M2 ∈ Mn(R) be two expansive real matrices. If there exists a matrix
Q ∈ Mn(R) such that M2 = QM1 Q−1 and D2 = Q D1, then µM1,D1 is a spectral
measure with spectrum 3 if and only if µM2,D2 is a spectral measure with spectrum
Q∗−13.
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The following result is a known fact, which was proved in [16] and will be used
in the proof of Proposition 3.3.

Lemma 2.3. Let M ∈ Mn(Z) be an expansive integer matrix, and let D, S ⊂ Zn be
two finite digit sets with the same cardinality. Then the following three statements
are equivalent:

(i) (M, D, S) is a Hadamard triple.

(ii) m D(M∗−1(s1 − s2)) = 0 for any distinct s1, s2 ∈ S.

(iii) (δM−1 D, S) is a spectral pair.

Recalling that µM,D is defined by (1-1), we let A be a nonsingular matrix and
define the Moran measure

(2-5) µA,M,D = δA−1 D ∗ δA−1 M−1 D ∗ δA−1 M−2 D ∗ · · · .

It is clear that µA,M,D = µM,D if A = M . The following lemma indicates the spec-
trality of µM,D is independent of A. The proof is the same as that of [9, Lemma 3.1;
10, Lemma 2.6]. For the convenience of readers, we include the proof here.

Lemma 2.4. Let A be a nonsingular matrix, and let µA,M,D be defined by (2-5).
Then

µM,D = µA,M,D ◦ (A−1 M).

Also, (µM,D, 3) is a spectral pair if and only if (µA,M,D, A∗M∗−13) is a spectral
pair.

Proof. Applying (2-1) and (2-5), we have

(2-6) µ̂A,M,D(A∗M∗−1ξ) = m D(A∗−1 A∗M∗−1ξ)

∞∏
j=1

m D(M∗− j A∗−1 A∗M∗−1ξ)

=

∞∏
j=1

m D(M∗− jξ) = µ̂M,D(ξ).

Then µM,D = µA,M,D ◦ (A−1 M) by the uniqueness of Fourier transform.
Recall Qµ,3(ξ) is defined by (2-4). Then, for ξ ∈ R2, it follows from (2-6) that

QµM,D,3(ξ) =

∑
λ∈3

|µ̂M,D(ξ + λ)|2

=

∑
λ∈3

|µ̂A,M,D(A∗M∗−1(ξ + λ))|2

=

∑
λ∈3

|µ̂A,M,D(A∗M∗−1ξ + A∗M∗−1λ)|2

= QµA,M,D,A∗ M∗−13(A∗M∗−1ξ).

Hence the second assertion follows by Theorem 2.1. □
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We conclude this section by recalling a useful lemma in our investigation, which
was proved by Deng et al. in [9, Lemma 2.5].

Lemma 2.5. Let pi, j be positive numbers such that
∑n

j=1 pi, j = 1, and let qi, j be
nonnegative numbers such that

∑m
i=1 max1≤ j≤n qi, j ≤ 1. Then

m∑
i=1

n∑
j=1

pi, j qi, j = 1

if and only if qi,1 = · · · = qi,n for 1 ≤ i ≤ m and
∑m

i=1 qi,1 = 1.

3. Proofs of Theorems 1.5 and 1.6

We focus on proving Theorems 1.5 and 1.6, that is, studying the spectrality of the
measure µM̃,D̃ , where M̃ and D̃ are given by (1-4) and (1-5), respectively. For this
purpose, we first give some properties of Z(m D̃), and then investigate the structure
of the spectrum of µM̃,D̃ under the assumption that µA,M̃,D̃ is a spectral measure,
where µA,M̃,D̃ is defined by (2-5). With these preparations, we will achieve our goal.

By Lemma 2.4, without loss of generality, we assume in the rest of the paper that

A =

(
2η+1αβ 0

0 2η+1αβ

)
.

The matrix A will be pivotal in constructing the spectrum of µM̃,D̃ . Consequently,

(3-1)

µA,M̃,D̃ = δ 1
2η+1αβ

D̃ ∗ (µM̃,D̃ ◦ 2η+1αβ),

µ̂A,M̃,D̃(ξ) = m D̃

(
ξ

2η+1αβ

)
µ̂M̃,D̃

(
ξ

2η+1αβ

)
.

It is known that m D̃(x) = 0 if and only if

(3-2)
{
αx1 =

1
2 +k1,

ωx1+2ηβx2 = k ′

1,

{
αx1 = k2,

ωx1+2ηβx2 =
1
2 +k ′

2,
or

{
αx1 =

1
2 +k3,

ωx1+2ηβx2 =
1
2 +k ′

3,

where k1, k2, k3, k ′

1, k ′

2, k ′

3 ∈ Z. By a direct calculation, we have that

(3-3) Z(m D̃) = 21 ∪ 22 ∪ 23,

where

21 =

{
1

2η+1αβ

(
2η(2k1β+β)

2k ′

1α−2k1ω−ω

)
: k1, k ′

1 ∈ Z

}
,

22 =

{
1

2η+1αβ

(
2η+1k2β

2k ′

2α−2k2ω+α

)
: k2, k ′

2 ∈ Z

}
,

23 =

{
1

2η+1αβ

(
2η(2k3β+β)

2k ′

3α−2k3ω+α−ω

)
: k3, k ′

3 ∈ Z

}
.
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Define

20 =

{
1

2η+1αβ

(
2η+1k0β

2k ′

0α−2k0ω

)
: k0, k ′

0 ∈ Z

}
.

We now make a detailed analysis on the zero set Z(m D̃) of m D̃ .

Proposition 3.1. With the above notation, the following statements hold:

(i) (2i − 2i ) ∩Z(m D̃) = ∅ for any i ∈ {0, 1, 2, 3}.

(ii) 2i − 2 j ⊂ Z(m D̃) for any distinct i , j ∈ {0, 1, 2, 3}.

(iii) If η = 0, then F̊2
2 ⊂ Z(m D̃), where F̊2

2 is defined by (1-3).

