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THE ALGEBRAIC TOPOLOGY
OF 4-MANIFOLD MULTISECTIONS

DELPHINE MOUSSARD AND TRENTON SCHIRMER

A multisection of a 4-manifold is a decomposition into 1-handlebodies
intersecting pairwise along 3-dimensional handlebodies or along a central
closed surface; this generalizes the Gay–Kirby trisections. We show how to
compute the twisted absolute and relative homology, the torsion and the
equivariant intersection form of a 4-manifold from a multisection diagram.
The homology and torsion are given by a complex of free modules defined
by the diagram and the intersection form is expressed in terms of the inter-
section form on the central surface. We give efficient proofs, with very few
computations, thanks to a retraction of the (possibly punctured) 4-manifold
onto a CW-complex determined by the multisection diagram. Further, a
multisection induces an open book decomposition on the boundary of the
4-manifold; we describe the action of the monodromy on the homology of
the page from the multisection diagram.

1. Introduction and main results

A trisection is a type of combinatorial structure on 4-manifolds which was discovered
by Gay and Kirby [2016] via Morse 2-functions. They proved that any smooth
4-manifold, possibly with boundary, can be decomposed as the union of three
4-dimensional 1-handlebodies, with 3-dimensional 1-handlebodies as pairwise
intersections and a compact surface as global intersection. Such a trisection can
be described by a diagram, namely the central surface with collections of curves
that define the 3-dimensional pieces. A trisection diagram determines a smooth
4-manifold up to diffeomorphism, so that one should be able to read topological
invariants of the manifold on the diagram. In the setting of closed 4-manifolds,
Feller, Klug, Schirmer and Zemke [Feller et al. 2018] provided a computation of
the homology and intersection form of the manifold from a trisection diagram, and
Florens and Moussard [2022] derived the twisted homology and torsion, and the
equivariant intersection form. Following these papers, Tanimoto [2023] computed
the homology of 4-manifolds with connected boundary. Here we recover and
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generalize these results, computing from a diagram the twisted absolute and relative
homology and torsion and the equivariant intersection form for any trisected 4-
manifold with boundary. Moreover, we work with “multisections” in the sense of
Islambouli and Naylor [2024], namely a cyclic decomposition of the manifold into
any number of 4-dimensional 1-handlebodies, where successive pieces meet along
3-dimensional 1-handlebodies while nonsuccessive ones meet along the central
surface. We propose a more efficient approach. While Feller, Klug, Schirmer
and Zemke worked with a handle decomposition of the manifold underlying the
trisection, Florens and Moussard directly used the datum of the trisection. This
last method reduced the homological computations, but the computation of torsion
was quite intricate. Here we consider a deformation-retraction of the (possibly
punctured) manifold onto a CW-complex associated with the multisection diagram.
This simplifies the computations and provides the torsion “for free”. This retraction
could be useful for further computations of homological or homotopical invariants.

A multisection of a 4-manifold X with boundary induces an open book decom-
position on the boundary. The monodromy of this open book has been described
algorithmically by Castro, Gay and Pinzón-Caicedo [Castro et al. 2018a] from a
diagram. Here we derive the action of the monodromy on the homology of the page
from which can be derived a computation of the homology of ∂ X as well as the
Alexander module of the binding determined by the monodromy.

For 4-manifolds with boundary, the handlebodies of a multisection inherit (hyper)
compression bodies structures related to the way they intersect the boundary of the
manifold.

Definition 1.1. A compression body C is a cobordism from a compact orientable
surface ∂−C to a connected compact orientable surface ∂+C which is constructed
using only 1-handles. Likewise a hyper compression body V is a cobordism
from a compact orientable 3-manifold ∂−V to a connected compact orientable
3-manifold ∂+V constructed using only 1-handles. A lensed (hyper) compression
body is then obtained by collapsing the vertical boundary of the cobordism so that
the boundary of ∂+C (∂+V ) becomes identified with the boundary of ∂−C (∂−V ).

In the case that ∂−C = ∅, it is understood at C is built using only 1-handles
attached to a single 0-handle. A (lensed) compression body is trivial if ∂−C ∼= ∂+C .
This means it is just a thickened surface S × I , or if lensed, it is obtained from S × I
by collapsing the I -fibers of ∂S × I .

Definition 1.2. A multisection of a compact orientable 4-manifold X is a decompo-
sition X = X1 ∪ · · · ∪ Xn into 4-dimensional 1-handlebodies X i with the following
properties (all arithmetic involving indices is mod n):

(1) Each X i has a lensed hyper compression body structure such that ∂−X i =

X i ∩∂ X , and if ∂ X ̸=∅, there is a fixed surface 6∂ such that, for all 1 ≤ i ≤ n,
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∂−X i is diffeomorphic to the trivial lensed compression body obtained by
pinching the vertical boundary of 6∂ × I .

(2) 6 =
⋂n

i=1 X i is a compact connected orientable surface.

(3) Ci = X i ∩ X i+1 is a 3-dimensional 1-handlebody with a lensed compression
body structure satisfying ∂+Ci = 6 and ∂−Ci = Ci ∩ ∂ X ∼= 6∂ for all i .

(4) X i ∩ X j = 6 when |i − j | > 1.

A multisection is called a trisection when n = 3.

The condition that the Ci are 1-handlebodies implies that 6 is closed if and
only if 6∂ is closed. We shall consider the case when 6∂ contains no closed
components, and within this context 6 will be closed if and only if X itself is
closed. This is the framework of most of the literature on trisections and within
this framework a unified calculation of the algebraic topology is possible. The
specific case where more general compression bodies are allowed, i.e., the case in
which 6∂ has closed components, was considered in the original paper of Gay and
Kirby [2016]; however, the calculations become more delicate and require special
treatment. Moreover in the case that 6∂ contains components that are spheres,
diagrams no longer determine a unique 4-manifolds up to diffeomorphism. We
postpone the homology computations in this case to a forthcoming publication in
order to avoid the extra complications here.

In the case that ∂ X ̸= ∅, it is also to be understood that for all i mod n, ∂−X i is
parametrized as 6∂×I/∼ in such a way that ∂−Ci−1 =6∂×{0} and ∂−Ci =6∂×{1}.
Thus, the multisection induces an open book decomposition on ∂ X with page 6∂ .

We fix once and for all a multisected manifold X =
⋃

1≤i≤n X i , and set Ci =

X i ∩ X i+1 and 6 =
⋂

i X i .

Definition 1.3. Let C be a compression body. A defining collection of disks for C
is a collection D of disks properly embedded in C such that C \η(D) is a thickening
of ∂−C (for instance the cocore disks of the 1-handles in the definition). The
boundary ∂D ⊂ ∂+C is a defining collection of curves for C .

C1

X1

C2

X2

C3

X3

C4

X4

C5

X5

C6

X6

•
6

Figure 1. Schematic of a multisection.



142 DELPHINE MOUSSARD AND TRENTON SCHIRMER

Definition 1.4. A diagram of the multisection X=
⋃

1≤i≤n X i is a tuple (6;c1,...,cn)

where ci is a defining collection of curves for Ci .

A multisection diagram determines a unique smooth 4-manifold [Castro et al.
2018b]. The structure of the X i gives some constraints on the curves of a multi-
section diagram. For each i , X i is obtained from a thickened ∂−X i by attaching 1-
handles, so that ∂+X i ∼= (S2

× S1)♯k #
(
#∂−X i

)
, where k is the number of 1-handles

in excess of the minimum required to connect ∂−X i , and #∂−X i is the connected
sum of all components of ∂−X i . Now Definition 1.2 implies that Ci−1 ∪6 Ci is a
sutured Heegaard splitting of ∂+X i , so that the Heegaard diagram (6; ci−1, ci ) is
always handleslide-diffeomorphic to a standard diagram as represented in Figure 2.

Fix a homomorphism ϕ : Z[π1(X)] → R, where R is a commutative ring. We
shall express the absolute and relative homology of X , twisted by ϕ, in terms of
the multisection diagram. Fix a point ∗ ∈ Int(6) and let Lϕ

i be the submodule
of Hϕ

1 (6, ∗) generated by the homology classes of the curves in ci . In Section 3,
we obtain the following result (Theorem 3.8, Remark 3.9 and Lemma 3.11).

Theorem 1.5. The homology of X is given by the chain complex of free R-modules

(C) 0 →

n⊕
i=1

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

n⊕
i=1

Lϕ
i

∂1
−→ Hϕ

1 (6, ∗)
∂0

−→ Hϕ

0 (∗),

where

∂2((xi )1≤i≤n) = (xi − xi+1)1≤i≤n and ∂1((xi )1≤i≤n) =

n∑
i=1

xi .

