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GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS
OF HOMOGENEOUS STRUCTURES

ZANIAR GHADERNEZHAD AND JAVIER DE LA NUEZ GONZÁLEZ

We provide sufficient conditions for the standard topology (generated by
stabilizers of finite sets) on the automorphism group of a countable homoge-
neous structure to be minimal among all Hausdorff group topologies on the
group. Under certain assumptions, such as when the structure is the Fraïssé
limit of a relational class with the free amalgamation property, we are able
to classify all the group topologies on the automorphism group coarser than
the standard topology even when the latter is not minimal.

1. Introduction

Minimality. A topological group (G, τ ) consists of a group (G, · ) and a topology τ
on G such that the map ρ : G×G → G, where ρ(g, h)= gh−1, is jointly continuous.

Definition 1.1. A Hausdorff topological group (G, τ ) is called minimal if G does
not admit a Hausdorff group topology strictly coarser than τ or, equivalently, if
every bijective continuous homomorphism from G to another Hausdorff topological
group is a homeomorphism. The topological group (G, τ ) is totally minimal if every
continuous surjective homomorphism to a Hausdorff topological group is open.

Clearly, every totally minimal group is minimal. Also, for a topological group
(G, τ ), if the only strictly coarser topology is {∅,G} then (G, τ ) is totally minimal.
Indeed, in that case for any continuous surjective homomorphism φ :(G, τ )→(H, σ )
the pullback φ∗(σ ) of σ by φ satisfies φ∗(σ )⊆ τ and thus φ∗(σ ) ∈ {τ, {∅,G}}, so
the map σ is either a homeomorphism or the trivial map. For a group topology
τ ′ ⊊ τ , by considering the closure of the identity in τ ′, one easily sees that this
applies, in particular, to the case in which (G, τ ) is minimal and has no nontrivial
normal closed subgroups.
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The notion of minimality for topological groups was introduced as early as 1971
as a generalization of compactness. In fact it is easy to see that any compact
Hausdorff topological group is minimal. For more information about minimality,
we refer the reader to the survey by Dikranjan and Megrelishvili [2014].

Given a group G of permutations of some set � and A ⊆�, let

G A = {g ∈ G | ga = a for all a ∈ A}.

Let [�]
<ω be the set of all finite subsets of �. The collection {G A | A ∈ [�]

<ω
}

is a base of neighbourhoods at the identity of a group topology which we call the
standard topology and denote by τst. More generally for each G-invariant X ⊆�

there is an associated group topology τ X
st generated by {G A | A ∈ [X ]

<ω
}.

One of the earliest results on minimality due to Gaughan [1967] states that
(S∞, τst) is totally minimal, where S∞ denotes the group of all permutations of a
countable set �.

Given a countable first-order structure M with universe M , the automorphism
group of M is a τst-closed subgroup of S∞ = S(M) and vice versa: any closed
subgroup of S(M) is the automorphism group of some countable structure on M .
The interplay between the dynamical properties of Aut(M) and the logical and
combinatorial properties of M has been widely studied in the literature, beginning
with the characterization due to Engeler, Ryll-Nardzewski, Svenonius and others
of oligomorphic subgroups of S∞ as the automorphism groups of ω-categorical
countable structures. Recall that an oligomorphic group is a closed subgroup of S∞

whose diagonal action on Mn has finitely many orbits, for each n ∈ N.
In this context τst is often referred to in the literature as the pointwise convergence

topology.
In light of the above the following is thus a natural question, already asked in

[Dikranjan and Megrelishvili 2014].

Problem 1. Let M be a countable ω-categorical (ω-saturated, sufficiently nice)
first-order structure and G = Aut(M). When is (G, τst) (totally) minimal?

A deep result in this direction appeared in recent work by Ben Yaacov and
Tsankov [2016], where the authors show that automorphism groups of countable
ω-categorical, stable continuous structures are totally minimal with respect to the
pointwise convergence topology. This specializes to the result that the automorphism
groups of classical ω-categorical stable structures are totally minimal with respect
to τst.

Not all oligomorphic groups are minimal with respect to τst. As pointed out in
[Ben Yaacov and Tsankov 2016], an example of this is Aut(Q, <) (see Corollary C
for a generalization). However even in those cases it is possible to formulate the
following more general question:
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Problem 2. Let M be a countable ω-categorical (or sufficiently nice) first-order
structure and G = Aut(M). Describe the lattice of all Hausdorff group topologies
on G coarser than τst.

This work was mainly motivated by [Ben Yaacov and Tsankov 2016] and is
meant as a preliminary exploration of Problems 1 and 2 in the classical setting
outside the stability constraint.

In its broadest lines the strategy followed by [Ben Yaacov and Tsankov 2016]
goes back to [Uspenskij 2008], where the author shows that the isometry group of
the Urysohn sphere is totally minimal with the pointwise convergence topology.
Both proofs rely on the assumption that the group in question is Roelcke precompact
and use a well-behaved independence relation among (small) subsets of the structure
to endow the Roelcke precompletion of the group with a topological semigroup
structure. Information on the topological quotients of the original group is then
recovered from the latter via the functoriality of Roelcke compactification and the
Ellis lemma. Recall that a topological group (G, τ ) is Roelcke precompact if for
any neighbourhood W of 1 there exists a finite F ⊂ G such that W FW = G. For
closed subgroups of S∞ this is equivalent to being oligomorphic.

In contrast, our methods for obtaining (partial) minimality results are completely
elementary. There are drawbacks to this lack of sophistication: for instance, we
are not able to recover the result in [Ben Yaacov and Tsankov 2016] for classical
structures. On the other hand we do not rely on assumptions of Roelcke precom-
pactness (except for certain residual assumptions in some cases). Although we are
not discussing metric structures or Urysohn spaces in this paper, we would like
to mention that a refinement of the approached presented here has enabled us to
answer in the positive the question about the minimality of the isometry group of
the (unbounded) Urysohn space posed in [Uspenskij 2008].

Problems 1 and 2 could be also formulated for semigroup topologies on the
endomorphism monoid of a countable relational structure. Some general techniques
for characterising minimal and maximal semigroup topologies on the endomorphism
monoid of a countable relational structure have been recently introduced in [Elliott
et al. 2023].

Main results. Generally speaking, an independence relation is a ternary relation |⌣

defined on some collection of sets of elements of the structure such that A |⌣C B is
meant to capture the intuitive idea that B does not contain any information about A
not already contained in C . The paradigmatic example is that of forking indepen-
dence in model theory. The study of the connections between the existence of a
well-behaved independence relation on a homogeneous structure (see Definition 2.1)
and the properties of the automorphism group goes back to [Tent and Ziegler 2013]
(see also [Evans et al. 2016]).
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We provide a simple technical criterion (Proposition 2.12) for (relative) minimal-
ity for τst in a relatively general setting. We derive from this general minimality
results stated in terms of the existence of an independence relation satisfying
certain axioms and in turn derive from this two main theorems. The first applies to
Fraïssé limits of free amalgamation classes, i.e., Fraïssé classes closed under free
amalgamation (more details in Section 3). Some well-known examples of Fraïssé
limits of free amalgamation classes are the random graph, random hypergraph,
homogeneous Kn-free graphs for n ⩾ 3, etc.

Theorem A. Let M be the Fraïssé limit of a free amalgamation class in a countable
relational language. Let G = Aut(M). Then any group topology τ ⊆ τst on G is
of the form τ X

st , where X ⊆ M is some G-invariant set. In particular, if the action
of G on M is transitive, then there are no nontrivial group topologies on G strictly
coarser than τst and thus (G, τst) is totally minimal.

Rather than the free amalgamation property directly, the proof of Theorem A
uses the freedom axiom, a more abstract property introduced in [Conant 2017].