Proof. (i) Since α, β ∈ 2Z + 1, from the definitions of Z(m D̃) and 20, it can
easily be seen that 2i −2i ⊂ 20 for any i ∈ {0, 1, 2, 3} and 2i ∩20 = ∅ for any
i ∈ {1, 2, 3}. This yields (2i − 2i ) ∩Z(m D̃) = ∅ for all i , which proves (i).

(ii) For any θi ∈ 2i , it is easy to verify that

±(θi − θ0) ∈ 2i (i ∈ {1, 2, 3}),

±(θ1 − θ2) ∈ 23, ±(θ1 − θ3) ∈ 22 and ± (θ2 − θ3) ∈ 21.

Hence the assertion follows by using (3-3).

(iii) As η = 0 and α, β ∈ 2Z + 1, it follows from (3-2) and (3-3) that( 1
2 , 0

)t
∈ 21,

(
0, 1

2

)t
∈ 22 and

( 1
2 , 1

2

)t
∈ 23

if ω ∈ 2Z and ( 1
2 , 0

)t
∈ 23,

(
0, 1

2

)t
∈ 22 and

( 1
2 , 1

2

)t
∈ 21

if ω ∈ 2Z + 1. Therefore, F̊2
2 ⊂ 21 ∪ 22 ∪ 23 = Z(m D̃). □

Remark 3.2. Observing that α, β ∈ 2Z + 1 in D̃, without loss of generality, we
can further assume that α, β ≥ 1. In fact, if α < 0 or β < 0, we take

Q =


diag(−1, 1), if α < 0, β > 0,

diag(1, −1), if α > 0, β < 0,

diag(−1, −1), if α, β < 0.

Let M̄ = QM̃Q−1 and D̄ = Q D̃. By Lemma 2.2, we only need to consider the
spectrality of µM̄,D̄ . This implies that the assumption is reasonable.

To investigate the spectrality of µM̃,D̃ , we need to construct a complete residue
system of matrix A. In view of (3-1) and (3-3), one may easily get that

(3-4) Z(µ̂A,M̃,D̃)=

∞⋃
j=0

A∗M̃∗ j (Z(m D̃))=

∞⋃
j=0

M̃∗ j (2η+1αβ(21∪22∪23))⊂Z2.
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Throughout this paper, we set h̄ p = {0, 1, . . . , p − 1} for an integer p ≥ 1, and let

(3-5) Sq =

{(
s1

s2

)
: s1 ∈ h̄2qβ, s2 ∈ h̄α

}
and Tq =

3⋃
i=0

Tq,i ,

where q is a nonnegative integer and

Tq,0 =

{
1

2q+1αβ

(
2q+1k0β

2k ′

0α−2k0ω

)
: k0 ∈ h̄α, k ′

0 ∈ h̄2qβ

}
,

Tq,1 =

{
1

2q+1αβ

(
2q(2k1β+β)

2k ′

1α−2k1ω−ω

)
: k1 ∈ h̄α, k ′

1 ∈ h̄2qβ

}
,

Tq,2 =

{
1

2q+1αβ

(
2q+1k2β

2k ′

2α−2k2ω+α

)
: k2 ∈ h̄α, k ′

2 ∈ h̄2qβ

}
,

Tq,3 =

{
1

2q+1αβ

(
2q(2k3β+β)

2k ′

3α−2k3ω+α−ω

)
: k3 ∈ h̄α, k ′

3 ∈ h̄2qβ

}
.

Proposition 3.3. With the above notation, the following statements hold:

(i) Tη,i ⊂ 2i for any i ∈ {0, 1, 2, 3}.

(ii) (δA−1 D̃, C) is a spectral pair, where A = diag(2η+1αβ, 2η+1αβ) and C =

2η+1αβ{ℓ0, ℓ1, ℓ2, ℓ3} for any ℓi ∈ Tη,i .

(iii) Sη ⊕ 2η+1αβTη is a complete residue system of matrix A in (ii).

Proof. According to the definitions of Tη,i and 2i , (i) is obvious. We now prove (ii).
In view of Lemma 2.3, it suffices to prove that m D̃(A∗−1(c−c′)) = 0 for all distinct
c, c′

∈ C. Since A = diag(2η+1αβ, 2η+1αβ), it follows from Proposition 3.1(ii) and
Proposition 3.3(i) that A∗−1(c − c′) ∈ Z(m D̃). This implies m D̃(A∗−1(c − c′)) = 0,
and the assertion (ii) follows.

Finally, we prove (iii). It is clear that the set Sη ⊕ 2η+1αβTη can be written as

(3-6) Sη ⊕ 2η+1αβTη

=

{(
s1

s2

)
: s1 ∈ h̄2ηβ, s2 ∈ h̄α

}
⊕

(
2ηβ 0
−ω α

) {(
k
k ′

)
: k ∈ h̄2α, k ′

∈ h̄2η+1β

}
:= Sη ⊕

(
2ηβ 0
−ω α

)
Q.

To prove Sη⊕2η+1αβTη is a complete residue system of A =diag(2η+1αβ, 2η+1αβ),
by using (3-6), it suffices to show that for any (x, y)t

∈ Z2, there exist (s1, s2)
t
∈ Sη,

(k, k ′)t
∈ Q and (x ′, y′)t

∈ Z2 such that

(3-7)
(

x
y

)
=

(
s1

s2

)
+

(
2ηβ 0
−ω α

) (
k
k ′

)
+ 2η+1αβ

(
x ′

y′

)
.
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Since {0, 1, . . . , 2ηβ − 1}⊕ 2ηβ{0, 1, . . . , 2α − 1} is a complete residue system of
2η+1αβ, it follows that there exist s1 ∈ {0, 1, . . . , 2ηβ − 1}, k ∈ {0, 1, . . . , 2α − 1}

and x ′
∈ Z such that

(3-8) x = s1 + 2ηβk + 2η+1αβx ′.

Also note that {0, 1, . . . , α−1}⊕α{0, 1, . . . , 2η+1β−1} is another complete residue
system of 2η+1αβ; thus there exist s2 ∈ {0, 1, . . . , α−1}, k ′

∈ {0, 1, . . . , 2η+1β −1}

and y′
∈ Z such that

(3-9) y + ωk = s2 + αk ′
+ 2η+1αβy′.