Moreover, if R is a field, an explicit complex basis of (C) can be given such that
τϕ(X; h) = τ(C; b, h).

Let 6′ be the surface 6 with a small open disk removed, such that the point ∗

lies on the boundary of the removed disk. For 1 ≤ i ≤ n, let J ϕ
i be the orthogonal

complement in Hϕ

1 (6′, ∂6) of Lϕ
i with respect to the equivariant intersection pairing

on Hϕ

1 (6, ∗) × Hϕ

1 (6′, ∂6). We prove the following in Section 4 (Theorem 4.9,
Lemma 4.6 and Remark 4.10).

Theorem 1.6. If ∂ X ̸= ∅, the twisted homology of (X, ∂ X) is given by the chain
complex of free R-modules

(C∂ ) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(J ϕ

i−1 ∩J ϕ
i )

∂2
−→

⊕
i

J ϕ
i

∂1
−→ Hϕ

1 (6′, ∂6) → 0,

where

∂3([6])=[∂(6\6′)], ∂2((xi )1≤i≤n)=((xi−xi+1)1≤i≤n), ∂1((xi )1≤i≤n)=
n∑

i=1
xi .

Moreover, if R is a field, an explicit complex basis of (C∂ ) can be given such that
τϕ(X, ∂ X; h) = τ(C∂; b, h).
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When 6 is closed, we define the Lϕ
i in Hϕ

1 (6′, ∗). In this closed case, these
are lagrangians, namely they are their own orthogonal complement with respect
to the intersection form. The next result is obtained in Section 6 (Theorem 6.4,
Remark 6.5 and Lemma 6.2).

Theorem 1.7. If X is closed, the twisted homology of X is given by the chain
complex of free R-modules

(C) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

⊕
i

Lϕ
i

∂1
−→ Hϕ

1 (6′, ∗) → Hϕ

0 (∗),

where

∂3([6]) = [∂6′
], ∂2((xi )1≤i≤n) = ((xi − xi+1)1≤i≤n), ∂1((xi )1≤i≤n) =

n∑
i=1

xi .

Moreover, if R is a field, an explicit complex basis of (C) can be given such that
τϕ(X; h) = τ(C; b, h).

These three theorems allow us to represent homology classes by mainly explicit
chains in the multisected manifold which meet transversely along copies of the
central surface 6. This provides a simple description of the intersection form on X
(Theorems 5.1 and 6.6).

Theorem 1.8. Suppose h1 = [(xi )1≤i≤n] and h2 = [(yi )1≤i≤n] in Hϕ

2 (X), where
(xi )1≤i≤n, (yi )1≤i≤n ∈

⊕
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection forms on Hϕ

2 (X) and
Hϕ

1 (6, ∗) respectively (Hϕ

1 (6′, ∗) if X is closed).

The intersection pairing on Hϕ

2 (X)×Hϕ

2 (X, ∂ X) is similar (Theorem 5.3). In odd
dimensions, the intersection pairings are especially simple (Theorems 5.4 and 6.6).

Theorem 1.9. Suppose that either h1 ∈ Hϕ

1 (X) corresponds to the element a ∈

Hϕ

1 (6, ∗) and h2 ∈ Hϕ

3 (X, ∂ X) corresponds to the element b ∈
⋂

i J
ϕ
i , or h1 ∈

Hϕ

1 (X, ∂ X) corresponds to the element a ∈ Hϕ

1 (6′, ∂6) and h2 ∈ Hϕ

3 (X) corre-
sponds to the element b ∈

⋂
i Lϕ

i (a ∈ Hϕ

1 (6′, ∂6) and b ∈
⋂

i Lϕ
i if X is closed).

Then
⟨h1, h2⟩

ϕ
X = ⟨a, b⟩

ϕ
6.

Plan of the paper. In Section 2, we recall the definitions of twisted homology,
torsion and equivariant intersection pairing. Our discussion is somewhat discursive
to help readers build intuition. Sections 3 and 4 are devoted to the twisted homology
and torsion of a 4-manifold with nonempty boundary, respectively absolute and
relative. In Section 5, we describe the intersection forms. Section 6 treats the case
of a closed 4-manifold. Section 7 deals with the boundary: action in homology
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Figure 2. Heegaard diagram for Ci−1 ∪ Ci . In this example,
Ci−1 and Ci are constructed with eight 1-handles and X i with
six 1-handles. The manifold X has four boundary components.
The components of the page 6∂ have a pair (genus, number of
boundary components) equal to (1, 2), (2, 1), (1, 1) and (0, 2).

of the monodromy of the open book and homology of the boundary. Finally, in
Section 8, we treat some examples.

Conventions. The notation we set above is assumed to be fixed for the remainder
of the paper. That is, X is always multisected by n hyper compression bodies X i

which meet in compression bodies Ci , all of which are attached radially about the
central fiber 6. Additionally, Y = C1 ∪ · · · ∪ Cn shall be referred to as the spine of
the multisection. Also, ϕ : Z[π1(X)] → R is a homomorphism to a commutative
ring R. Throughout the paper, if Z is a subset of a manifold M , η(Z) denotes a
regular neighborhood of Z in M .

2. Algebraic preliminaries

2A. Twisted homology. Let π = π1(X) and let R be a ring. A group homomor-
phism ϕ : π → R∗ induces a ring homomorphism Z[π ] → R. Throughout, both of
these homomorphisms shall be denoted by ϕ and called the “twisting map.”

Let X̃ denote the universal cover of X , and for any Z ⊂ X , let Z̃ denote the
inverse image of Z under the covering map X̃ → X (Z̃ will usually not be the
universal cover of Z ). Then π acts on both X̃ and Z̃ by deck transformations, which
induces a left Z[π ]-module structure on C∗(X̃ , Z̃). This allows us to define a chain
complex of R-modules

Cϕ
i (X, Z) = R ⊗ϕ Ci (X̃ , Z̃).
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The usual boundary maps on C∗(X̃ , Z̃) induce Z[π ]-module morphisms, and the
boundary maps of Cϕ

∗ (X, Z) are then obtained by tensoring with the identity map
on R. The resulting homology groups are denoted by Hϕ

∗ (X, Z).
To understand the structure of the twisted chain groups, observe first that by

definition, for any g ∈ π1(X) and choice of lift ẽ of an i-cell e of X , 1⊗ (g · [ẽ]) =

ϕ(g) ⊗ [ẽ]. It follows from the transitivity of the π action on X̃ that a choice of
lift for every i-cell in X determines an R-basis of Cϕ

i (X, Z), and thus Cϕ
i (X, Z) is

always a freely generated R-module of the same rank as the Z-rank of Ci (X, Z),
for any twisting map.

The effect of the twisting map is to be found in how the boundary maps are
changed, and thereby also the resulting homology groups. Intuitively, one thinks
of R as something like a tangent space to each point of X , and multiplication by ϕ(g)

corresponds to the monodromy action of g. For example, if a 1-chain e corresponds
to the element g ∈π with its endpoints on the 0-chain v, then in untwisted homology
we would have ∂e =v−v = 0, but with twisted homology we have ∂e =ϕ(g)v−v =

(ϕ(g) − 1)v. The choice of lift does not affect the homology because different
choices of lift amount to scalar multiplication of a basis element by a unit in R.

For example, if ϕ is the trivial map π → R∗, so that ϕ(g) = 1 for every g ∈ π ,
then in this case for all lifts ẽ1, ẽ2 of a given cell e of X , we have

1 ⊗ [ẽ1] = 1 ⊗ (g · [ẽ2]) = ϕ(g) ⊗ [ẽ2] = 1 ⊗ [ẽ2].

In other words, all the lifts of e determine the same chain in Cϕ
i (X, Z), and the

projection map X̃ → X thus induces a chain isomorphism Cϕ
∗ (X, Z)→C∗(X, Z; R),

where C∗(X, Z; R) is the usual chain complex for the (untwisted) homology with R
coefficients.

On the other extreme, if ϕ is the inclusion π ↪→ Z[π ]
∗, then all distinct lifts of a

cell e to X̃ determine chains which differ by multiplication by a unit in π ⊂ Z[π ].
This example where ϕ = ι : π → Z[π ]

∗ is in a sense universal. For if one can
compute matrices which describe the boundary maps of C ι

∗
(X, Z) in terms of some

fixed cellular basis, then for any other map ϕ : π → R∗, one simply substitutes ϕ(g)

for every g in the matrices of C ι
∗
(X, Z) to obtain matrices of the boundary maps

for Cϕ
∗ (X, Z) with respect to the same basis.