The second application of the Proposition 2.12 is in the context of simple theories.
Simple structures (i.e., theories) occupy an important place in classification theory.
We refer the reader to [Tent and Ziegler 2012], [Wagner 2000] and [Kim 2014] for
the definition of simple theories, forking and canonical bases.

A simple theory T is called one-based if Cb(a/A)⊆ bdd(a) for any hyperimagi-
nary element a and a small subset A of the monster model. Our second main result
is the following:

Theorem B. Let M be a simple, ω-saturated countable structure with locally finite
algebraic closure and weak elimination of imaginaries. Assume furthermore that
Th(M) is one-based. Let G = Aut(M). Then:

(1) If G acts transitively on M, then (G, τst) is minimal.

(2) If all singletons are algebraically closed, then any group topology τ on G
coarser than τst is of the form τ X

st for some G-invariant X ⊆ M.

Technically speaking, the use of the freedom axiom and stationarity in Theorem A
is replaced in Theorem B by that of one-basedness and the independence property
for forking independence in simple theories.

One important class of structures that fall under the assumptions of Theorem B
are Lie geometries and their affine spaces as described in [Cherlin and Hrushovski
2003] and [Kantor et al. 1989]. Another class of examples of structures to which
Theorem B applies can be obtained using the general techniques in [Chatzidakis
and Pillay 1998].

Finally, we present a natural variant of ideas of [Uspenskij 2008] and [Ben Yaacov
and Tsankov 2016] in the context of automorphism groups of first-order structures.
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Given a structure M with group of automorphisms G, we describe a semigroup of
partial types Rpa(M) containing G consisting of partial infinitary types encoding the
relationships between two copies of M, and show that any idempotent in Rpa(M)

which is invariant under the involution given by exchanging the blocks of coordinates
corresponding to the two models and the action of G can be associated to a group
topology on G coarser than τst.

We show that under certain mild conditions, the topology τst on the automorphism
group of any distal Fraïssé limit is not minimal.

Corollary C. Let M be any distal Fraïssé limit in a finite relational language
with trivial algebraic closure. Then the type qinf defines a group topology on
G = Aut(M) strictly coarser than τst.

Layout. The paper is organized as follows. In Section 2 we prove our main technical
criterion, Proposition 2.12, of (relative) minimality for τst.

Section 3 contains some preliminary discussion on independence relations and
Fraïssé constructions, along with the proofs of Theorems A and B. In Section 3D we
have provided an example where we show total minimality is not preserved under
taking open finite-index subgroups. Finally in Section 3E we have shown that τst

in certain simple ω-categorical structures built using the Hrushovski construction
method are minimal (Corollary 3.11). Structures that are built using this method
and predimension functions are not one-based.

Section 4 is dedicated to the systematic connection between group topologies
below the standard topology and types described above as well as the proof
of Corollary C.

2. A relative minimality criterion for τst

Given a topological group (G, τ ) and g ∈ G we denote by Nτ (g) the filter of (not
necessarily open) neighbourhoods of g in τ . Since Nτ (g)= gNτ (1G)= Nτ (1G)g
for any g ∈ G, any group topology τ is uniquely determined by Nτ (1G). Given a
filter V on G at 1G such that

• for every U ∈ V there is V ∈ V such that V −1
⊆ U ,

• for every U ∈ V there is V ∈ V such that V V ⊆ U , and

• U g
∈ V for every U ∈ V and g ∈ G,

there is a unique group topology τ on G such that V = Nτ (1G). Given a family Y
of subsets of G containing 1G , we say that Y generates a group topology τ at the
identity if Y generates Nτ (1G) as a filter.

Given a set X we let [X ]
<ω stand for the collection of all finite subsets of X .

Our setting consists of an infinite set � and some G ⩽ S(�), where S(�) is the
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group of permutations of �. It is easy to see using the criterion above that the
collection {G A | A ∈ [�]

<ω
} is a base of neighbourhoods of the identity of a unique

group topology τst, which we will refer to as the standard topology. We are mainly
interested in the case in which � is countable, in which case S(�), abbreviated
as S∞, is a Polish group.

By a closure operator on [�]
<ω we mean a map cl : [�]

<ω
→ [�]

<ω that
preserves inclusion and satisfies A ⊆ cl(A)= cl(cl(A)), for each A ∈ [�]

<ω. There
is a bijective correspondence between (G-equivariant) closure operators cl and
(G-invariant) families X ⊆ [�]

<ω closed under intersections. Each X gives a
closure operator cl(−) by taking as cl(A) for any finite A the smallest set in X

containing A. In the opposite direction we associate cl with the class of cl-closed
sets: X = {A ∈ [�]

<ω
| cl(A)= A}.

Given a family X of subsets of a set �, denote by (X) the collection of all
(finite) tuples of elements whose coordinates enumerate some member of X. As is
customary, the same letter will be used to refer to either a tuple or the corresponding
set depending on the context. In particular we might use an expression such as BC
to denote the union of the ranges of B and C .

Given tuples A, B, C of elements from � we write A ∼=
G B if there exists some

g ∈ G such that g A = B and given an additional C we write A ∼=
G
C B if there

is g ∈ GC such that g A = B. Given A ⊂ � we let aclG(A) stand for the union
of all elements of � whose orbit under G A0 is finite for some finite subset A0

of A. We say aclG(−) is locally finite if aclG(A) is finite whenever A is. In that
case the restriction of aclG to [�]

<ω is a closure operator on [�]
<ω. We write

XG
= {A ∈ [�]

<ω
| aclG(A)= A} and we say that aclG is trivial if XG

= [�]
<ω.

Definition 2.1. Let M be a structure with universe M .
• The structure M is called homogeneous if for every A, B ⊆ M such that

|A| = |B| < |M | and tp(A) = tp(B) there is an automorphism of M which
sends A to B.

• The structure M is called ω-saturated if for every A ∈ [M]
<ω any type over A

is realised in M.

• A relational structure M is called ultrahomogeneous if any isomorphism
between finite substructures of M extends to an automorphism of M.

Let G be the group of automorphisms of some structure M with universe M .
Recall that if M is countable and ω-saturated, then for finite A we have that aclG(A)
coincides with the algebraic closure of A. If M is ω-saturated and countable, then it
is homogeneous. In particular a relational structure M if ω-saturated and countable,
then it is ultrahomogeneous. Typical examples of countable ultrahomogeneous
structures are structures obtained from the Fraïssé construction method in a relational
language (see Section 3B).
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The proof of the following statements contains two auxiliary observations. As
usual in such cases we mark the end of the proof of the subordinate results with a
shaded (as opposed to white) square.

Proposition 2.2. Let G be a group of permutations of a set � for which aclG(−) is
locally finite. Suppose we are given some G-invariant X ⊆� and another group
topology τ ∗

⊂ τ X
st such that for some constant K ∈ N the following property holds:

(⋄) For any A, B ∈ XG and U ∈ Nτ ∗(1G) there exists U ′
∈ Nτ ∗(1G) such that

((G A ∩ U )G B)
K

= G A∩B ∩ U ′.

Then any group topology τ ⊆ τ X
st must satisfy at least one of the following two

conditions:

(1) Given x ∈ X there exists W ∈ Nτ (1G) such that gx ∈ aclG(x) for each g ∈ W .

(2) There exists some G-invariant X ′ ⊊ X such that for all W ∈ Nτ (1G) there is
U ′

∈ Nτ ∗(1G) and U ′′
∈ N

τ X ′

st
(1G) such that U ′

∩ U ′′
⊆ W .