The above equations (3-8) and (3-9) imply that (3-7) holds. □

Let 3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. By (2-3) and (3-4), we have 3 ⊂ Z2.
This together with Proposition 3.3(iii) implies that for any λ ∈ 3, there exist some
s ∈ Sη and ℓ ∈ Tη such that λ = s + 2η+1αβℓ + 2η+1αβγ for some γ ∈ Z2. Then
for s ∈ Sη and ℓ ∈ Tη, define

(3-10) 3s,ℓ = {γ ∈ Z2
: s + 2η+1αβℓ + 2η+1αβγ ∈ 3}.

Then using (3-5), we have the decomposition

(3-11) 3 =

⋃
s∈Sη

⋃
i∈{0,1,2,3}

⋃
ℓ∈Tη,i

(s + 2η+1αβℓ + 2η+1αβ3s,ℓ),

where s + 2η+1αβℓ + 2η+1αβ3s,ℓ = ∅ if 3s,ℓ = ∅. As 0 ∈ 3, it follows that

(3-12) 30,0 ̸= ∅.

Lemma 3.4. Let 3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. If 3s,ℓ is a nonempty set,
then 3s,ℓ is an orthogonal set of µM̃,D̃ for each s ∈ Sη and ℓ ∈ Tη.

Proof. Suppose that 3s,ℓ is a nonempty set for s ∈ Sη and ℓ ∈ Tη. Then for any
distinct λ1, λ2 ∈ 3s,ℓ, it follows from (3-11) that

s + 2η+1αβℓ + 2η+1αβλ1, s + 2η+1αβℓ + 2η+1αβλ2 ∈ 3.

Applying (2-3), we have 2η+1αβ(λ1 − λ2) ∈ Z(µ̂A,M̃,D̃). Together with (3-1),
λ1, λ2 ∈ Z2 and m D̃(λ1 − λ2) = 1, we have

0 = µ̂A,M̃,D̃(2η+1αβ(λ1 − λ2)) = m D̃(λ1 − λ2)µ̂M̃,D̃(λ1 − λ2) = µ̂M̃,D̃(λ1 − λ2).

Thus λ1 − λ2 ∈ Z(µ̂M̃,D̃), which means that 3s,ℓ is an orthogonal set of µM̃,D̃ . □

The following lemma gives the structure of the spectrum of µM̃,D̃ under the
assumption that µA,M̃,D̃ is a spectral measure.



FOURIER BASES OF A CLASS OF PLANAR SELF-AFFINE MEASURES 67

Lemma 3.5. Let 3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. For any s ∈ Sη, choose a
is ∈ {0, 1, 2, 3} and write

0 =

⋃
s∈Sη

⋃
ℓ∈Tη,is

(
s + 2η+1αβℓ

2η+1αβ
+ 3s,ℓ

)
,

where 3s,ℓ is defined by (3-10). Then 0 is a spectrum of µM̃,D̃ or an empty set.

Proof. If 0 is a nonempty set, we will complete the proof in the following two
steps.

Step 1. We prove that 0 is an orthogonal set of µM̃,D̃ .
For any distinct ς1, ς2 ∈ 0, we can write

ςk =
sk + 2η+1αβℓk

2η+1αβ
+ λk,

where sk ∈ Sη, ℓk ∈ Tη,isk
, λk ∈ 3sk ,ℓk and isk ∈ {0, 1, 2, 3}, k = 1, 2. Applying (3-1),

the fact λ1, λ2 ∈ Z2 and the Z2-periodicity of m D̃ , one has

(3-13) 0 = µ̂A,M̃,D̃(2η+1αβ(ς1 − ς2))

= m D̃(ς1 − ς2)µ̂M̃,D̃(ς1 − ς2)

= m D̃

(
s1 − s2

2η+1αβ
+ ℓ1 − ℓ2 + λ1 − λ2

)
µ̂M̃,D̃(ς1 − ς2)

= m D̃

(
s1 − s2

2η+1αβ
+ ℓ1 − ℓ2

)
µ̂M̃,D̃(ς1 − ς2).

We now claim that m D̃((s1−s2)/(2η+1αβ)+ℓ1−ℓ2) ̸= 0. The proof will be divided
into the following two cases.

Case 1: s1 = s2. In this case, it is clear that ℓ1, ℓ2 ∈ Tη,is1
by the definition of 0.

With Proposition 3.1(i) and Proposition 3.3(i), we derive that ℓ1 − ℓ2 /∈ Z(m D̃).
Thus the claim follows.

Case 2: s1 ̸= s2. For this case, we prove the claim by contradiction. Suppose, on
the contrary, that

(3-14)
s1 − s2

2η+1αβ
+ ℓ1 − ℓ2 ∈ Z(m D̃).

By Proposition 3.1 and Proposition 3.3(i), one has ℓ1−ℓ2 ∈20∪Z(m D̃). Combining
this with (3-14), we conclude that

(3-15)
s1 − s2

2η+1αβ
∈ 20 ∪Z(m D̃).
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Using (3-5) and s1 ̸= s2, it is easy to check that s1 − s2 ∈ B, where

B =

{(
t1
t2

)
: t1 ∈ {1 − 2ηβ, . . . , 2ηβ − 1}, t2 ∈ {1 − α, . . . , α − 1}

}
\ {0}.

Write s1 − s2 = (t1, t2)t
∈ B. We first prove t1 = 0. If t1 ̸= 0, it follows t1 /∈ 2ηβZ.

Then from the definitions of Z(m D̃) and 20, it can easily be seen that

s1 − s2

2η+1αβ
=

1
2η+1αβ

(
t1
t2

)
/∈ 20 ∪Z(m D̃).

This contradicts (3-15), which proves t1 = 0.
Since t1 = 0, it follows from β ∈ 2Z + 1 that

s1 − s2

2η+1αβ
/∈ 21 ∪ 23.

Together with (3-15) and t1 = 0, we have

s1 − s2

2η+1αβ
=

1
2η+1αβ

(
0
t2

)
∈ 20 ∪ 22.

By a simple calculation, we deduce from β ∈ 2Z + 1 that t2 ∈ αZ. However,
(t1, t2)t

= (0, t2)t
∈B means that t2 /∈ αZ, a contradiction. Hence the claim follows.