As a simple but instructive example, if X = S1 and Z =∅, then we may identify π

with the cyclic group generated by t , and

C ι
0(S1) ∼= C ι

1(S1) ∼= Z[t, t−1
].

All other chain groups are trivial as with the untwisted case, and the one nontrivial
boundary map is multiplication by tn(t − 1) (where n depends only on the choices
of lifts). Therefore H ι

1(S1) ∼= 0 and H ι
0(S1) is Z, considered as a Z[t, t−1

]-module
whose action is given by P(t) ·a = P(1)a. More generally, given a homomorphism
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ϕ : π → R∗, where R is a ring,

Cϕ

0 (S1) ∼= Cϕ

1 (S1) ∼= R,

and the boundary map is multiplication by ϕ(t)n(ϕ(t)−1). If ϕ(t)=1 (the untwisted
case), then

Hϕ

0 (S1) ∼= Hϕ

1 (S1) = R,

but if (ϕ(t) − 1) is a unit then the entire twisted homology becomes trivial.
Returning to generalities, if we let X̂ denote the cover of X associated with

a normal subgroup N ⊂ ker(ϕ), then ϕ factors through a map π1(X)/N → R,
which we also call ϕ. If Ẑ is the inverse image of Z under the covering map
X̂ → X , then the chain complex C∗(X̂ , Ẑ) becomes a Z[π ]-module and if we
define the chain groups R ⊗ϕ C∗(X̂ , Ẑ), the resulting homology will be the same
as Hϕ

∗ (X, Z) through an isomorphism induced by the subcovering X̃ → X̂ , similar
to how twisted homology reduces to ordinary homology when ϕ is the trivial map.
This observation is important for making geometric sense of long exact sequences
in the twisted context. Consider, for example, the long exact sequence associated
to the pair (X, Z), which looks like this:

· · · → Hϕ
i (X) → Hϕ

i (X, Z)
f

−→ Hϕ◦ι

i−1(Z)
g

−→ Hϕ

i−1(X) → · · · .

Considering Hϕ◦ι

i−1(Z) in isolation, observe the twisting map is ϕ ◦ ι, where
ι : π1(Z) → π1(X) is induced by inclusion. If the map ι is a surjection, then the
inverse image p−1(Z) of Z under the universal cover p : X̃ → X will be a subcover
of the universal cover Z̃ → Z . We cannot easily give a geometric interpretation of f
if we use the universal cover of Z to define its twisted homology, but if we instead
use the cover p−1(Z) of Z to recover Hϕ◦ι

i−1(Z), then f will be induced on the chain
level by taking the boundary of a relative i-cycle in R ⊗ϕ Ci (X̃ , Ẑ), and g will
be induced by inclusion as usual. More generally, p−1(Z) may correspond to a
disjoint union of copies of the subcover Ẑ → Z associated with ker(ϕ ◦ ι). In this
case, f first takes the boundary of a relative i-cycle in (X̃ , p−1(Z)) and these, after
multiplication by an appropriate element of Z[π ], will all be identified with cells in
one preferred component of p−1(Z), which we identify with Ẑ .

For the reader who would like to build intuition with twisted coefficients, we
strongly recommend working out the geometric details of the long exact sequence
of the pairs (S1, v), where v is a point in S1, and (T 2, G), where T 2 is the 2-torus
and G is its standard 1-skeleton with two edges and one vertex. It is similar to
working with integral homology; the only complication is that one must understand
the topology of appropriate covers to carry out calculations.

2B. Torsion. We recall the algebraic setup; see [Milnor 1966] and [Turaev 2001]
for further details. Let K be a field. If V is a finite-dimensional K-vector space
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and b and c are two bases of V , we denote by [b/c] the determinant of the matrix
expressing the basis change from b to c. The bases b and c are equivalent if [b/c]=1.
Let C be a finite complex of finite-dimensional K-vector spaces:

C = (Cm
∂m
−→ Cm−1 −→ · · ·

∂1
−→ C0).

A complex basis of C is a family c = (cm, . . . , c0) where ci is a basis of Ci for all i ∈

{0, . . . , m}. A homology basis of C is a family h = (hm, . . . , h0) where hi is a basis
of the homology group Hi (C) for all i ∈ {0, . . . , m}. If we have chosen a basis b j of
the space of j -dimensional boundaries B j (C) = Im ∂ j+1 for all j ∈ {0, . . . , m − 1},
and a homology basis h of C, this induces a class of bases (bi hi )b̄i−1 which consists
of the elements of bi , a choice of representatives for hi , and the image b̄i−1 of bi−1

under some section of ∂i . Neither the choice of hi -representatives nor the choice
of section used to define b̄i−1 affects the equivalence class of the resulting basis
of Ci , because they differ from one another by linear combinations of bi .

The torsion of the K-complex C, equipped with a complex basis c and a homology
basis h, is the scalar

τ(C; c, h) =

m∏
i=0

[(bi hi )b̄i−1/ci ]
(−1)i+1

∈ K∗,

where [(bi hi )b̄i−1/ci ] denotes the determinant of the change of basis matrix from ci

to (bi hi )b̄i−1.
This definition does not depend even on the choice of b0, . . . , bm , because of

the alternating exponent. The value depends only on the choice of c and h. Of
course, by making appropriate choices of c and h, we can make the torsion equal
to whatever we want (indeed, just multiply one element of c or h by a scalar and
you will multiply or divide the entire torsion by that scalar). In practice, C will be
the twisted cellular chain complex associated with the CW-space X , and ci will be
a geometric base of the chain groups R ⊗ϕ Cϕ

i (X̃) that is represented by the cells
in a lift of the i-skeleton of X to X̃ . Different choices of lift can change the final
value of the torsion by an element of ±ϕ(π), so we mod out by this ambiguity and
obtain a torsion function τ : H(X) → K∗/(±ϕ(π)), where H(X) is the set of all
homology bases of the associated (twisted) cellular chain complex of X .

Specifically, assume R is a field, and (X, Z) is a CW-pair. Let c̃ be a basis of
the complex of free Z[π1(X)]-modules C(X̃ , Z̃) obtained by lifting each relative
cell of (X, Z) to X̃ . Then c = c̃ ⊗ 1 is a geometric basis of Cϕ(X, Z). We need
such bases to define the torsion.

Definition 2.1. Given a homology basis h of Hϕ(X, Z) and a geometric basis c
of Cϕ(X, Z), the torsion of (X, Z; ϕ) is

τϕ(X, Z; h) = τ(Cϕ(X, Z); c, h) ∈ R/ ± ϕ(π1(X)).
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The remarkable fact is that τϕ is a topological invariant when Z = ∅: any two
choices of CW-decomposition for X will result in the same torsion. In the case of a
true pair (Z ̸= ∅) the torsion remains invariant under CW-subdivision.

Our results below will describe how to pick out geometric bases given the
curves on a multisection diagram. In particular, we will describe the curves on the
central surface 6 that explicitly correspond to 1-, 2- and 3-cells in the multisected
4-manifold.

2C. The equivariant intersection form. Let W be a compact oriented m-manifold,
R be a commutative ring and ϕ : Z[π1(W )] → R be a morphism. Let A and B be
disjoint subsets of ∂W . For q ∈ {0, . . . , m}, the equivariant intersection pairing
of W relative to A and B with coefficient in R, introduced by Reidemeister [1939],
is the sesquilinear map

⟨ · , · ⟩
ϕ
W : Hϕ

q (W, A) × Hϕ
m−q(W, B) → R

defined by

⟨[x ⊗ r ], [x ′
⊗ r ′

]⟩
ϕ
W =

∑
h∈H1(W )/ker(ϕ)

⟨x, h.x ′
⟩W ϕ(h)rr ′,

where we are abusing notation slightly by letting ϕ denote the group homomor-
phism from H1(W ) into R∗, W ↠ W is the covering associated with ker ϕ

and ⟨ · , · ⟩W stands for the algebraic intersection in W . By Blanchfield’s dual-
ity theorem [1957, Theorem 2.6], if W is smooth, ϕ(H1(W )) is a free multi-
plicative subgroup of R, and ∂W = A ⊔ B, this pairing is nondegenerate on
(Hϕ

q (W, A)/Tor)×(Hϕ
m−q(W, B)/Tor). The standard (i.e., nonequivariant) intersec-

tion pairing is recovered with a trivial twisting map (i.e., R =Z and ϕ(π1(W ))={1}).
When A = B = ∅ and q = m − q, the equivariant intersection pairing defines

a nondegenerate equivariant intersection form on Hϕ
q (W )/Tor. (In general, if the

modules H and K are identified by a canonical isomorphism, a pairing on the
product H × K defines a form on H ∼= K . A pairing may be considered up to
isomorphism of either H or K , while for a form, one may restrict to applying the
same isomorphism on both factors. Therefore a form carries more information.)