Proof. Assume the first alternative does not hold. Then there is x0 ∈ X such that for
any W ∈Nτ (1G) there exists g ∈ W such that g(x0) ̸∈ aclG(x0). Let X ′

= X \G ·x0.
Our goal is to show point (2), that is, that any neighbourhood W of 1G in τ is also
a neighbourhood of the identity in any topology containing τ ∗ and τ X ′

st . We prove
this via two observations.

Observation 2.3. For any a ∈ G · x0, any finite B ⊂� and any W ∈ Nτ (1G) there
exists some g ∈ W such that ga ̸∈ B.

Proof. Suppose the condition above fails for some a, B, and W . By Neumann’s
lemma there exists some h ∈ Ga such that h(B)∩ B ⊆ aclG(a). This means that
any g in W ∩ W h−1

∈ Nτ (1G) must take a to a point in aclG(a). This contradicts
the choice of x0 and the fact that any a ∈ G · x0 must have the same property, by
invariance of Nτ (1G) under conjugation. ■

The following observation follows from (⋄) by an induction argument and we
leave the proof to the reader.

Observation 2.4. There is a function µ : N → N such that given any finite collection
{B j }

r
j=1 ⊂ XG , U ∈ Nτ ∗(1G) and W ⊆ G containing U ∩

⋃r
j=1 G B j there exists

U ′
∈ Nτ ∗(1G) such that G⋂r

j=1 B j
∩ U ′

⊆ Wµ(r).

Fix some arbitrary W ∈Nτ (1G). Pick W0 = W −1
0 ∈Nτ (1G) such that W 2K

0 ⊆ W .
Since τ ⊆ τ X

st , there exists some finite A ⊂ X such that G A ⊆ W0. By local finiteness
we may assume A = aclG(A). Let {a j }

r
j=1 := A ∩ (G · x0).

Pick W1 = W −1
1 ∈ Nτ (1G) such that W 3µ(r)

1 ⊆ W0, where µ is the function
given by Observation 2.4. Let B ⊂ � be a finite subset such that G B ⊂ W1. We
may assume again B ∈ XG . By Observation 2.3 for any 1 ⩽ j ⩽ r there exists
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some g j ∈ W1 such that g j a j ̸∈ B or, equivalently, a j ̸∈ B j := g−1
j B. Notice that

G B j = Gg j
B ⊆ W 3

1 .
Let C =

⋂r
j=1 B j . According to Observation 2.4 (for U = G) there is U ′

∈

Nτ ∗(1G) such that GC ∩ U ′
⊂ (W 3

1 )
µ(r)

⊆ W0. A final direct application of (⋄)
(again with U = G) yields some U ′

0 ∈ Nτ ∗(1G) such that

U ′

0 ∩ GC∩A ⊆ (GC G A)
K

⊆ W 2K
0 ⊆ W.

By construction C ∩ A ⊆ X ′ and thus U ′′

0 := G A∩C ∈ τ X ′

st . As W is an arbitrary
neighbourhood of 1G in τ we conclude that case (2) of the statement holds and so
we are done. □

We elaborate further on the same idea:

Lemma 2.5. Let G be a group of permutations of a set �, {X j } j∈J some collection
of G-invariant subsets of � and Z =

⋂
j∈J X j . Assume that aclG(x) = x for

any x ∈ � and that there exists K > 0 such that for any finite A, B ⊂ � we have
(G AG B)

K
= G A∩B . Then τ Z

st =
⋂

j∈J τ
X j
st .

Proof. We begin by noting that just as in Observation 2.4 one can show by induction:

Observation 2.6. There exists a function µ : N → N such that for any finite
collection {Bl}

r
l=1 ⊆ [�]

<ω and any V ⊆ G containing G Bl for all 1 ⩽ l ⩽ r we
have G⋂r

l=1 Bl
⊆ V µ(r).

Let τ0 =
⋂

j∈J τ
X j
st . The inclusion τ Z

st ⊆ τ0 is clear. Take now any W ∈ Nτ0(1G).
Fix j0 ∈ J . Since W ∈ τ X j0st , there exists some finite A ⊆ X j0 such that G A ⊆ W .
Let {a j }

r
j=1 := A \ Z . Pick W0 = W −1

0 ∈ Nτ0(1G) such that Wµ(r+1)
0 ⊆ W . For

each 1 ⩽ l ⩽ r choose some jl ∈ J such that al ̸∈ X jl and then some finite Bl ⊆ X jl
such that G Bl ⊆ W0. Observation 2.6 and the choice of W0 implies GC ⊆ W , where
C = A ∩

⋂r
l=1 Bl . Since C ⊆ Z we have shown U ⊆ W for some U ∈ τ Z

st . Since
W ∈ Nτ0(1G) was arbitrary we have τ0 ⊆ τ Z

st and we are done. □

Lemma 2.7. Let G be the automorphism group of some structure M endowed with
a G-invariant locally finite closure operator cl(−) on M and a group topology τ
coarser than τst. Assume that the action of G is transitive and there is some
W ∈ Nτ (1G) and a ∈ M such that ga ∈ cl(a), for each g ∈ W . Then either τ is not
Hausdorff or τ = τst.

Proof. Notice that by the transitivity of the action of G on M and continuity of the
inverse operation for every a ∈ M there are Ua,Wa ∈Nτ (1G) such that f (a)∈ cl(a)
for any f ∈ Wa and g−1(a) ∈ cl(a) for any g ∈ Ua . For a finite tuple A in M we
write WA =

⋂
a∈A Wa . Given a, b ∈ M , we say that a ∼ b if a ∈ cl(b) and b ∈ cl(a).

This is clearly an equivalence relation. If we let W ′
a = Wa ∩

⋂
z∈cl(a) Uz , then any

f ∈ W ′
a must preserve the class [a] ∈ M/∼ setwise, that is, W ′

a ⊂ G[a]. Indeed,
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if g ∈ W ′
a , then ga ∈ cl(a). On the other hand, since g ∈ Uga we must have

a = g−1ga ∈ cl(ga), so a ∼ ga.
For any V ∈ Nτ (1G) and any finite ∼-closed A ⊂ M consider the set

Y A
V = { f : A → A | ∃g ∈ V such that g↾A = f and g([a])= [a] for all a ∈ A}.

Notice that this set is finite, and that given ∼-closed A ⊂ B ⊂ M and f ∈ Y B
V we

have f ↾A ∈ Y A
V . Invariance should be clear from the fact that A is ∼-closed and

the definition of Y A
V .

Lemma 2.8. Either Y A
V = {idA} for some V ∈ Nτ (1G) and finite ∼-closed A or

there exists f ∈ G \ {1G} such that for all ∼-closed A ⊂ M and all V ∈ Nτ (1G) we
have f ↾A ∈ Y A

V .

Proof. Recall that according to the assumption the closure is locally finite. If the
first alternative is not the case, then from Observation 2.4 and König’s lemma it
follows that there is a function f : M → M such that f ↾A ∈ Y A

V for any ∼-closed A
and V ∈ Nτ (1G). The fact that f ↾A is a type-preserving bijection of A for any
such A implies f ∈ G. ■

If the first possibility in Lemma 2.8 holds, then G A contains W ′

A ∩ V and is thus
a neighbourhood of the identity in τ , which implies that τ = τst. We claim that if the
second possibility is satisfied the resulting f ∈ G \ {1G} satisfies f ∈

⋂
V ∈Nτ (1G)

V ,
and therefore τ is not Hausdorff. Given any V ∈ Nτ (1G), the closure in τ of any
W ∈Nτ (1G)∩τst satisfying W = W −1 and W 2

⊂ V is itself contained in V . Indeed,
if h ∈ W then there is h′

∈ hW ∩ W and thus h = h′(h′′)−1
∈ W 2 for some h′′

∈ W .
Hence, Nτ (1G) admits a basis consisting entirely of τst-closed neighbourhoods of
the identity. It is thus enough to show that f belongs to the closure of V in τst for
any V ∈ Nτ (1G), which is immediate from the definition of Y A

V . □

The following ubiquitous observation is crucial for the application of the results
above. We provide a proof for the sake of completeness.