Applying the claim and (3-13), we obtain that

µ̂M̃,D̃(ς1 − ς2) = 0.

This implies that 0 is an orthogonal set of µM̃,D̃ .

Step 2. We prove the completeness of the exponential function system E0 =

{e2π i⟨λ,x⟩
: λ ∈ 0}.

Fix s ∈ Sη. In view of Proposition 3.3(ii) and Theorem 2.1, one may get that, for
any ℓis ∈ Tη,is ,

(3-16)
3∑

is=0

∣∣∣∣m D̃

(
s + 2η+1αβℓis + ξ

2η+1αβ

)∣∣∣∣2

≡ 1.

In (3-16), let three of ℓ0, ℓ1, ℓ2 and ℓ3 be fixed, and the other be altered in Tη,is . We
can easily verify that, for all distinct ℓ, ℓ′

∈ Tη,is ,

(3-17)
∣∣∣∣m D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ

)∣∣∣∣ =

∣∣∣∣m D̃

(
s + 2η+1αβℓ′

+ ξ

2η+1αβ

)∣∣∣∣.
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Since 3s,ℓ ⊂ Z2 and 3 is a spectrum of µA,M̃,D̃ , it follows from the Z2-periodicity
of m D̃(x) that

1 ≡

∑
λ∈3

|µ̂A,M̃,D̃(ξ + λ)|2(3-18)

=

∑
s∈Sη

3∑
is=0

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

|µ̂A,M̃,D̃(ξ + s + 2η+1αβℓ + 2η+1αβλ′)|2

=

∑
s∈Sη

3∑
is=0

∑
ℓ∈Tη,is

∣∣∣m D̃

(s+2η+1αβℓ+ξ

2η+1αβ

)∣∣∣2

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2

=

∑
s∈Sη

3∑
is=0

∣∣∣m D̃

(s+2η+1αβℓis +ξ

2η+1αβ

)∣∣∣2

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2
,

where ℓis ∈ Tη,is , the first line follows from Theorem 2.1 and the second, third and
fourth line follow from (3-11), (3-1) and (3-17), respectively.

We now choose ξ ∈ R2
\ Q2, and, for simplicity, write

ps,is =

∣∣∣m D̃

(s+2η+1αβℓis +ξ

2η+1αβ

)∣∣∣2
,

qs,is =

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2
.

Then one may derive from (3-3) that ps,is > 0, and (3-18) becomes

(3-19)
∑
s∈Sη

3∑
is=0

ps,is qs,is = 1.

Note that 0 is an orthogonal set of µM̃,D̃; thus Theorem 2.1 implies that∑
s∈Sη

max{qs,0, qs,1, qs,2, qs,3} ≤ 1.

Together with (3-16), (3-19) and Lemma 2.5, we conclude that

(3-20)
∑
s∈Sη

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2
= 1, is = 0, 1, 2, 3,
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and

(3-21)
∑

ℓ∈Tη,0

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

=

∑
ℓ∈Tη,1

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

=

∑
ℓ∈Tη,2

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

=

∑
ℓ∈Tη,3

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

for any s ∈ Sη.
By continuity, we conclude that (3-20) and (3-21) hold for all ξ ∈ R2. Therefore,

Theorem 2.1 shows that 0 is a spectrum of µM̃,D̃ for any group {is}s∈Sη
with

is ∈ {0, 1, 2, 3}. The proof is complete. □

Remark 3.6. Suppose 3 =
⋃

s∈Sη

⋃
i∈{0,1,2,3}

⋃
ℓ∈Tη,i

(s +2η+1αβℓ+2η+1αβ3s,ℓ)

is a spectrum of µA,M̃,D̃ with 0 ∈ 3. Then we can conclude from (3-21) that for
any s ∈ Sη, one of the following two statements holds:

(i) There exist some ℓis ∈ Tη,is such that 3s,ℓis
̸= ∅ for all 0 ≤ is ≤ 3.

(ii) 3s,ℓ = ∅ for any ℓ ∈ Tη =
⋃3

i=0 Tη,i .

In particular, the assumption 0 ∈ 3 implies 30,0 ̸= ∅. Therefore, (i) always holds
for s = 0, which illustrates that there must exist ℓi0 ∈ Tη,i0 such that 30,ℓi0

̸= ∅ for
all 1 ≤ i0 ≤ 3.

In order to prove Theorems 1.5 and 1.6 more conveniently, we define

80 = {υ ∈ Z2
: υ = (0, 0)t (mod 2Z2)},

81 = {υ ∈ Z2
: υ = (1, 0)t (mod 2Z2)},

82 = {υ ∈ Z2
: υ = (0, 1)t (mod 2Z2)},

83 = {υ ∈ Z2
: υ = (1, 1)t (mod 2Z2)}.

Then

(3-22) Z2
=

3⋃
i=0

8i .

We have all ingredients for the proof of Theorem 1.5.

Proof of Theorem 1.5. We will prove this theorem by the circle (ii) H⇒ (iii) H⇒

(iv) H⇒ (i) H⇒ (ii).
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(ii) H⇒ (iii): If M̃ ∈ M2(2Z), we can write M̃ =
( 2ã

2c̃
2b̃
2d̃

)
with ã, b̃, c̃, d̃ ∈ Z. Then

with (1-3), it is easy to verify that

M̃F̊2
2 =

{(
ã
c̃

)
,

(
b̃
d̃

)
,

(
ã+b̃
c̃+d̃

)}
⊂ Z2.

Hence the assertion follows.

(iii) H⇒ (iv): Suppose M̃F̊2
2 ⊂ Z2, which implies C̃ := M̃∗F2

2 ⊂ Z2. Then using
Lemma 2.3 and Proposition 3.1(iii), we obtain that (M̃, D̃, C̃) is a Hadamard triple.
Therefore, (M̃, D̃) is admissible.

(iv) H⇒ (i): If (M̃, D̃) is admissible, µM̃,D̃ is a spectral measure by Theorem 1.2.