For a 4-manifold X , the intersection form is standardly defined as a bilinear form
on H 2(X, ∂ X) × H 2(X, ∂ X) by applying the cup product of two cochains to the
fundamental form [X ] ∈ H4(X, ∂ X). Via Poincaré duality, this form can be defined
on H2(X) × H2(X) and, as such, it coincides with the above intersection form for
a trivial twisting map.

3. The twisted absolute homology groups and torsion

In this section we derive chain complexes for the twisted homology groups Hϕ
∗ (X),

assuming that ∂ X ̸= ∅. Recall that, in this case, ∂6 ̸= ∅.
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Definition 3.1. Let V be a hyper compression body. A defining collection of balls
for V is a collection B of 3-balls properly embedded in V such that V \ η(B) is a
thickening of ∂−V .

We assume for the remainder of this section that a fixed choice of defining
collections Di and Bi of disks and balls has been made for all 1 ≤ i ≤ n.

The following lemmas provide a 3-complex onto which X deformation retracts.
Our calculations hinge on a careful understanding of how the cells of this complex
are mirrored by simple closed curves on 6. Recall that Y = C1 ∪ · · · ∪ Cn denotes
the spine of the multisection.

Lemma 3.2. The manifold X retracts onto 6 ∪
⋃n

i=1(Di ∪Bi ). Further, the quad
(X, Y, 6, ∗) deformation retracts on a CW-complex (Z3, Z2, Z1, Z0), where Z0 =∗,
Z1 is a bouquet of loops defining a basis of H1(6), Z2 = Z1 ∪D, and Z3 = Z2 ∪B.

Proof. By definition, X i \η(Bi ) ∼= ∂−X i × I , so each X i retracts onto ∂+X i ∪Bi , and
hence X retracts onto Y ∪

⋃
i Bi . Likewise each Ci retracts onto ∂+Ci ∪Di =6∪Di ,

so that Y further retracts down to 6 ∪
⋃

i Di . This gives the first assertion. For
the second assertion, we get Z1 = 6 and Z2 = 6 ∪D and we conclude by further
retracting 6. □

Corollary 3.3. The twisted homology of X is the homology of the following complex:

(C′) 0 → Hϕ

3 (X, Y ) → Hϕ

2 (Y, 6) → Hϕ

1 (6, ∗) → Hϕ

0 (∗).

Proof. Lemma 3.2 shows that the complex above is isomorphic to the cellular
homology complex

0 → Hϕ

3 (Z3, Z2) → Hϕ

2 (Z2, Z1) → Hϕ

1 (Z1, Z0) → Hϕ

0 (Z0)

via the map induced by the inclusion Z3 ↪→ X , which is a simple homotopy. □

Definition 3.4. Let Lϕ
i denote the submodule of Hϕ

1 (6, ∗) generated by the twisted
homology classes of the components of ci .

Following the approach of [Florens and Moussard 2022], we shall express the
complex (C′) in terms of these submodules. They have the following homological
interpretation.

Lemma 3.5. The module Lϕ
i naturally identifies with the kernel of the inclusion

map ι∗ : Hϕ

1 (6) → Hϕ

1 (Ci ).

Proof. Since the components of ci bound disks in Ci , it is clear that Lϕ
i ⊂ ker(ι∗);

since these disks cut Ci into a thickened ∂−Ci , the reverse inclusion follows. □

Lemma 3.6. Hϕ

2 (Ci , 6) ∼= Lϕ
i for all i .

Proof. Hϕ

1 (Ci , 6) = 0 because Ci deformation-retracts onto 6 ∪Di , and thus the
exact sequence of the pair (Ci , 6) gives Hϕ

2 (Ci , 6) ∼= ker(Hϕ

1 (6) → Hϕ

1 (Ci )). □
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Lemma 3.7. Hϕ

3 (X i , Ci−1 ∪ Ci ) ∼= Lϕ

i−1 ∩ Lϕ
i for all i .

Proof. Since X i is a 4-dimensional 1-handlebody, its order 2 and 3 homology is
trivial, and the exact sequence of the pair (X i , Ci−1∪Ci ) gives Hϕ

3 (X i , Ci−1∪Ci )∼=

Hϕ

2 (Ci−1 ∪ Ci ). Now the exact sequence of the pair (Ci−1 ∪ Ci , 6) gives

0 → Hϕ

2 (Ci−1 ∪ Ci )
ι

−→ Hϕ

2 (Ci−1, 6)⊕ Hϕ

2 (Ci , 6)
π

−→ Hϕ

1 (6),

where the identification Hϕ

2 (Ci−1 ∪ Ci , 6) ∼= Hϕ

2 (Ci−1, 6) ⊕ Hϕ

2 (Ci , 6) follows
from the Mayer–Vietoris sequence associated to the decomposition of the pair
(Ci−1 ∪ Ci , 6) into (Ci−1, 6) and (Ci , 6). Now, the map π is the difference
of the maps Hϕ

2 (Ci−1, 6) → Hϕ

1 (6) and Hϕ

2 (Ci , 6) → Hϕ

1 (6) given by the
exact sequences of the pairs (Ci−1, 6) and (Ci , 6), which give the identifications
Hϕ

2 (Ci−1, 6)∼= Lϕ

i−1 and Hϕ

2 (Ci , 6)∼= Lϕ
i of Lemma 3.6. It follows that the kernel

of π , and thus the image of ι, identifies with the intersection Lϕ

i−1 ∩ Lϕ
i . □

Theorem 3.8. The homology of X is given by the chain complex

(C) 0 →

n⊕
i=1

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

n⊕
i=1

Lϕ
i

∂1
−→ Hϕ

1 (6, ∗)
∂0

−→ Hϕ

0 (∗),

where ∂2((xi )1≤i≤n) = (xi − xi+1)1≤i≤n and ∂1((xi )1≤i≤n) =
∑n

i=1 xi . Moreover,
if R is a field, the complex basis b of (C) described in Remark 3.9 forms a geometric
basis for the torsion of X , meaning that τϕ(X; h) = τ(C; b, h).

Proof. Since Hϕ

2 (Y, 6) ∼=
⊕

i Hϕ

2 (Ci , 6) and Hϕ

3 (X, Y ) ∼=
⊕

i Hϕ

3 (X i , Ci−1 ∪Ci ),
we can conclude with Corollary 3.3 and Lemmas 3.6 and 3.7. See Remark 3.9 for
the explication of the geometric bases. □

Remark 3.9. The geometric bases of C′ are images of cellular bases under the
map induced by inclusion Z3 ↪→ X . The maps described in Lemmas 3.6 and 3.7
then define an isomorphism from C′ to C, and the geometric bases of C are then the
images of geometric bases of C′ under this map. This yields the following more
concrete description of what the geometric bases b look like for C:

• b0 is given by the basepoint ∗ ,

• b1 is defined by any set of loops on which 6 retracts,

• b2 is any basis corresponding to a tuple of defining curves (ci )1≤i≤n ,

• b3 is any basis corresponding to a tuple of “double curves” for the pairs
(ci−1, ci ).

By a “double curve” for a pair (ci−1, ci ), we mean any curve on 6 which simul-
taneously bounds disks in Ci−1 and Ci . The constraints on multisection diagrams
imply that Lϕ

i−1 ∩ Lϕ
i admits bases represented by double curves; see Figure 2.
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It might not be easy to find a system of double curves from a diagram, since it
implies some possibly unobvious handleslides. It is not necessary in this algebraic
computation; see Remark 3.12.

Corollary 3.10. We have the expressions

Hϕ

1 (X) ∼= Hϕ

1 (6)/
(⊕

i

Lϕ
i

)
, Hϕ

3 (X) ∼=

⋂
i

Lϕ
i ,

where we slightly abuse notation by viewing Lϕ
i ⊂ Hϕ

1 (6) ⊂ Hϕ

1 (6, ∗).

Proof. For H1, the pair (6, ∗) gives Hϕ

1 (6) ∼= ker(Hϕ

1 (6, ∗) → Hϕ

0 (∗)). □

A satisfying point in Theorem 3.8 is that the modules of the complex (C) are
free.

Lemma 3.11. The modules Hϕ

1 (6, ∗) and Lϕ
i are free R-modules of respective

ranks 2g + b − 1 and p, where g is the genus of 6, b is its number of boundary
components and p is the number of curves in each collection ci . The modules
Lϕ

i−1 ∩ Lϕ
i are also free, and their rank does not depend on R and ϕ.