Lemma 2.9. Let G be a group of permutations of a set � and A, B tuples of
elements from � for which there is a chain A = A0, B0, . . . , Bn−1, An = g(A) such
that Ai Bi ∼=

G Ai+1 Bi ∼=
G AB for 0 ⩽ i < n. Then g ∈ (G AG B)

nG A.

Proof. The proof is by induction on n. In the base case n = 0 we have A = g(A),
that is, g ∈ G A. Assume now n > 0. Since AB0 ∼=

G AB, there exists h ∈ G A such
that h(B0)= B. Now A1 B0 ∼=

G AB implies h(A1)B = h(A1)h(B0)∼=
G A1 B0 ∼=

G AB,
which implies that there exists h′

∈ G B such that h′(h(A1))= A. Applying induction
to the sequence (A′

i , B ′

i )
n−1
i=0 given by A′

i = h′h(Ai+1), B ′

i = h′h(Bi+1) yields that
h′hg ∈ (G AG B)

n−1G A, from which it follows that g ∈ (G AG B)
nG A, as desired. □

Definition 2.10. Suppose we are given a group G of permutations of a set �, and X

a G-invariant family of subsets of � closed under intersection. We say X has
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the n-zigzag property (with respect to the action of G) if for every A, B ∈ (X) and
any A′ with A ∼=

G
A∩B A′ there are A0, . . . , An and B0, . . . , Bn−1 such that

(1) A0 := A, and An = A′;

(2) Ai Bi ∼=
G Ai+1 Bi ∼=

G AB for 0 ⩽ i ⩽ n − 1.

We will refer to the sequence A0, B0, A1, . . . , An above as an (n, B)-zigzag path
from A to A′.

Observation 2.11. Given an n-zigzag path as above if we write C = A ∩ B then
C ⊆ Ai Bi ∼=

G
C Ai+1 Bi ∼=

G
C AB for all 0 ⩽ i ⩽ n − 1. In particular, Ai ∩ Bi =

Ai+1 ∩ Bi = C.

Notice that for fixed A, B and n, the existence of a (n, B)-zigzag path from A
to A′ depends only on the orbit of A′ under G A.

Proposition 2.12. Suppose M is a countable first-order structure and G = Aut(M).
Assume aclG(−) is locally finite and XG corresponding to aclG has the n-zigzag
property for some n. Then:

(1) If the action of G on M is transitive, then (G, τst) is minimal.

(2) If aclG(x)= x for any x ∈ M , then any group topology τ ⊆ τst is of the form τ X
st

for some G-invariant X ⊆ M.

Proof. For any A, B ∈ X and any g ∈ G A∩B the n-zigzag property applied to A, B
and A′

= g A, together with Lemma 2.9, implies that g ∈ (G AG B)
nG A. Therefore

G A∩B = (G AG B)
nG A and we can apply Proposition 2.2 with τ ∗

= {∅,G} under
the common assumptions of (1) and (2). By the same reason we can also apply
Lemma 2.5 under the assumptions of (2).

Let us show (1) first. Let τ be a group topology on G coarser than τst. If the first
alternative in Proposition 2.2 holds, then by Lemma 2.7 either τ is not Hausdorff
or τ = τst. Since by assumption the only invariant subsets of M are ∅ and M , the
second alternative implies that τ = {∅,G}.

Let us now show (2). Let τ be a group topology on G coarser than τst. By
Lemma 2.5 (see the discussion in the first paragraph) there exists some unique min-
imal G-invariant set X such that τ ⊆ τ X

st . Apply Proposition 2.2 with τ ∗
= {∅,G}.

The second alternative produces some G-invariant X ′ ⊊ X such that τ ⊆ τ X ′

st , in
contradiction with the choice of X . Since we assume aclG to be trivial, the first
alternative implies τ = τ X

st . □

3. Minimality and independence

3A. Independence. Throughout this section we work in the following setting: �
is a set, G is a permutation group of �, cl(−) a G-equivariant closure operator
on [�]

<ω and X = {cl(A) | A ∈ [�]
<ω

} the associated family of closed sets. Our
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goal is to derive concrete applications from the results of the previous section to the
case where � is the underlying set of a first-order structure M and G = Aut(M).

Definition 3.1. Given cl(−) and X as above and a ternary relation |⌣ between
members of [�]

<ω we say that (cl, |⌣) (alternatively, (X, |⌣)) is a compatible pair
if for all A, B,C, D ∈ [�]

<ω the following properties are satisfied:

• (compatibility) A |⌣C B if and only if A |⌣cl(C) B if and only if cl(AC) |⌣C
cl(BC).

• (invariance) If g ∈ G and A |⌣B C then g A |⌣gB gC .

• (weak monotonicity) If A |⌣B C D or AD |⌣B C then A |⌣B C .

• (antireflexivity) If A |⌣C B, then A ∩ B ⊆ cl(C).

We write A |⌣ B as an abbreviation of A |⌣∅ B.

Definition 3.2. We define some additional properties for a compatible pair (X, |⌣):

• (transitivity) If A |⌣B C and A |⌣BC D, then A |⌣B C D.

• (symmetry) If A |⌣B C then C |⌣B A.

• (existence) For any A, B,C there is g ∈ G B such that g A |⌣B C .

• (independence) Suppose we are given A, B1, B2,C1,C2 ∈ (X) such that
B1 |⌣ A B2, A ⊆ Bi and Ci |⌣ A Bi for i = 1, 2 and C1 ∼=

G
A C2. Then there

exists D ∈ X such that D ∼=
G
Bi

Ci for i = 1, 2 and D |⌣ A B1 B2.

• (stationarity) If B ∈ X and Ai |⌣B C for i = 1, 2, then A1 ∼=
G
B A2 implies

A1 ∼=
G
BC A2.

We also consider these properties:

• (freedom) X = [�]
<ω and if A |⌣C B and C ∩ AB ⊆ D ⊆ C , then A |⌣D B.

• (one-basedness) A |⌣ A∩B B for every A, B ∈ X.

The one-basedness property admits the following generalization:

Definition 3.3. Given k ⩾ 1, we say that (X, |⌣) satisfies k-narrowness if, for
any C, A0, A1, . . . , Ak in X, the conditions

• Ai ∩ Ai+1 = C for each 0 ⩽ i ⩽ k − 1,

• Ai+1 |⌣ Ai
Ai−1 · · · A0 for each 1 ⩽ i ⩽ k − 1

imply that A0 |⌣C Ak (notice that for k = 1 we recover the one-basedness property).

Lemma 3.4. Let (X, |⌣) be a compatible pair that satisfies existence. Then:

(1) If it satisfies freedom or one-basedness, then for any A, B ∈ X there is A′
∈ X

such that A′ ∼=
G
B A, A′

∩ A = A ∩ B and A |⌣ A∩B A′.
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(2) If it satisfies transitivity, symmetry and 2m-narrowness, then for any A, B ∈ X

there is A′
∈ X such that an (m, B)-zigzag path from A to A′ exists, A′

∩ A =

A′
∩ B and A |⌣ A∩B A′.

Proof. Existence yields A′
∈ X such that A′ ∼=

G
B A and A′ |⌣B A. Antireflexivity

implies that A′
∩ A ⊆ B, i.e., A′

∩ A ⊆ A ∩ B. On the other hand A′ ∼=
G
B A implies

A ∩ B = A′
∩ B.