(i) H⇒ (ii): Suppose that µM̃,D̃ is a spectral measure, and let A = diag(2αβ, 2αβ).
In view of Lemma 2.4, one may derive that µA,M̃,D̃ is also a spectral measure. Let
3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. First, we construct a spectrum of µM̃,D̃.
Recall that Tη,i and 8i are defined by (3-5) and (3-22), respectively. By η = 0 and
a simple calculation, one has 2αβ M̃∗Tη,0 ⊂ 80. For i ∈ {1, 2, 3}, we can suppose
that 2αβ M̃∗Tη,i ⊂ 8 ji for some ji ∈ {0, 1, 2, 3}. Consequently,

3⋃
i=1

2αβ M̃∗Tη,i ⊂

3⋃
i=1

8 ji .

This means that for any s ∈Sη\{0}, there exists is ∈{0, 1, 2, 3} such that s+2αβℓs /∈⋃3
j=1 2αβ M̃∗Tη, j + 2Z2 for any ℓs ∈ Tη,is . Define

(3-23) 0 = 10,0 ∪

⋃
s∈Sη\{0}

1s,is ,

where 10,0 =
⋃

ℓ0∈Tη,0
(ℓ0 + 30,ℓ0), 1s,is =

⋃
ℓs∈Tη,is

((s + 2αβℓs)/(2αβ) + 3s,ℓs )

with

(3-24) (s + 2αβTη,is ) ∩

( 3⋃
j=1

2αβ M̃∗Tη, j + 2Z2
)

= ∅,

and 3s,ℓs is defined by (3-10). In view of Lemma 3.5, we get that 0 is a spectrum
of µM̃,D̃ . Moreover, it follows from 0 ∈ 3 and Lemma 2.4 that 0 ∈ 0.

Second, we prove that for any i ∈ {1, 2, 3}, there must exist ℓi ∈ Tη,i such
that 2αβ M̃∗ℓi ∈ 2Z2. Since 0 is a spectrum of µM̃,D̃ with 0 ∈ 0, it follows from
Lemma 2.4 that 2αβ M̃∗−10 is a spectrum of µA,M̃,D̃ with 0 ∈ 2αβ M̃∗−10. Using
(3-11), one has

(3-25) 2αβ M̃∗−10 =

⋃
s′∈Sη

⋃
i∈{0,1,2,3}

⋃
ℓ′

i ∈Tη,i

(s ′
+ 2αβℓ′

i + 2αβ3′

s′,ℓ′

i
),
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where
3′

s′,ℓ′

i
= {γ ∈ Z2

: s ′
+ 2αβℓ′

i + 2αβγ ∈ 2αβ M̃∗−10}.

For s ′
=0 and ℓ′

i =0∈Tη,0, we have 3′

0,0 ̸=∅ since 0∈2αβ M̃∗−10. By Remark 3.6,
there must exist ℓ′

i ∈ Tη,i such that 3′

0,ℓ′

i
̸= ∅ for all 1 ≤ i ≤ 3. Let λ′

i ∈ 3′

0,ℓ′

i
,

where i = 1, 2, 3. Therefore, (3-23) and (3-25) imply that there exist si ∈ Sη,
ℓi ∈

⋃3
j=0 Tη, j and λi ∈ 3si ,ℓi such that (si + 2αβℓi )/(2αβ) + λi ∈ 0 and

(3-26) 2αβ M̃∗ℓ′

i + 2αβ M̃∗λ′

i = si + 2αβℓi + 2αβλi for i = 1, 2, 3.

Moreover, it follows from (3-24) that si +2αβℓi /∈
⋃3

j=1 2αβ M̃∗Tη, j + 2Z2 if si ̸= 0
for i = 1, 2, 3. However, by noting that λi , λ

′

i ∈ Z2, (3-26) implies that

si + 2αβℓi ∈ 2αβ M̃∗ℓ′

i + 2Z2
⊂ 2αβ M̃∗Tη,i + 2Z2

⊂

3⋃
j=1

2αβ M̃∗Tη, j + 2Z2

for i = 1, 2, 3. Therefore, the above discussion shows that si = 0 for i = 1, 2, 3, and
hence ℓi ∈Tη,0 by the definition of 0. This implies 2αβℓi ∈ 2Z2 for i = 1, 2, 3. Com-
bining this with M̃ ∈ M2(Z), si = 0 and λi , λ

′

i ∈ Z2, one may infer from (3-26) that

2αβ M̃∗ℓ′

i = 2αβℓi + 2αβ(λi − M̃∗λ′

i ) ∈ 2Z2 for i = 1, 2, 3.

Therefore, 2αβ M̃∗ℓ′

i ∈ 2Z2 for some ℓ′

i ∈ Tη,i , where i = 1, 2, 3.
It remains to prove M̃ ∈ M2(2Z). For any i ∈{1, 2, 3}, the above conclusion shows

that there must exist ℓi ∈Tη,i such that 2αβ M̃∗ℓi ∈2Z2. For these ℓi ∈Tη,i , i =1, 2, 3,
by the definition of Tη,i and the fact α, β ∈ 2Z + 1, it can easily be checked that

{2αβℓi : i = 1, 2, 3} =

{(
1
0

)
,

(
0
1

)
,

(
1
1

)}
(mod 2Z2).

This together with 2αβ M̃∗ℓi ∈2Z2 and a simple calculation gives that M̃∗
∈ M2(2Z),

which is equivalent to M̃ ∈ M2(2Z). This finishes the proof of Theorem 1.5. □

The following lemma plays an important role in the proof of Theorem 1.6.

Lemma 3.7. Let µM̃,D̃ be a spectral measure, where M̃ and D̃ are given by (1-4)
and (1-5), respectively. If η > 0 in D̃, then M̃ =

( ã
c̃

b̃
d̃

)
satisfies 2η+1

| c̃.