Proof. Since ∂6 ̸= ∅, 6 deformation retracts onto a bouquet of 2g + b − 1 loops
with central vertex ∗ . Hence Cϕ

1 (6, ∗) ∼= R2g+b−1 is the only nontrivial twisted
chain module of (6, ∗) and Hϕ

1 (6, ∗) ∼= R2g+b−1. The retraction can be chosen so
that the components of ci are loops of the bouquet, and hence Lϕ

i is a free submodule
of Hϕ

1 (6, ∗) with basis given by the classes of these components. Moreover, up to
handleslide, we can assume the components of ci−1 and ci are in standard position
(see Figure 2), so that a basis of Lϕ

i−1 ∩ Lϕ
i is given by the parallel curves in these

collections. □

Remark 3.12. We can now explain how to simplify the computation of torsion,
avoiding the explicit exhibition of systems of double curves. Consider the subring
R0 =ϕ(Z[π1(X)]) of the field R; note that R0 =Z[ϕ(π1(X))] and R∗

0 =±ϕ(π1(X)).
To avoid confusion, we denote by L R0

i the module associated to the map ϕ viewed
with values in R0. The natural map from Hϕ

1 (6, ∗; R0) to Hϕ

1 (6, ∗; R) sends L R0
i

onto Lϕ
i . The submodules of Hϕ

1 (6, ∗; R) that appear in the complex (C) of
Theorem 3.8 are free and are images of the similar submodules of Hϕ

1 (6, ∗; R0),
which have the same rank. An R0-basis of such a submodule of Hϕ

1 (6, ∗; R) is a
basis that is the image of a basis of the corresponding submodule of Hϕ

1 (6, ∗; R0).
A tuple of double curves defines such an R0-basis. Any other R0-basis can be
used to compute the torsion. Actually, changing the basis of a homology module
in the computation of the torsion multiplies the torsion by the determinant of the
change of basis. For R0-bases, this determinant is the same as the determinant of the
corresponding change of basis of the corresponding submodule of Hϕ

1 (6, ∗; R0),
so that it is an element of R∗

0 = ±ϕ(π1(X)).
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4. The twisted relative homology groups and torsion

In this section, we compute the twisted relative homology and torsion of X . The
computation of the homology of (X, ∂ X) ends up being formally similar to that
of X : it involves a retraction onto a 3-complex in X . However, in order to make
the relative cellular structure clearly apparent, we leave ∂ X fixed throughout the
retraction. To carry out such a retraction, X has to be punctured, but once the
homology of the punctured version of X is computed rel ∂ X , it is easy to recover
the homology of X itself rel ∂ X .

Definition 4.1. Let C be a lensed compression body. An r-defining collection of
disks for C is a disjoint union Dr of disks, with boundary in ∂+C or made of an
arc in ∂+C and an arc in ∂−C , such that C \ η(Dr ) is a 3-ball. The intersection
with ∂+C of an r -defining collection of disks for C is a complete collection of arcs
and curves for C .

Likewise if V is a hyper compression body then an r-defining collection of balls
for V is a union of 3-balls Br such that V \ η(Br ) is a 4-ball.

Remark 4.2. The r in these definitions stands for “relative”. Note that an r -defining
collection of disks can be chosen to contain a defining collection of disks, and
similarly for collections of balls.

Such r-defining collections of disks do exist. First take a subcollection of a
defining collection of disks for C , dropping those that do not carry homology relative
to boundary. Then add the products with the interval in ∂−C × I of arcs that cut ∂−C
into a disjoint union of disks. A similar argument shows existence of r-defining
collections of balls for the hyper compression bodies under consideration here.

Fix r -defining collections Dr
i and Br

i of disks and balls for Ci and X i respectively.
Set Dr

=
⋃n

i=1D
r
i and Br

=
⋃n

i=1 B
r
i . For all Z ⊂ X , let Z ′

= Z \ η(∗).

Lemma 4.3. The manifold X ′ deformation retracts onto 6′
∪Dr

∪Br
∪∂ X. Further,

the quad (X ′, Y ′
∪∂ X, 6′

∪∂ X, ∂ X) deformation retracts rel ∂ X onto a CW-complex
(Z ∂

3 ∪ ∂ X, Z ∂
2 ∪ ∂ X, Z ∂

1 ∪ ∂ X, ∂ X), where Z ∂
1 is made of arcs and loops on 6′,

Z ∂
2 = Z ∂

1 ∪Dr , Z ∂
3 = Z ∂

2 ∪Br .

Proof. The proof is similar to that of Lemma 3.2, but instead of retracting from
the boundary, we retract “inside out” from the puncture ∗ . Because X i \ η(Br

i )

is a ball and meets η(∗) in a small 4-ball that has been “scooped out” of the
boundary, we obtain a retraction of X ′

i onto (∂ X i )
′
∪Br

i . Carrying this retraction
out for each i yields a retraction of X ′ onto Y ′

∪ Br
∪ ∂ X — recall that ∂ X i =

(X i ∩ X i−1)∪ (X i ∩ X i+1)∪ (X i ∩ ∂ X). Since each Ci \η(Dr
i ) is also a ball which

intersects η(∗) along a scooped out 3-ball, Y ′ can further be retracted onto 6′
∪Dr .

This gives the first assertion, and the second one follows. □
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Corollary 4.4. The homology of (X, ∂ X) is given by the chain complex

(C′

∂ ) Hϕ

4 (X, X ′) → Hϕ

3 (X ′, Y ′
∪ ∂ X) → Hϕ

2 (Y ′, 6′
∪ ∂Y ) → Hϕ

1 (6′, ∂6) → 0.

Proof. Lemma 4.3 immediately gives the following cellular chain complex for
(X ′, ∂ X):

0 → Hϕ

3 (X ′, Y ′
∪ ∂ X) → Hϕ

2 (Y ′
∪ ∂ X, 6′

∪ ∂ X) → Hϕ

1 (6′
∪ ∂ X, ∂ X) → 0,

or equivalently,

0 → Hϕ

3 (X ′, Y ′
∪ ∂ X) → Hϕ

2 (Y ′, 6′
∪ ∂Y ) → Hϕ

1 (6′, ∂6) → 0.

Now, the long exact sequence of the triple (X, X ′, ∂ X) shows that Hϕ
k (X, ∂ X) ∼=

Hϕ
k (X ′, ∂ X ′) for k = 1, 2 and Hϕ

3 (X, ∂ X)∼= Hϕ

3 (X ′, ∂ X)/Im(Hϕ

4 (X, X ′)). Finally,
the long exact sequence of the triple (X, Y ′

∪ ∂ X, ∂ X) identifies Hϕ

4 (X, ∂ X) with
Hϕ

4 (X, Y ′
∪∂ X) and the long exact sequence of the triple (X, X ′, Y ′

∪∂ X) identifies
Hϕ

4 (X, Y ′
∪ ∂ X) with the kernel of Hϕ

4 (X, X ′) → Hϕ

3 (X ′, Y ′
∪ ∂ X). □

Definition 4.5. Let J ϕ
i denote the subgroup of Hϕ

1 (6′, ∂6) generated by any
complete collection of arcs and curves for Ci on 6′.

Lemma 4.6 gives an alternative interpretation of J ϕ
i . Identifying Hϕ

1 (6, ∗) with
H1(6

′, ∂η(∗)) via the excision equivalence, and using the decomposition ∂6′
=

∂6 ∪ ∂η(∗), we have an equivariant intersection form on Hϕ

1 (6, ∗)× Hϕ

1 (6′, ∂6).

Lemma 4.6. The modules Hϕ

1 (6′, ∂6) and J ϕ
i are free R-modules of respective

ranks 2g+b−1 and 2g+b−1−n. The modules J ϕ

i−1∩J ϕ
i are also free. Moreover,

J ϕ
i is the orthogonal complement of Lϕ

i with respect to the equivariant intersection
pairing on Hϕ

1 (6, ∗) × Hϕ

1 (6′, ∂6).

Proof. Let Z ∂
1 be any collection of 2g + b − 1 arcs properly embedded in 6′

which are pairwise disjoint and cut 6′ into a disk. Then 6′ retracts onto Z ∂
1 ∪ ∂6,

showing that Hϕ

1 (6′, ∂6) ∼= R2g+b−1. The 1-complex Z ∂
1 can be chosen so that

2g − p + b − 1 of the arcs form a complete collection of arcs and curves for Ci

(start with a complete collection of arcs and curves, replace closed curves by arcs,
and add as many arcs as needed) whose twisted homology classes generate J ϕ

i . A
basis of J ϕ

i−1 ∩J ϕ
i is provided by a subcollection of these.