If we assume the freedom axiom, then A′ |⌣ A∩B A follows from A′ |⌣B A and
B ∩ (A′

∪ A) = (B ∩ A′)∪ (B ∩ A) = B ∩ A. Alternatively, the same conclusion
follows directly from one-basedness.

Let C = A ∩ B. For (2) construct sequences B0 = B, B1, . . . , Bm−1 and A0 = A,
A1, . . . , Am as follows. Assuming we have already taken (Ai , Bi )

k
i=0, existence

provides Ak+1 ∼=
G
Bk

Ak with Ak+1 |⌣Bk
A0 B0 · · · Ak Bk . By the same token, for k ⩽m

we can choose Bk+1 ∼=
G
Ak+1

Bk with Bk+1 |⌣ Ak
A0 B0 · · · Ak+1. It is clear that this

yields an (m, B)-zigzag path from A to Am .
By transitivity, A j |⌣B j−1

Al for any 0 ⩽ l ⩽ j − 1, so that A j ∩ Al ⊆ A j ∩ B j−1

by antireflexivity. Since A j ∩ B j−1 = C and C ⊂ A j ∩ Al by Observation 2.11
we conclude that A j ∩ Al = C . Arguing in a similar manner one can show that
A j ∩ Bl = C for any 0⩽ j ⩽m and 0⩽ l ⩽m−1. This establishes that the sequence
A0, B0, . . . , Bm−1, Am satisfies the first property of the condition in the definition
of 2m-narrowness, while the second follows by transitivity and construction. If we
let A′

= Am we then get A′ |⌣C A and A |⌣C A′ by symmetry, while the sequence
above is an (m, B)-zigzag path from A to A′. □

Lemma 3.5. Let (X, |⌣) be a compatible pair satisfying symmetry, existence and
transitivity and assume that for any A, B ∈ X there exists an (m, B)-zigzag path
from A to some A1 such that A1 |⌣ A∩B A. Then:

(1) If stationarity holds, then X has the 2m-zigzag property.

(2) If independence holds, then X has the 4m-zigzag property.

Proof. Let A, A′, B ∈ X with A′ ∼=
G
A∩B A. Let C := A ∩ B. In both cases using

the assumption we start by choosing A1 ∈ X for which there is an m-zigzag path
from A to A1 and A1 |⌣C A.

Consider (1) first. By extension there is A2 such that A2 ∼=
G
A A1 and A2 |⌣ A A′ A.

The first implies the existence of an (m, B)-zigzag path from A to A2. The second,
together with A2 |⌣C A, implies A2 |⌣C A′ A by right transitivity. By weak mono-
tonicity we get A2 |⌣C A′ and by symmetry A |⌣C A2 and A′ |⌣C A2. Stationarity
yields A ∼=

G
A2

A′. Thus, there is also an (m, B ′)-zigzag path from A2 to A′, where
A′B ′ ∼=

G AB and combining both paths we get a (2m, B)-zigzag path from A to A′.
We move on to case (2). By invariance and existence there is A′

1 such that
A′

1 A′ ∼=
G A1 A (so that by invariance A′

1 |⌣C A′) and A′

1 |⌣ A′ A′ A1. Transitivity and
monotonicity then imply A′

1 |⌣C A1.
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Independence applied to the tuple C , A1, A′

1, A, A′ in place of the A, B1, B2,
C1, C2 of the definition implies the existence of some D such that D A1 ∼=

G AA1

and D A′

1
∼=

G AA1. This witnesses the existence of a (4m, B)-zigzag path from A
to A′. Notice that symmetry is required in order to get A′ |⌣C A′

1. □

3B. Review of Fraïssé construction. Let us briefly review the Fraïssé construction
method in a relational language. For a more detailed discussion we refer the reader
to the survey by Macpherson [2011].

Let L be a relational signature and K be a countable class of finite L-structures
closed under isomorphism. Suppose A, B ∈ K. By A ⊆ B we mean A is an L-
substructure of B. We say K is a Fraïssé class if it satisfies the following properties:

• (HP) K is closed under substructures.

• (JEP) For any A, B ∈ K there is C in K such that A, B ⊆ C .

• (AP) Given A1, A2, B ∈K and isometric embeddings gi : B → Ai for i = 1, 2
there exists C ∈ K and isometric embeddings hi : Ai → C such that h1 ◦ g1 =

h2 ◦ g2.

According to a theorem of Fraïssé, for any Fraïssé class K there is a unique
countable structure M called the Fraïssé limit of K, denoted by Flim(K), such that

• M is ultrahomogeneous (see Definition 2.1);

• Age(M), the collection of all finite substructures of M, coincides with K.

Classical examples of Fraïssé limit structures are (Q, <) and the random graph. If L
is empty, then K is the class of finite sets and Flim(K) an infinite countable set. More
generally, we say K is trivial if the equality type of a finite tuple of elements from M
determines its type (equivalently, if Aut(M) is the full permutation group of M).

Suppose A, B and C are structures in some relational language L with A ⊆ B,C .
By the free-amalgam of B and C over A, denoted by B⊗A C , we mean the structure
with domain B ⨿A C in which a relation holds for a tuple a if and only if it already
did in either B or C .

By a free amalgamation class we mean a class K of finite structures in a relational
language satisfying (HP) and such that B ⊗A C ∈ K for any A, B,C ∈ K such that
A ⊆ B,C . We write B |⌣

fr
A C if and only if the structure generated by ABC is

isomorphic (with the right identifications) with the free amalgam B⊗AC . If B |⌣
fr C

we say B and C are free from each other.

Theorem A. Let M be the Fraïssé limit of a free amalgamation class in a countable
relational language. Let G = Aut(M). Then any group topology τ ⊆ τst on G is
of the form τ X

st , where X ⊆ M is some G-invariant set. In particular, if the action
of G on M is transitive, then there are no nontrivial group topologies on G strictly
coarser than τst and thus (G, τst) is totally minimal.
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Proof. First note that the algebraic closure in any Fraïssé limit of a free amalgamation
class is trivial (follows from Lemma 2.1.4 in [Macpherson 2011]). If we let
X = [M]

<ω, where M is the underlying set of M and |⌣ = |⌣
fr, then part (1) of

Lemma 3.4 and part (1) of Lemma 3.5 apply to the pair (X, |⌣). Together, they
imply X has the 2-zigzag property with respect to the action of G. The result then
follows from an application of Proposition 2.12. □

3C. Small, one-based simple theories. Recall that given an L-structure M and
A ⊆ M, a subset X of Mn is called definable over A it is the solution set of
some L-formula with parameters in A. For a model M of a complete theory and
any definable equivalence relation E over ∅ on n-tuples one can consider the
equivalence classes of Mn/E as elements of a new sort in an extended multisorted
language. These classes are referred to as imaginary elements. A theory T is
said to have weak elimination of imaginaries if for any n ⩾ 1 and any imaginary
element e = a/E , where E is a definable equivalence relation on Mn over the
empty set, there is a finite tuple c in M such that e is definable over c (i.e., the
single solution of some formula over c) and c is algebraic over e (i.e., every element
of c is a solution of some formula over e which has only finitely many solutions);
see [Tent and Ziegler 2012]. Within a saturated model of the theory an element a
is definable (algebraic) over B if its orbit under the stabilizer of B is a singleton
(finite). Roughly speaking in theories with weak elimination of imaginaries, the
imaginary elements are coded (in a weak sense) in the original structure.

Understanding simple theories requires dealing with hyperimaginaries. A hy-
perimaginary is an equivalence class of a type definable equivalence relation of a
possibly infinite tuple over the empty set, where a type is an infinite conjunction
of finitely consistent formulas. Recall that a theory eliminates hyperimaginaries if
any hyperimaginary element is interdefinable with a sequence of imaginaries. See
[Wagner 2000] or [Kim 2014] for details on these concepts.