Proof. Suppose, on the contrary, that 2η+1 ∤ c̃. Then one may write c̃ = 2τ c′ for some
integer τ ≤ η and c′

∈ 2Z + 1. Let Q1 = diag(1, 1/2τ ). A simple calculation gives

M1 := Q1 M̃ Q−1
1 =

(
ã 2τ b̃
c′ d̃

)
∈ M2(Z)

and

D1 := Q1 D̃ =

{(
0
0

)
,

(
α

0

)
,

(
ω

2η−τβ

)
,

(
−α−ω

−2η−τβ

)}
⊂ Z2,
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where α, β ∈ 2Z + 1. Since µM̃,D̃ is a spectral measure, it follows from Lem-
mas 2.2 and 2.4 that µM1,D1 and µA1,M1,D1 are also spectral measures, where
A1 = diag(2η−τ+1αβ, 2η−τ+1αβ) and µA1,M1,D1 is defined by (2-5).

If τ = η, it follows from Theorem 1.5 that M1 ∈ M2(2Z). This means that c′
∈ 2Z,

a contradiction. Hence the assertion follows.
If τ < η, we derive the contradiction by constructing a spectrum of µM1,D1 .

Recall that Sη−τ and Tη−τ =
⋃3

i=0 Tη−τ,i are defined by (3-5). We first prove the
following two claims.

Claim 1. Let 81 and 83 be given by (3-22). Then

2η−τ+1αβM∗

1Tη−τ,2 ⊂

{
81, if d̃ ∈ 2Z,

83, if d̃ ∈ 2Z + 1.

Proof of Claim 1. For any ℓ ∈ Tη−τ,2, there exist k ∈ h̄α and k ′
∈ h̄2η−τ β such that

(3-27) ℓ =
1

2η−τ+1αβ

(
2η−τ+1kβ

2k ′α−2kω+α

)
.

Since M1 =
( ã

c′

2τ b̃
d̃

)
, τ < η and α, c′

∈ 2Z + 1, it follows from (3-27) that

2η−τ+1αβM∗

1 ℓ =

(
2(2η−τ kãβ+(k ′α−kω)c′)+c′α

2(2ηkb̃β+(k ′α−kω)d̃)+d̃α

)
=

(
1
d̃

)
(mod 2Z2).

Consequently, 2η−τ+1αβM∗

1 ℓ∈81 if d̃ ∈ 2Z, and 2η−τ+1αβM∗

1 ℓ∈83 if d̃ ∈ 2Z+1.
So the claims follows. □

Claim 2. Let 81 and 83 be given by (3-22). Then for any s ∈ Sη−τ \ {0}, the
following two statements hold:

(i) There exist some is ∈ {0, 1, 2, 3} such that s + 2η−τ+1αβℓs /∈ 81 for any
ℓs ∈ Tη−τ,is .

(ii) There exist some is ∈ {0, 1, 2, 3} such that s + 2η−τ+1αβℓs /∈ 83 for any
ℓs ∈ Tη−τ,is .

Proof of Claim 2. Begin by observing that if α ∈ 2Z + 1 and τ < η, then for any
ℓi ∈ Tη−τ,i , i = 0, 1, 2, 3, we have

2η−τ+1αβℓ0 =

(
2η−τ+1k0β

2k ′

0α−2k0ω

)
=

(
0
0

)
(mod 2Z2),

2η−τ+1αβℓ1 =

(
2η−τ (2k1β+β)

2k ′

1α−2k1ω−ω

)
=

(
0
ω

)
(mod 2Z2),

2η−τ+1αβℓ2 =

(
2η−τ+1k2β

2k ′

2α−2k2ω+α

)
=

(
0
1

)
(mod 2Z2)
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and

2η−τ+1αβℓ3 =

(
2η−τ (2k3β+β)

2k ′

3α−2k3ω+α−ω

)
=

(
0

ω−1

)
(mod 2Z2)

for some ki ∈ h̄α and k ′

i ∈ h̄2η−τ β . Without loss of generality, we assume that ω ∈ 2Z

(the case ω ∈ 2Z + 1 can be similarly proved). Then a simple calculation gives

(3-28) 2η−τ+1αβℓ0, 2η−τ+1αβℓ1 ∈ 80 and 2η−τ+1αβℓ2, 2η−τ+1αβℓ3 ∈ 82.

Recall that Tη−τ =
⋃3

i=0 Tη−τ,i . Then for any s = (s1, s2)
t
∈ Sη−τ \ {0}, we take

ℓs ∈


Tη−τ , if s1 ∈ 2Z,

Tη−τ,2 ∪ Tη−τ,3, if s1 ∈ 2Z + 1, s2 ∈ 2Z,

Tη−τ,0 ∪ Tη−τ,1, if s1, s2 ∈ 2Z + 1.

This together with (3-28) yields that s+2η−τ+1αβℓs /∈81, which proves (i). For (ii),
we take

ℓs ∈


Tη−τ , if s1 ∈ 2Z,

Tη−τ,0 ∪ Tη−τ,1, if s1 ∈ 2Z + 1, s2 ∈ 2Z,

Tη−τ,2 ∪ Tη−τ,3, if s1, s2 ∈ 2Z + 1.

Consequently, s + 2η−τ+1αβℓs /∈ 83 by (3-28). Thus Claim 2 follows. □

We now continue with the proof of the case τ < η. In the following proof,
we might as well assume d̃ ∈ 2Z in M1. If d̃ ∈ 2Z + 1, we only need to replace
Claim 2(i) with Claim 2(ii).

Since τ < η and d̃ ∈ 2Z, it follows from Claim 2(i) that for any s ∈ Sη−τ \ {0},
there must exist some is ∈ {0, 1, 2, 3} such that s + 2η−τ+1αβℓs /∈ 81 for any
ℓs ∈ Tη−τ,is . Let 3̃ be a spectrum of µA1,M1,D1 with 0 ∈ 3̃. Define

0̃ = 1̃0,0 ∪

⋃
s∈Sη−τ \{0}

1̃s,is ,

where

1̃0,0 =

⋃
ℓ0∈Tη−τ,0

(ℓ0 + 3̃0,ℓ0), 1̃s,is =

⋃
ℓs∈Tη−τ,is

(
s + 2η−τ+1αβℓs

2η−τ+1αβ
+ 3̃s,ℓs

)
with

(s + 2η−τ+1αβTη−τ,is ) ∩ 81 = ∅,

and
3̃s,ℓs = {γ ∈ Z2

: s + 2η−τ+1αβℓs + 2η−τ+1αβγ ∈ 3̃}.