Now, a curve c0
i in the family ci bounds a disk in Ci , while an arc γ in a complete

collection of arcs and curves for Ci cobounds a disk in Ci with an arc in ∂−Ci .
Assuming transversality of the two disks, it follows that the intersection of c0

i and γ

is the boundary of a union of embedded intervals and hence contains as many
positive as negative intersection points. Hence J ϕ

i is contained in the orthogonal
complement of Lϕ

i , and the equality follows by a dimension argument, using the
nondegeneracy of the intersection form. □
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Lemma 4.7. Hϕ

2 (C ′

i , (∂Ci )
′) ∼= J ϕ

i for all i .

Proof. The long exact sequence of the triple (C ′

i , (∂Ci )
′, ∂−Ci ), together with the

excision equivalence ((∂Ci )
′, ∂−Ci ) ∼ (6′, ∂6) give the short exact sequence

0 → H2(C ′

i , (∂Ci )
′) → H1(6

′, ∂6)
ζ

−→ H1(C ′

i , ∂−Ci ).

Now C ′

i is obtained from a thickened ∂−Ci by adding only 1-handles, so that
the kernel of ζ contains the homology classes of curves in 6′ that have trivial
algebraic intersection with the cocores of these 1-handles, cocores whose boundaries
generate Lϕ

i . We conclude that H2(C ′

i , (∂Ci )
′) ∼= ker(ζ ) ∼= J ϕ

i . □

Lemma 4.8. Hϕ

3 (X ′

i , (∂ X i )
′) ∼= J ϕ

i−1 ∩J ϕ
i for all i .

Proof. Since X ′

i is obtained from a thickened ∂−X i by adding 1-handles, the exact
sequence of the triple (X ′

i , (∂ X i )
′, ∂−X i ) gives an isomorphism Hϕ

3 (X ′

i , (∂ X i )
′) ∼=

Hϕ

2 ((∂ X i )
′, ∂−X i ); this last module is isomorphic to H2(C ′

i−1∪C ′

i , ∂−Ci−1∪∂−Ci ).
The long exact sequence of the triple

(
C ′

i−1∪C ′

i , (∂Ci−1)
′
∪(∂Ci )

′, ∂−Ci−1∪∂−Ci
)

and the excision equivalence
(
(∂Ci−1)

′
∪ (∂Ci )

′, ∂−Ci−1 ∪ ∂−Ci
)
∼ (6′, ∂6) give

0 → Hϕ

2 (C ′

i−1 ∪ C ′

i , ∂−Ci−1 ∪ ∂−Ci )
ι

−→ Hϕ

2 (C ′

i−1, (∂Ci−1)
′) ⊕ Hϕ

2 (C ′

i , (∂Ci )
′)

π
−→ Hϕ

1 (6′, ∂6).

The conclusion follows from Lemma 4.7 with an argument analogous to that of
Lemma 3.7. □

Theorem 4.9. If ∂ X ̸= ∅, the twisted homology of (X, ∂ X) is given by the chain
complex

(C∂ ) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(J ϕ

i−1 ∩J ϕ
i )

∂2
−→

⊕
i

J ϕ
i

∂1
−→ Hϕ

1 (6′, ∂6) → 0,

where ∂3([6])=[∂(6\6′)], ∂2((xi )1≤i≤n)=((xi −xi+1)1≤i≤n) and ∂1((xi )1≤i≤n)=∑n
i=1 xi . Moreover, if R is a field, the complex basis b of (C∂ ) described in

Remark 4.10 forms a geometric basis for the relative torsion of X , meaning that
τϕ(X, ∂ X; h) = τ(C∂; b, h).

Proof. Start with the complex (C′

∂ ) of Corollary 4.4. For the order 2 and 3
terms, use Mayer–Vietoris sequences to get the identifications Hϕ

2 (Y ′, 6′
∪ ∂Y ) ∼=⊕

i Hϕ

2 (C ′

i , (∂Ci )
′) and Hϕ

3 (X ′, Y ′
∪∂ X) ∼=

⊕
i Hϕ

3 (X ′

i , (∂ X i )
′) and conclude with

Lemmas 4.7 and 4.8. A generator of Hϕ

4 (X, X ′) is sent onto the class of ∂η(∗) in
Hϕ

3 (X ′, Y ′
∪∂ X). Following the isomorphisms in Lemma 4.8, we see that this class

corresponds to the class in
⊕

i J
ϕ

i−1 ∩J ϕ
i of the curve ∂η(∗), where the neighbor-

hood is now understood in 6, which is the boundary of a generator of H2(6, 6′). □

Remark 4.10. As with the absolute case, we can obtain a concrete description of
what the geometric bases b look like for C∂ :



THE ALGEBRAIC TOPOLOGY OF 4-MANIFOLD MULTISECTIONS 155

• b1 = {[e1], [e2], . . . , [en]}, where each ei is an edge of Z ∂
1 (i.e., any set of arcs

which cut 6 into a disk),

• b2 = any basis corresponding to a tuple of complete collections of arcs and
curves for Ci ,

• b3 = any basis corresponding to a tuple of “double arcs and curves” for the pairs
(Ci−1, Ci ), or any other R0-basis with R0 = ϕ(Z[π1(X)]) (see Remark 3.12),

• b4 = the fundamental class of H2(6, 6′).

Corollary 4.11. We have the following expressions for the twisted homology of
(X, ∂ X):

Hϕ

1 (X, ∂ X) ∼= Hϕ

1 (6′, ∂6)/
⊕

i

J ϕ
i , Hϕ

3 (X, ∂ X) ∼=

⋂
i

J ϕ
i ,

where J ϕ
i denotes the image of J ϕ

i under the inclusion map Hϕ

1 (6′, ∂6) →

Hϕ

1 (6, ∂6).

Proof. For H3, the long exact sequence of the triple (6, 6′, ∂6) gives the exact
sequence

Hϕ

2 (6, 6′)
ζ

−→ Hϕ

1 (6′, ∂6) → Hϕ

1 (6, ∂6) → 0,

and we have Hϕ

3 (X, ∂ X) ∼=
(⋂

i J
ϕ
i

)
/Im(ζ ). □

5. Intersection forms

We keep in this section the assumption that ∂ X ̸= ∅. The intersection forms are
formally identical to the closed case treated in [Florens and Moussard 2022]. The
upshot is that the intersections between various cycles in X can all be made to
coincide with intersections in 6. Below we assume that 6′

= 6 \η(∗), so that there
is a natural isomorphism Hϕ

1 (6, ∗) ∼= Hϕ

1 (6′, ∂η(∗)), and we identify each Lϕ
i

with its image under this map below. Note that, in the nontwisted case, H1(6, ∗)

naturally identifies with H1(6).

Theorem 5.1. Suppose h1 = [(xi )1≤i≤n] and h2 = [(yi )1≤i≤n] in Hϕ

2 (X), where
(xi )1≤i≤n, (yi )1≤i≤n ∈

⊕
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection forms on Hϕ

2 (X) and
Hϕ

1 (6, ∗) respectively.

Proof. It suffices to show that the analogous claim holds true in the untwisted
integral homology groups of X , which denotes the cover of X associated to ker(ϕ).
For any Z ⊂ X let Z denote the inverse image of Z under the cover X → X .
Because π1(6), π1(Ci ), and π1(X i ) all surject onto π1(X) via the inclusion map,
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C1
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Figure 3. Pushing the relative 2-skeleton. The 2-skeleton appears
in black, while the pushed relative 2-skeleton appears in green. At
each intersection of the black lines and the green lines lies a copy
of 6.

6, C i , and X i are connected as well. In the finite case these lifts combine to
form a multisection of X , and in the case of an infinite-sheeted cover they form
what is essentially a multisection, except the pieces involved have infinite genus.
In particular, just as in the finite case, η(6) is a trivial disk bundle and the lifted
compression bodies C i meet each disk in the bundle along rays which are disjoint
except at the center point.

There is a cellular structure on X obtained by lifting the cell structures of X
and (X, ∂ X) described in Lemmas 3.2 and 4.3 to X . If Z2 is the 2-skeleton of X
described in Lemma 3.2, then Z2 is a 2-skeleton for X which lies in

⋃
i Ci . As

observed in [Florens and Moussard 2022], we may push each Z2∩C i slightly into its
collar so that it is pushed into

⋃
1≤ j≤i X j . This being done, the intersections between

2-chains in Z2 and 2-chains in the pushed Z2 will coincide with intersections
between the boundaries of the subchains lying just in Z2 ∩ Ci , and these intersections
occur on diverse copies of 6; see the left-hand side of Figure 3. □

Remark 5.2. Different expressions can be given for the intersection form by
diversely pushing the relative 2-skeleton. The right-hand side of Figure 3 suggests
another possibility with fewer terms.