Theorem B. Let M be a simple, ω-saturated countable structure with locally finite
algebraic closure and weak elimination of imaginaries. Assume furthermore that
Th(M) is one-based. Let G = Aut(M). Then:

(1) If G acts transitively on M, then (G, τst) is minimal.

(2) If all singletons are algebraically closed, then any group topology τ on G
coarser than τst is of the form τ X

st for some G-invariant X ⊆ M.

Proof. As cl we take the algebraic closure acl and |⌣ the forking independence. We
claim part (1) of Lemma 3.4 and part (2) of Lemma 3.5 both apply to (X, |⌣).

The pair clearly satisfies invariance, weak monotonicity, transitivity and symmetry.
Existence follows from the fact that M is ω-saturated, so it is left to check one-
basedness and independence in the sense of Definition 3.2.
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It is known that small simple theories which admit finite coding have elimination
of hyperimaginaries (for definitions and details, see [Wagner 2000, Section 6 and
Proposition 6.1.21]). Furthermore, one-based simple theories admit the finite coding
property. These all imply in our setting that we have elimination of hyperimaginaries.

Take A, B ∈ X. The fact that the theory is one-based and has elimination of
hyperimaginaries implies A |⌣acleq(A)∩acleq(B) B. The relation A |⌣ A∩B B follows
then from weak elimination of imaginaries.

Lastly, elimination of hyperimaginaries and weak elimination of imaginaries
imply that the type of a tuple over a finite acl-closed set determines its Lascar strong
type over that same set. Hence, Kim and Pillay’s independence theorem [1998]
(see also Chapter 2.3 and Theorem 2.3.1 in [Kim 2014]) translates into abstract
independence (amalgamation of types) for (acl, |⌣) in that case. □

For stable theories the notion of being k-ample (for some k ⩾ 1) generalizes the
negation of one-basedness. See [Evans 2003] for details. When algebraic closure is
trivial, not k-ampleness translates into (acl, |⌣

f ) being k-narrow, where |⌣
f is the

forking independence. From an argument similar to the one in the two theorems
above we can deduce the following result:

Theorem 3.6. Let M be a countable ω-saturated stable structure such that Th(M)

has trivial algebraic closure, has weak elimination of imaginaries, and is not k-
ample for some k ⩾ 1. Then any group topology on G = Aut(M) coarser than τst

is of the form τ X
st for some G-invariant X ⊆ M.

3D. An example that shows total minimality is not preserved under taking open
finite-index subgroups. Consider the relational language L1 = {E (2), P (1)}, and
let K1 be the class of all finite L1-structures in which E is interpreted as the
edge relation of a bipartite graph with edges only between the domain of the
unary predicate P and its complement. Consider also the class K2 in the language
L2 = {E (2), F (2)} consisting of all finite L-structures in which F is interpreted as an
equivalence relation with at most 2 classes and E as the edge relation of a bipartite
graph with edges only among vertices that belong to distinct F-classes.

Let Mi = Flim(Ki ) and Gi = Aut(Mi ). Clearly M2 is a reduct of M1, so that
G1◁G2 and in fact [G2 : G1]= 2. It is easy to check that K1 has free amalgamation
and then by Theorem A there are exactly two group topologies on G1 strictly coarser
than τst, namely τ P(M1)

st and τ¬P(M1)
st . Notice that both are Hausdorff, since no auto-

morphism of M1 can fix P(M1) or its complement (given any two points a, b, there
exists c in P (resp. ¬P) such that tp(c, a) ̸= tp(c, b)), so (G1, τst) is not minimal.

In this case we have an additional non-Hausdorff group topology, τ ∗
= {∅,G1}.

Apply Proposition 2.2 to conclude that any group topology on G1 strictly contained
in τst is contained in τ ∗.

On the other hand, it follows from Theorem B that (G2, τst) is minimal.
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3E. Simple nonmodular predimension Hrushovski construction. Hrushovski’s
predimension construction was introduced as a means of producing countable
structures with a certain combinatorial property of the algebraic closure. This
method was used by Hrushovski to build strongly minimal structures which are not
field-like or vector space-like, as well as a stable ω-categorical pseudoplane. There
are many variants of the method, but to fix notation, we consider the following
basic case and later focus on a version that produces ω-categorical structures. We
refer readers to [Wagner 1994; Baldwin and Shi 1996; Evans et al. 2016] for most
of the properties that are mentioned here about Hrushovski constructions and some
of their variations.

Suppose s ⩾ 2 and η ∈ (0, 1]. We work with the class C of finite s-uniform
hypergraphs, that is, structures in a language with a single s-ary relation symbol
R(x1, . . . , xs) whose interpretation is invariant under permutation of coordinates
and satisfies R(x1, . . . , xs)→

∧
i< j (xi ̸= x j ).

To each B ∈ C we assign the predimension

δ(B)= |B| − η|R[B]|,

where R[B] denotes the set of hyperedges on B. For A ⊆ B, we define A ⩽ B if
and only if for all B ′ with A ⊆ B ′

⊆ B we have δ(A)⩽ δ(B ′), and let Cη := {B ∈ C |

∅⩽ B}. The following is standard.

Lemma 3.7. Suppose A, B ⊆ C ∈ Cη. Then:

(1) δ(AB)⩽ δ(A)+ δ(B)− δ(A ∩ B).

(2) If A ⩽ B and X ⊆ B, then A ∩ X ⩽ X.

(3) If A ⩽ B ⩽ C , then A ⩽ C.

If A, B ⊆ C ∈ Cη then we define δ(A/B) = δ(AB)− δ(B). Note that this is
equal to |A \ B| − η|R[AB] \ R[B]|. Then B ⩽ AB if and only if δ(A′/B)⩾ 0 for
all A′

⊆ A. Moreover, if N is an infinite L-structure such that A ⊆ N , we write
A ⩽ N whenever A ⩽ B for every finite substructure B of N that contains A. For
L-structures A and X , where A is finite and X is of any cardinality, if A⩽ X then we
say A is ⩽-closed in X . One can show Cη has the ⩽-free amalgamation property (see
Lemma 4.8 in [Baldwin and Shi 1996]), by which we mean free amalgamation with
respect to ⩽ inclusions. An analogue of Fraïssé’s theorem holds in this situation:

Proposition 3.8. There is a unique countable structure Mη, up to isomorphism,
satisfying:

(1) The set of all finite substructures of Mη, up to isomorphism, is precisely Cη.
(2) Mη

=
⋃

i∈ω Ai , where (Ai : i ∈ ω) is a chain of ⩽-closed finite sets.

(3) If A ⩽ Mη and A ⩽ B ∈ Cη, then there is an embedding f : B → Mη with
f ↾A = idA and f (B)⩽Mη.
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The structure Mη that is obtained in the above proposition is called the Hrushovski
generic structure.

Here we briefly discuss a variation on the Hrushovski’s predimension construction
method as a way to generate ω-categorical structures. The original version of this
is used to provide a counterexample to Lachlan’s conjecture, where it is used to
construct a stable ω-categorical pseudoplane (see Section 5 in [Wagner 1994]).
Here we follow a similar setting to that used in Section 5.2 of [Evans et al. 2016].

Suppose η = m/n ∈ (0, 1], where gcd(m, n) = 1. Consider the same setting
of the previous subsection for L and Cη. For A, B ∈ Cη, where A ⊂ B, define
A ⩽d B when δ(A′/A) > 0, for all A′ with A ⊊ A′

⊆ B. For a suitable choice of
an unbounded convex increasing function f : R⩾0

→ R⩾0 and restricting Cη to

C f
η := {A ∈ Cη | δ(X)⩾ f (|X |) for all X ⊆ A},

one can show (C f
η ,⩽d) has the ⩽d-free amalgamation property. We call these f

good and denote the associated countable generic structure by M f
η , which is going

to be ω-categorical.