Using the similar argument as in the proof of Lemma 3.5, we can show that 0̃ is
a spectrum of µM1,D1 with 0 ∈ 0̃.
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Next, we prove that there must exist ℓ ∈ Tη−τ,2 such that 2η−τ+1αβM∗

1 ℓ ∈ 2Z2.
Since 0̃ is a spectrum of µM1,D1 with 0 ∈ 0̃, it follows from Lemma 2.4 that
2η−τ+1αβM∗−1

1 0̃ is a spectrum of µA1,M1,D1 with 0 ∈ 2η−τ+1αβM∗−1
1 0̃. Similar

to (3-25), we have that

2η−τ+1αβM∗−1
1 0̃ =

⋃
s′∈Sη−τ

⋃
i∈{0,1,2,3}

⋃
ℓ′

i ∈Tη−τ,i

(s ′
+ 2η−τ+1αβℓ′

i + 2η−τ+1αβ3̃′

s′,ℓ′

i
),

where

3̃′

s′,ℓ′

i
= {γ ∈ Z2

: s ′
+ 2η−τ+1αβℓ′

i + 2η−τ+1αβγ ∈ 2η−τ+1αβM∗−1
1 0̃}.

For s ′
= 0 and ℓ′

i = 0 ∈ Tη−τ,0, it follows from 0 ∈ 2η−τ+1αβM∗−1
1 0̃ that 3̃′

0,0 ̸=∅.
Similar to Remark 3.6, one may infer that there exists ℓ′

2 ∈Tη−τ,2 such that 3̃′

0,ℓ′

2
̸=∅.

Therefore, applying Claim 1 and the similar argument as in the proof of Theorem 1.5,
we can easily conclude that 2η−τ+1αβM∗

1 ℓ′

2 ∈ 2Z2. Thus the assertion follows.
Finally, we prove 2η+1

| c̃. The above discussion means that there exist some
ℓ ∈ Tη−τ,2 such that 2η−τ+1αβM∗

1 ℓ ∈ 2Z2. For these ℓ ∈ Tη−τ,2, it follows from
(3-27) that

2η−τ+1αβM∗

1 ℓ =

(
2(2η−τ kãβ+(k ′α−kω)c′)+c′α

2(2ηkb̃β+(k ′α−kω)d̃)+d̃α

)
for some k ∈ h̄α and k ′

∈ h̄2η−τ β . Together with 2η−τ+1αβM∗

1 ℓ ∈ 2Z2, it yields that
c′α ∈ 2Z. This contradicts the fact c′, α ∈ 2Z+1, and hence the assumption 2η+1 ∤ c̃
does not hold. Therefore, we obtain 2η+1

| c̃, and complete the proof. □

Having established the above preparation, now we are in a position to prove
Theorem 1.6.

Proof of Theorem 1.6. We first prove the necessity. Suppose µM̃,D̃ is a spectral
measure. In view of Lemma 3.7, we have that M̃ =

( ã
c̃

b̃
d̃

)
satisfies 2η+1

| c̃. Thus one
may write c̃ = 2η+1κ with κ ∈ Z. Let Q̃ = diag(1, 1/2η). By a simple calculation,
we get

(3-29) M̄ := Q̃ M̃Q̃−1
=

(
ã 2ηb̃

2κ d̃

)
and

(3-30) D̄ := Q̃ D̃ =

{(
0
0

)
,

(
α

0

)
,

(
ω

β

)
,

(
−α−ω

−β

)}
.

Since µM̃,D̃ is a spectral measure, it follows from Lemma 2.2 that µM̄,D̄ is also a
spectral measure. Then with Theorem 1.5, we have M̄ ∈ M2(2Z). This together
with (3-29) gives that ã, d̃ ∈ 2Z. Hence the necessity follows.
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Now we are devoted to proving the sufficiency. Suppose M̃ =
( ã

c̃
b̃
d̃

)
, where

ã, d̃ ∈ 2Z and 2η+1
| c̃. Then there exist a∗, c∗, d∗

∈ Z such that ã = 2a∗, c̃ = 2η+1c∗

and d̃ = 2d∗. Let Q̃ = diag(1, 1/2η). A simple calculation gives

M ′
:= Q̃ M̃Q̃−1

=

(
2a∗ 2ηb̃
2c∗ 2d∗

)
,

and D̄ = Q̃ D̃ is given by (3-30). Since η > 0, it follows from Theorem 1.5 that
µM ′,D̄ is a spectral measure. Therefore, µM̃,D̃ is a spectral measure by Lemma 2.2.

This completes the proof of Theorem 1.6. □

4. Proofs of Theorems 1.3 and 1.4

We are committed to investigating the spectrality of the measure µM,D, where
M ∈ M2(Z) is an expansive integer matrix and D is given by (1-2). We first prove
Theorem 1.3 by using Theorems 1.5 and 1.6, and then prove Theorem 1.4. Finally,
we provide some concluding remarks.

Proof of Theorem 1.3. The sufficiency follows directly from Theorem 1.2 and
Lemma 2.2. Now we are devoted to proving the necessity. Suppose that µM,D is a
spectral measure. Let η = max{r : 2r

| (α1β2 −α2β1)}, and let M̃ and D̃ be given
by (1-4) and (1-5), respectively. That is, M̃ = QMQ−1 and D̃ = Q D. In view
of Lemma 2.2, µM̃,D̃ is a spectral measure. It suffices to prove that there exists
a matrix Q̃ ∈ M2(R) such that (M̄, D̄) is admissible, where M̄ = Q̃ M̃Q̃−1 and
D̄ = Q̃ D̃. The proof will be divided into the following two cases.

Case 1: η = 0. Since µM̃,D̃ is a spectral measure, it follows from η = 0 and
Theorem 1.5 that (M̃, D̃) is admissible. Thus the assertion follows by taking
Q̃ = diag(1, 1).

Case 2: η > 0. Since µM̃,D̃ is a spectral measure, Theorem 1.6 implies that one may
write M̃ =

( 2a′

2η+1c′

b′

2d ′

)
, where a′, b′, c′, d ′

∈ Z. We take Q̃ = diag(1, 1/2η). Then

M̄ = Q̃ M̃Q̃−1
=

(
2a′ 2ηb′

2c′ 2d ′

)
and D̄ = Q̃ D̃ =

{(
0
0

)
,

(
α

0

)
,

(
ω

β

)
,

(
−α−ω

−β

)}
.