Similarly one can compute the intersection pairings on Hϕ
k (X) × Hϕ

4−k(X, ∂ X).
For k = 2, the expression is analogous to that of Theorem 5.1.

Theorem 5.3. If h1 = [(xi )1≤i≤n] ∈ Hϕ

2 (X) and h2 = [(yi )1≤i≤n] ∈ Hϕ

2 (X, ∂ X),
where (xi )1≤i≤n ∈

⊕
i Lϕ

i , and (yi )1≤i≤n ∈
⊕

i J
ϕ
i , then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection pairings on Hϕ

2 (X) ×

Hϕ

2 (X, ∂ X) and Hϕ

1 (6, ∗) × Hϕ

1 (6′, ∂6) respectively.
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Proof. The proof of Theorem 5.1 applies with the following adaptation: we consider
the relative 2-skeleton Z ∂

2 of Lemma 4.3 and we look at intersections between
2-chains in Z2 and 2-chains in the pushed Z ∂

2 . □

The intersection pairings on the odd-dimensional homology groups are described
even more simply.

Theorem 5.4. Suppose that either h1 ∈ Hϕ

1 (X) corresponds to the element a ∈

Hϕ

1 (6, ∗) and h2 ∈ Hϕ

3 (X, ∂ X) corresponds to the element b ∈
⋂

i J
ϕ
i , or h1 ∈

Hϕ

1 (X, ∂ X) corresponds to the element a ∈ Hϕ

1 (6′, ∂6) and h2 ∈ Hϕ

3 (X) corre-
sponds to the element b ∈

⋂
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X = ⟨a, b⟩

ϕ
6.

Proof. The proof is similar in structure to the proof of Theorem 5.1, except that now
we observe that every chain in H1(X) or H1(X , ∂ X) is geometrically represented by
linear combinations of curves c ⊂ 6 ⊂ X , and the chains in H1(X , ∂ X) or H3(X)

can be geometrically represented by linear combinations of balls which meet 6

only in linear combinations of double curves. Thus no isotopy is needed, the
intersections between the 1-chains and the 3-chains already correspond exactly to
the intersections of their representatives in H1(6). □

6. The case of closed 4-manifolds

In this section, we compute the twisted homology, torsion and intersection forms
when X is closed. It mainly follows the lines of the computation of relative
homology, since we need again to puncture X . However, it mixes some features
of the absolute and relative cases. For instance, when X is closed, r-defining
collections of disks and balls are the same as ordinary defining collections. Since
there is no additive difficulty with regards to the nonclosed case, we skip the details.

We fix ⋆ ∈ 6; for Z ⊂ X , we set Z ′
= Z \ η(⋆) and we fix ∗ ∈ ∂6′. Let D

and B be unions of defining collections of disks and balls for the Ci and the X i

respectively. Lemma 4.3 still holds, and provides the following corollary.

Lemma 6.1. The quad (X ′, Y ′, 6′, ∗) deformation retracts onto a CW-complex
(Z3, Z2, Z1, Z0), where Z0 = ∗, Z1 is made of loops on 6′, Z2 = Z ∂

1 ∪D, Z3 =

Z2 ∪B. Subsequently, the homology of X is given by the chain complex

(C′) Hϕ

4 (X, X ′) → Hϕ

3 (X ′, Y ′) → Hϕ

2 (Y ′, 6′) → Hϕ

1 (6′, ∗) → Hϕ

0 (∗).

Now, Lϕ
i denotes the submodule of Hϕ

1 (6′, ∗) generated by the homology classes
of the curves in ci .

Lemma 6.2. The modules Hϕ

1 (6′, ∗) and Lϕ
i are free R-modules of ranks 2g and g

respectively. The modules Lϕ

i−1 ∩ Lϕ
i are also free. Moreover, Lϕ

i is a lagrangian
for the equivariant intersection form on Hϕ

1 (6′, ∗).
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Lemma 6.3. Hϕ

2 (C ′

i , (∂Ci )
′) ∼= Lϕ

i and Hϕ

3 (X ′

i , (∂ X i )
′) ∼= Lϕ

i−1 ∩ Lϕ
i for all i .

Theorem 6.4. If X is closed, the twisted homology of X is given by the chain
complex

(C) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

⊕
i

Lϕ
i

∂1
−→ Hϕ

1 (6′, ∗) → Hϕ

0 (∗),

where

∂3([6]) = [∂6′
], ∂2((xi )1≤i≤n) = ((xi − xi+1)1≤i≤n), ∂1((xi )1≤i≤n) =

n∑
i=1

xi .

Moreover, if R is a field, the complex basis b of (C) described in Remark 6.5 forms
a geometric basis for the torsion of X , meaning that τϕ(X; h) = τ(C; b, h).

Remark 6.5. Once again, we can describe geometric torsion bases b for C:

• b0 = [∗],

• b1 = any set of loops based at ∗ which cut 6 into a disk,

• b2 = any basis corresponding to a tuple of defining collections of curves for Ci ,

• b3 = any basis corresponding to a tuple of “double curves” for the pairs
(Ci−1, Ci ), or any other R0-basis with R0 = ϕ(Z[π1(X)]) (see Remark 3.12),

• b4 = the fundamental class of H2(6, 6′).

Expressions for the intersection forms on Hϕ

2 (X) and on Hϕ

1 (X) × Hϕ

3 (X) are
again obtained in terms of the intersection form on Hϕ

1 (6′, ∗). Strictly speaking, this
intersection form is defined on Hϕ

1 (6′, ∗1)× Hϕ

1 (6′, ∗2) for two distinct basepoints
∗1 and ∗2 on ∂6′. Again, in the nontwisted case, H1(6

′, ∗) identifies with H1(6).

Theorem 6.6. Suppose that h1 = [(xi )1≤i≤n] and h2 = [(yi )1≤i≤n] ∈ Hϕ

2 (X), where
(xi )1≤i≤n, (yi )1≤i≤n ∈

⊕
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection forms on Hϕ

2 (X) and
Hϕ

1 (6′, ∗).
Suppose that h1 ∈ Hϕ

1 (X) corresponds to the element a ∈ Hϕ

1 (6′, ∗) and that
h2 ∈ Hϕ

3 (X) corresponds to the element b ∈
⋂

i Lϕ
i . Then ⟨h1, h2⟩

ϕ
X = ⟨a, b⟩

ϕ
6 .

7. The boundary: monodromy and homology

In this section, we assume ∂ X ̸= ∅ and we compute the action of the monodromy
of the open book induced on ∂ X on the homology of the page 6∂ ; we then deduce
the homology of ∂ X . All homology groups are considered with coefficients in Z.
We denote by 6i the result of compressing 6 along ci , which is a copy of 6∂ .
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Given a compact surface S with no closed component, a cut system for S is a family
of arcs on S that cuts each component of S into a disk.

Our main tool is the algorithm of Castro, Gay and Pinzón-Caicedo which de-
scribes the monodromy of the open book from a trisection diagram [Castro et al.
2018a]. Although they work with trisections in the case of a connected page,
their result extends directly to the setting of multisections with multiple boundary
components.

Proposition 7.1 (Castro, Gay and Pinzón-Caicedo). Let e be any choice of arcs in 6,
disjoint from c1, that forms a cut system for 61. The monodromy φ : 61 → 61 which
defines the open book decomposition of ∂ X is encoded by its action on e, which
in turn is described by the following algorithm. For i running from 1 to n, slide
the curves ci+1 over one another and slide the arcs e over the curves ci , until e is
disjoint from the curves ci+1. The family c′

1 ∪e′ which results from these n steps will
generally be distinct from the original family c1 ∪ e. Perform one final sequence of
handleslides of the arcs and curves c′

1 ∪ e′ which sends c′

1 to c1. The resulting cut
system e′ for 61 is φ(e).

It is necessary to explicitly index the arcs e and keep track of this index throughout
the algorithm, but the simple closed curves ci need not be indexed.

We denote by L i the subgroup of H1(6) generated by the homology classes of
the curves in ci , and we let Ji denote its orthogonal in H1(6, ∂6) with respect to
the intersection pairing on H1(6) × H1(6, ∂6) (see Section 2C). Similarly, we
denote by Li the subgroup of H1(6, ∂6) generated by the homology classes of the
curves in ci , and we let Ji denote its orthogonal in H1(6).