Remark 3.9. To obtain a good function, we can take some piecewise smooth f
whose right derivative f ′ satisfies f ′(x)⩽ 1/x and is nonincreasing for x ⩾ 1. The
latter condition implies that f (x + y)⩽ f (x)+ y f ′(x) (for y ⩾ 0). It can be shown
that, under these conditions, C f

η has the free ⩽d-amalgamation property. Details
can be found in Section 6.2 and Example 6.2.27 in [Wagner 2000].

We assume that f is a good function. We will assume that f (0)= 0 and f (1)> 0,
and in this case the ⩽-closure of the empty set is empty. We shall also assume that
f (1)= n and one can show Aut(M f

η ) acts transitively on M f
η . See Examples 5.11

and 5.12 in Section 5.2 of [Evans et al. 2016] for details.
Given any finite subset X of M f

η , one can show there is a smallest finite sub-
set Y with X ⊆ Y ⩽d M f

η , for which we use the notation cld(X). Let Xd
:=

{cld(A) | A ∈ [M f
η ]
<ω

}. Given A, B,C ∈ Xd one can define A |⌣
d
B C if and only

if cld(AB)∪ cld(BC)= cld(ABC) and cld(AB)∩ cld(BC)= B. Note that in this
case, cld(ABC) is the free amalgam of cld(AB) and cld(BC) over B.

Lemma 3.10. (Xd , |⌣
d) satisfies 3-narrowness.

Proof. Suppose C , A0, A1, A2, A3 are d-closed sets in Xd with Ai ∩ Ai+1 = C
for 0 ⩽ i ⩽ 2, where A3 |⌣

d
A2

A1 A0 and A2 |⌣
d
A1

A0. We want to show A3 |⌣
d
C A0.

First we claim A3 ∩ A0 = C . By the assumption C ⊆ A0 ∩ A3. From A3 |⌣
d
A2

A1 A0

we know cld(A3 A2)∩ cld(A2 A1 A0)= A2, which implies A3 ∩ A0 ⊆ A3 ∩ A2 = C .
It remains to show A0 A3 is d-closed. If not, then there is e ∈ cld(A0 A3) \ A0 A3

such that e is R-related to some elements in Â3 ⊆ A3 \ C and to some elements
in Â0 ⊆ A0 \ C , where δ(E/ Â0 Â3C)⩽ 0 for some E ⊆ cld(A0 A3), where e ∈ E
(see Section 4.2 in [Evans et al. 2016] for details of properties of minimally simply
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algebraic extensions). From A3 |⌣
d
A2

A1 A0 we know cld(A0 A1 A2 A3) is the free
amalgam of cld(A3 A2) and cld(A2 A1 A0) over A2. Since e ∈ cld(A0 A1 A2 A3), then
this implies e ∈ A2. Because A2 |⌣

d
A1

A0, we have Â0 ⊆ A1. This contradicts the
fact that A0 ∩ A1 = C . □

Then, combining Lemma 5.7 in [Evans et al. 2016] with Lemma 3.4(2), by
Lemma 3.10, one can see (Xd , |⌣

d) satisfies all the properties of Lemma 3.5(1).
Then using Proposition 2.12 we conclude the following.

Corollary 3.11. Suppose that f is a good function and let M f
η be an ω-categorical

Hrushovski generic structure such that G = Aut(M f
η ) acts transitively on M f

η .
Then (G, τst) is a minimal topological group.

4. Topologies and types

In this section we describe a general way of constructing group topologies below
the standard topology on the automorphism group of a first-order structure. Our
ideas are inspired by [Ben Yaacov and Tsankov 2016] and [Uspenskij 2008]. In
fact, when M is an ω-categorical structure the space Rpa(M) as defined below
consisting of complete types can be identified with the Roelcke compactification
of Aut(M) as described in [Ben Yaacov and Tsankov 2016]. However the goal
here is to establish a way of parametrizing topologies that does not depend on the
existence of a well-behaved independence relation. We prove Corollary C at the
end of the section as an application.

Let M be a first-order structure and T = Th(M). Consider two tuples of
variables x = (xm)m∈M and y = (ym)m∈M indexed by the elements of M . Given
some finite tuple a = (a1, a2, . . . , ak)⊂ M we write xa in lieu of (xa1, xa2, . . . , xak ).
Let pM(x) = tp(M), where the variable xm is made to correspond with m ∈ M .
Let R(M) stand for the collection of all T -complete types in variables x, y con-
taining pM(x) ∪ pM(y) and write Rpa(M) for the collection of partial types in
variables x, y in T containing pM(x)∪ pM(y). Here we assume types are deduc-
tion closed. Given any partial type p(x, y) we will denote the deduction closure
of p(x, y)∪ pM(x)∪ pM(y) in T as ⟨p⟩. The set Rpa(M) can be endowed with
the so-called logic topology, which we denote by τL , generated by neighbourhoods
of the form [φ] = {p ∈ Rpa(M) | φ ∈ p}, where φ is any formula in (x, y). The
result is a Stone space.

Given p1, p2 ∈ Rpa(M) we let (p1∗ p2)(x, y)∈ Rpa(M) denote the collection of
all formulas ψ(x, y) such that there exist φi (x, y) ∈ pi (x, y) for i = 1, 2 such that

φ1(x, z)∧φ2(z, y) ⊢ ψ(x, y).

Given p ∈ Rpa, let p̄ ∈ Rpa be defined by θ(x, y) ∈ p̄ ↔ θ(y, x) ∈ p. It can be
checked that ∗ endows Rpa(M) with a semigroup structure. Furthermore, one can
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show that ∗ is a continuous map Rpa(M)× Rpa(M) → Rpa(M) and p 7→ p̄ is
also continuous with respect to τL . For the first, assume p1, p2 ∈ Rpa(M) and
ψ(x, y) is a formula with p1 ∗ p2 ∈ [ψ(x, y)]. Then the definition of ∗, together
with compactness, implies the existence of φ1(x, z) ∈ p1 and φ2(z, y) ∈ p2 such
that T ∪{φ1(x, z), φ2(z, y)} ⊢ψ(x, y), which implies that [φ1] ∗ [φ2] ⊆ [ψ]. If we
let 0 = ⟨∅⟩ ∈ Rpa then clearly p ∗0 = 0 for any p ∈ Rpa. We write p ⩽ q for p ⊢ q .

Every g ∈ Aut(M) is associated to some type ι(g)= ⟨xgm = ym⟩m∈M ∈ Rpa. It
can be easily checked that ι is a continuous homomorphic embedding of (G, τst)

into (Rpa(M), τL) whose image is contained in R(M). We will write simply g
instead of ι(g). Notice that pg

:= g−1
∗ p ∗ g = {φ(xa, yb) | φ(xg·a, yg·b) ∈ p} for

any p ∈ Rpa and g ∈ G.

Definition 4.1. Suppose M is an L-structure and G =Aut(M). We say that q ∈ Rpa

is an invariant idempotent if the following conditions are satisfied:

(1) 1G ⩽ q;

(2) q = q̄;

(3) q ∗ q = q; and

(4) q = qg for any g ∈ G.

Notice that (1) implies q = 1G ∗ q ⩽ q ∗ q , so that item (3) could be replaced by
the a priori weaker condition q ∗ q ⩽ q.

Given a formula φ(x, y), let Nφ := ι−1([φ])= {g ∈ G | M |H φ(ga, b)}. Given
an invariant idempotent q ∈ Rpa(M), let Nq = {Nφ | φ(x, y) ∈ q}.