Using η > 0, it is clear that M̄ ∈ M2(2Z). Hence (M̄, D̄) is admissible by
Theorem 1.5.

This completes the proof of Theorem 1.3. □

Next, we focus on proving Theorem 1.4.

Proof of Theorem 1.4. Let M̃ and D̃ be given by (1-4) and (1-5), respectively. That is,

(4-1) M̃ = QMQ−1 and D̃ = Q D,
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where the matrix Q ∈ M2(Z) satisfies det(Q) = 1. In view of Lemma 2.2, µM,D

is a spectral measure if and only if µM̃,D̃ is a spectral measure. This implies that
Theorem 1.4(i) is equivalent to Theorem 1.5(i). Note that det(Q) = 1; hence, by
a simple calculation, one has that

M ∈ M2(2Z) ⇐⇒ M̃ ∈ M2(2Z).

Thus Theorem 1.4(ii) and (iii) are equivalent to Theorem 1.5(ii) and (iii), respectively.
Finally, from the Definition 1.1 and (4-1), it is easy to see that (M̃, D̃) is admissible
⇐⇒ there exists a set C̃ ⊂ Z2 such that (M̃, D̃, C̃) is a Hadamard triple ⇐⇒

(M, D, Q∗C̃) is a Hadamard triple ⇐⇒ (M, D) is admissible. Consequently,
Theorem 1.4(iv) is equivalent to Theorem 1.5(iv).

Therefore, the desired result now is obtained by appeal to Theorem 1.5. □

At the end of this paper, we give some further remarks and list an open question
which is related to our main results. The following example is specifically used to
display our results, which are convenient to judge whether the measure µM,D in
Question 1 is a spectral measure.

Example 4.1. Let M1 =
( 2

2
b
2

)
and M2 =

( 2
4

b
2

)
be two expansive integer matrices,

and let

D1 =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
−1
−1

)}
and D2 =

{(
0
0

)
,

(
1
0

)
,

(
0
2

)
,

(
−1
−2

)}
.

Then the following statements hold:

(i) µM1,D1 and µM2,D1 are spectral measures if and only if b ∈ 2Z.

(ii) µM1,D2 is a nonspectral measure, while µM2,D2 is a spectral measure.

Proof. By a simple calculation, this follows directly from Theorems 1.5 and 1.6. □

It is worth noting that if α1β2 − α2β1 ∈ 2Z in Theorem 1.3, we cannot give the
specific form of matrix M . However, if α1, α2, β1 and β2 are fixed, we can describe
the specific form by applying Theorem 1.6. The following simple but interesting
example is devoted to illustrating this fact.

Example 4.2. Let M =
(a

c
b
d

)
be an expansive integer matrix, and let

D =

{(
0
0

)
,

(
1
2

)
,

(
3
8

)
,

(
−4
−10

)}
.

Then µM,D is a spectral measure if and only if a, d ∈ 2Z and c ∈ 4Z.

Proof. Write Q =
( 3

−2
−1

1

)
. Then it is direct to compute that

M̃ := QMQ−1
=

(
3a−c+2(3b−d) 3a−c+3(3b−d)

c−2a+2(d−2b) c−2a+3(d−2b)

)
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and

D̃ := Q D =

{(
0
0

)
,

(
1
0

)
,

(
1
2

)
,

(
−2
−2

)}
.

By Lemma 2.2, µM,D is a spectral measure if and only if µM̃,D̃ is a spectral measure.
For the sufficiency, it follows from a, d ∈2Z and c ∈4Z that there exist ã, c̃, d̃ ∈Z

such that a = 2ã, d = 2d̃ and c = 4c̃. Thus M̃ becomes

M̃ =

(
2(3ã−2c̃+3b−d) 3a−c+3(3b−d)

4(c̃−ã+d̃−b) 2(2c̃−a+3d̃−b)

)
.

This together with Theorem 1.6 yields that µM̃,D̃ is a spectral measure, and hence
the sufficiency follows.

Conversely, suppose µM̃,D̃ is a spectral measure. Applying Theorem 1.6, we have

3a − c + 2(3b − d) ∈ 2Z,

c − 2a + 2(d − 2b) ∈ 4Z,

c − 2a + 3(d − 2b) ∈ 2Z.

Consequently, 3a − c, c + 3d ∈ 2Z and c − 2a + 2d ∈ 4Z. By a simple calculation,
we infer that a, d ∈ 2Z and c ∈ 4Z. This proves the necessity. □

We remark here that the digit set D in (1-2) satisfies α1β2 − α2β1 ̸= 0, and so it
is of interest to consider the following question:

Question 2. For an expansive matrix M ∈ M2(Z) and the digit set

D =

{(
0
0

)
,

(
α1

α2

)
,

(
β1

β2

)
,

(
−α1−β1

−α2−β2

)}
with α1β2 − α2β1 = 0, what is the sufficient and necessary condition for µM,D to
be a spectral measure?

In fact, for the matrix M and the digit set D given in the above question, using
the methods of [34], we can find an integer matrix Q such that M̄ := QMQ−1 and

D̄ := Q D =

{(
0
0

)
,

(
α

0

)
,

(
β

0

)
,

(
−α−β

0

)}
,

where α, β ∈ Z and M̄ is an expansive integer matrix with det(M̄) = det(M).
Lemma 2.2 indicates that to consider the spectrality of µM,D, we only need to
consider the measure µM̄,D̄. However, it is apparent that the set Z(m D̄) includes
free variables since the root of

m D̄(ξ) =
1

#D̄

∑
d∈D̄

e2π i⟨d,ξ⟩
=

1
#D̄

(1 + e2παξ1 + e2πβξ1 + e2π(−α−β)ξ1) = 0
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is independent of ξ2, where ξ = (ξ1, ξ2)
t . We have not yet discovered an effective

method to address this situation. An answer to Question 2 may provide insights
into the study of the spectrality of fractal measures.
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