Lemma 4.2. Given any structure M the following statements hold, where G =

Aut(M):

(1) Given any invariant idempotent q ∈ Rpa(M) the family Nq forms a basis of
neighbourhoods of a group topology τq on G (necessarily unique by invariance
under translations).

(2) The closure of 1G in τq coincides with the collection of all g ∈ G such that
g ⩽ q.

(3) Given invariant idempotents p, q ∈ Rpa(M) such that p ⩽ q we have τp ⊇ τq .
Conversely, if M is countable and ω-saturated then τp ⊇ τq implies p ⩽ q.

Proof. On the one hand, for any φ(xA, yB) ∈ q , we have

N−1
φ(x,y) = {g ∈ G | M |H φ(g−1a, b)}

= {g ∈ G | M |H φ(a, gb)} = Nφ(y,x) ∈ Nq̄ = Nq .

On the other hand, the condition q ∗ q = q is equivalent to the following: for any φ
and finite A and B there is C ⊂ M and formulas ψ(xA, zC), ψ

′(zC , yB) ∈ q such
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that modulo T we have

(1) pM(x)∪ pM(y)∪ pM(z)∪ {ψ(xA, zC)∧ψ
′(zC , yB)} ⊢ φ(xA, yB).

Let N = Nψ(xA,yC )∧ψ(xC ,yB). Given h, g ∈ N we have M |Hψ(g A,C)∧ψ ′(hC, B).
The formulas are of course h-invariant, and hence M |H ψ(hg A, hC). Likewise,
hg A |H pA and hC |H pC and thus by (1) we conclude that M |H φ(hg A, B) and
therefore hg ∈ Nφ . This settles part (1). Part (2) follows easily from the fact that ι(g)
is a complete type for g ∈ G and is left to the reader. As for (3), the implication
from left to right is trivial. Assume now M is countable and ω-saturated and we are
given p, q such that p ≰ q. Then there exists some φ(xa, ya) ∈ q for a ∈ [M]

<ω

such that p ̸∈ [φ].
Consider the type r(x) ∈ S|a|(a) given by

r(x)= tpx(a)∪ {¬φ(x, a)} ∪ {ψ(x, a) | ψ(x, y) ∈ p}.

It follows from the discussion above that r(x) is consistent and thus, by our assump-
tion on M, realized by some a′

∈ M<ω. Since M is homogeneous, there is g ∈ G
such that a′

= ga. Since M |Hψ(ga, a), for each ψ(x, y)∈ p but M |H ¬φ(ga, a)
we conclude that g ∈ Nψ \ Nφ for any ψ ∈ p and thus that τp ⊉ τq . □

Remark 4.3. The element 1G ∈ G seen as an element in Rpa is an invariant
idempotent. The associated topology τ1G is just the standard topology. It can be
checked by inspection that all topologies on automorphism groups that feature
in this paper are of the form τq for some invariant idempotent q. In particular,
any topology of the form τ X

st for some Aut(M)-invariant set X is of the form τp,
where p is the type generated by all formulas of the form xa = ya , a ∈ X .

The following question arises naturally.

Question 3. Let M be a countable w-categorical (homogeneous) structure. Is
it true that any group topology on Aut(M) is of the form τq for some invariant
idempotent q ∈ Rpa?

4A. Nonminimality in the trivial acl case. To conclude in this final subsection
we show minimality fails for the automorphism groups of certain Fraïssé limits.
Fix some structure M in a finite relational language in which acl is trivial, i.e.,
acl(A)= A for any finite A ⊂ M . Consider the type qinf ∈ Rpa(M) generated by
all the formulas of the form φ(xA, yB), where φ ∈ tp(A, B), for finite A, B ⊆ M
with A ∩ B = ∅. Notice that qinf is clearly invariant under the action of Aut(M)

on xM and yM .

Definition 4.4. We say that M has the separation property if for any two disjoint
finite tuples a, b ∈ [M]

<ω there exists c ∈ [M]
<ω disjoint from both a and b such

that tpx,z(a, c)∪ tpz,y(c, b) ⊢ tpx,y(a, b).
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Lemma 4.5. Assuming acl is trivial in M, the type qinf is an invariant idempotent
in Rpa(M) if and only if M has the separation property. If in addition to this M
is countable and ω-saturated, then qinf ≰ 1G and thus τqinf is strictly coarser than
τst = τ1G .

Proof. Properties (1), (2) and (4) of Definition 4.1 are immediate from the definition
of qinf. For property (3) all we need to check is that q ∗ q ⩽ q, as remarked after
Definition 4.1, but this is precisely the content of the separation property, as in its def-
inition, tpx,z(a, c)∪ tpz,y(c, b)⊢ tpx,y(a, b), we have tpx,y(a, c)∪ tpx,y(c, b)⊆ qinf

and thus tpx,y(a, b) ⊆ qinf ∗ qinf for the arbitrary fragment tpx,y(a, b) ⊆ qinf we
started with.

If qinf = 1G , then for any b ∈ M there must be some finite A ⊆ M \ {b} such that
tpxA,yb(A, b) ⊢ yb = xb, which can only be the case if b ∈ dcl(A). The final claim
then follows from last point of Lemma 4.2. Namely, from (3) of Lemma 4.2, if
1G ⩽ qinf then τ1G = τst ⊇ τqinf . Using the second part of (3), if τst = τqinf then q ⩽ 1G ,
which contradicts the fact that qinf ≰ 1G . □

Distal theories are a particular class of NIP theories introduced in [Simon 2013].
One main feature is the following fact [Chernikov and Simon 2015, Theorem 21]:

Fact 4.6. Let T be distal. Then for any formula φ(x, y) there is a formula θ(x, z)
such that for any tpφ(a/C) over a finite set of parameters C there is a tuple
d ⊂ C such that θ(a, d) holds, and θ(x, d) ⊢ tpφ(a/C), i.e., θ(x, y)∪ tpy(d,C) ⊢

tpφ(x/C), where |y| = |d|.

Lemma 4.7. Let M be any distal Fraïssé limit in a finite relational language with
trivial algebraic closure. Then M has the separation property.

Proof. Consider any two disjoint finite tuples a, b ∈ M . Since M has quantifier
elimination, there exists some formula φ(x, y) such that for any C ⊂ M the full
type tp(a/C) is equivalent to the φ-type tpφ(a/C) (|a| = |x |). Let θ(x, z) be the
formula provided by Fact 4.6 and let s =|z|. Take a sequence b−s, b−s+1, . . . , b0 =b,
b1, . . . , bs of instances of tp(b/a) indiscernible over a, where bi and b j are disjoint
for i ̸= j . Let C = b−sb−s+1 · · · bs , and let d be the tuple obtained from applying
Fact 4.6 to tp(a/C). Let J be the set of indices j ∈ {−s,−s + 1, . . . , s} such
that d ∩ b j ̸= ∅. Now, there must be some j0 ∈ {−s,−s + 1, . . . , s} \ J and
some order-preserving bijection φ : J ∪ { j0} → J ′

⊆ Z sending j0 to 0. Since
(bi )i is indiscernible, the fact that tp(a/bl)l∈J isolates tp(a/bl)

s
l=−s implies that

tp(a/bl)l∈J ′\{0} isolates tp(a/bl)l∈J ′ , so that the tuple C = (bl)l∈J ′\{0} witnesses the
separation property for the pair (a, b). □

Corollary C. Let M be any distal Fraïssé limit in a finite relational language
with trivial algebraic closure. Then the type qinf defines a group topology on
G = Aut(M) strictly coarser than τst.
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Many Fraïssé structures, such as nontrivial reducts of (Q,⩽) and ω-categorical
finitely ramified ordered trees, satisfy the assumptions of Corollary C.
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