Lemma 7.2. The groups L i , Ji , Li and Ji are free abelian groups of ranks p,
g + h + b − 1, g − h and 2g + b − p − 1 respectively, where g is the genus of 6,
h the genus of 6∂ and b the number of boundary components of both. Moreover,
L i and Li are primitive subgroups of Ji and Ji respectively, so that the quotients
Ji/L i and Ji/Li both are free abelian groups of rank g + h + b − p − 1.

Proof. Up to diffeomorphism and handleslides, the curves of the collection ci can
be put in standard position; see Figure 2. From this standard position, one can draw
curves providing bases for the different groups under study; see Figure 4.

The group L i is generated by the homology classes of the curves in ci , which
are p homologically independent curves on 6, and thus rk L i = p. The group Li is
generated by the same curves, but some of them are trivial in H1(6, ∂6). There are
g−h nontrivial ones, which are p homologically independent, so that rkLi = g−h.
Bases for Ji and Ji can be obtained by completing the given bases for L i and Li

respectively, giving the remainder of the statement. Note that the ranks of Ji and Ji

can be recovered from the fact that these groups are orthogonal complements
of Li and L i respectively. □
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Figure 4. Curves on 6 for the compression body Ci . The curves
of ci are in red; their homology classes in H1(6) form a basis
of L i and the five leftmost ones provide a basis of Li ⊂ H1(6, ∂6).
The homology classes of the blue and violet curves form bases
of Ji and Ji respectively.

Lemma 7.3. There are natural identifications H1(6i , ∂6) ∼= Ji/Li and H1(6i ) ∼=

Ji/L i .

Proof. Recall Ci is a lensed compression body, so that we can write its boundary as
∂Ci = 6∪∂6 6i . In particular, we have excision equivalences (∂Ci , 6i ) ∼ (6, ∂6)

and (∂Ci , 6) ∼ (6i , ∂6).
We first view Ci as a thickened 6i with 1-handles attached on the positive

boundary whose cocores are the curves in ci . This shows that H2(Ci , 6i ) = 0 and
H1(Ci , 6i ) is generated by the classes of the cores of the 1-handles. Hence the
long exact sequence of the triple (Ci , ∂Ci , 6i ) gives

0 → H2(Ci , ∂Ci ) → H1(6, ∂6) → H1(Ci , 6i ) → 0.

Now the image of an element of H1(6, ∂6) is determined by its algebraic intersec-
tion with the curves in ci , and thus H2(Ci , ∂Ci ) ∼= Ji .

Likewise, viewing the compression body Ci as a thickened 6 with 2-handles
glued along the curves in ci on the negative boundary shows that H1(Ci , 6) = 0
and H2(Ci , 6) is generated by the classes of the cores of the 2-handles. Now the
long exact sequence of the triple (Ci , ∂Ci , 6) gives

H2(Ci , 6) → H2(Ci , ∂Ci ) → H1(6i , ∂6) → 0.

Since the 2-handles are glued along the curves in ci , the image of H2(Ci , 6)

corresponds to Li in the above identification of H2(Ci , ∂Ci ) with the subgroup Ji

of H1(6, ∂6). This gives the identification H1(6i , ∂6) ∼= Ji/Li .
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We now repeat the whole argument replacing ∂Ci by 6⊔6i , where 6i is obtained
from 6i by removing an open collar neighborhood of its boundary. The first step
gives

0 → H2(Ci , 6 ⊔ 6i ) → H1(6) → H1(Ci , 6i )

and H2(Ci , 6⊔6i )∼= Ji , and the second step gives H2(Ci , 6)→ H2(Ci , 6⊔6i )→

H1(6i ) → 0 and H2(Ci , 6) ∼= L i in H2(Ci , 6 ⊔ 6i ) ∼= Ji . □

Let e be a family of arcs in 6, disjoint from c1, that forms a cut system for 61;
note that it defines a basis of H1(61, ∂6). Let ai be a family of simple closed
curves on 6 that defines a basis of Li/(Li ∩ Li+1) or L i/(L i ∩ L i+1) (in the
sequel, we may consider their homology classes in H1(6) or H1(6, ∂6)). For
µ = (µi )1≤i≤s and µ′

= (µ′

i )1≤i≤t families of H1(6, ∂6) and H1(6), define the
matrix µ · µ′

= (⟨µi , µ
′

j ⟩6)1≤i≤s,1≤ j≤t .

Proposition 7.4. Let φ : 61 → 61 be the monodromy which defines the open book
on ∂ X. Define matrices Ri and families ei in H1(6, ∂6) recursively as follows:

• R0 = 0 and e1 = e,

• Ri = −(ei · ai+1)(ai · ai+1)
−1 and ei+1 = ei + Ri ai .

Fix a basis of the free Z-module J1 which admits e as a subfamily and write the
families e and en+1 in this basis. Then the action of the monodromy of the open
book of ∂ X on H1(61, ∂6) ∼= J1/(L1) is given in the basis e by the matrix of
R = et en+1, where et is the transpose of e.

Proof. Following the algorithm of Proposition 7.1, we define families of arcs
and curves ei on 6, disjoint from ci , that define bases of H1(6i , ∂6), by e1 = e
and ei+1 = ei + ri ai , where the ri are matrices to compute. Since ei is disjoint
from ci , we have 0 = ei+1 · ai+1 = ei · ai+1 + ri (ai · ai+1), so that ri = Ri . Now
en+1 expresses φ(e) in the fixed basis of J1. Multiply by et to get it in the basis e
of H1(61, ∂6). □

The following lemma gives the homology of a 3-manifold from an open book
decomposition. A similar computation can be found in [Etnyre and Ozbagci 2008,
Section 2.1].

Lemma 7.5. Let M be a 3-manifold with an open book (S, φ). The homology of M
is the homology of the complex

0 → Zs 0
−→ H1(S, ∂S)

ξ
−→ H1(S)

0
−→ Zs

→ 0,

where ξ([µ]) = [−µ ∪ φ(µ)] and s is the number of components of S.

Proof. First note that S and M necessarily have the same number of connected
components, so that s is also the number of components of M .
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Consider the triple
(
S×[0, 1], ∂(S×[0, 1]), S×{0}

)
. Since S×[0, 1] deformation

retracts on S × {0}, the homology of the corresponding pair is trivial. Also, the
open book structure gives a map φ : S × [0, 1] → M , injective on the interior,
such that the St = φ(S × {t}) are the pages, with S0 = S1 = S. The map φ

induces an isomorphism in homology: H∗

(
S × [0, 1], ∂(S × [0, 1])

)
∼= H∗(M, S).

Further, the inclusion of S as S × {1} in ∂(S × [0, 1]) induces an isomorphism
H∗

(
∂(S ×[0, 1]), S ×{0}

)
∼= H∗(S, ∂S). Finally H∗(M, S) ∼= H∗−1(S, ∂S). Hence

the long exact sequence of the pair (M, S) gives

0 → H2(M) → H1(S, ∂S)
ξ

−→ H1(S) → H1(M) → 0.

Finally, given an arc a properly embedded in (S, ∂S), a ×[0, 1] is a relative 2-cycle
for the pair (

S × [0, 1], ∂(S × [0, 1])
)
∼ (M, S),

whose boundary is −a ∪ φ(a). □

To compute the homology of ∂ X , we need to understand the homology classes
φ(µ)−µ in H1(61). We keep the notations defined before and in Proposition 7.4.

Proposition 7.6. Define families εi in H1(6) as follows: ε1 =0 and εi+1 =εi +Ri ai .
Fix a basis bL of L1 ∼= L1 and complete it into a basis (bL , b) of J1. Write e in the
basis (bL , e) of J1 and εn+1 in the basis (bL , b) of J1. The homology of ∂ X is the
homology of the complex

0 → Zs 0
−→

J1

L1

ξ
−→

J1

L1

0
−→ Zs

→ 0,

where s is the number of components of 6 and ξ is given in the bases e and b by
the matrix S = etεn+1.

Proof. The εi represent the homology classes in H1(6) of the ei − e. Throughout
the algorithm of Proposition 7.1, they are added curves as in Proposition 7.4, but
we now view the result in H1(6) at each step. □

8. Sample calculations

Example 1. The trisection diagram (6; α, β, γ ) in Figure 5 is a diagram for a disk
bundle X over S2 with Euler number −2 obtained by Castro, Gay and Pinzón-
Caicedo in [Castro et al. 2018a, Section 5.1]. In this example, all homology groups
have coefficients in Z. We first compute the (relative) homology and intersection
form of X from this diagram.

In H1(6) = ⟨α1, β1, α2, β2, γ1⟩, we have Lα = ⟨α1, α2⟩, Lβ = ⟨β1, β2⟩, Lγ =

⟨γ1, α2 − 2β1 +β2⟩. All pairwise intersections of these subgroups are trivial. The
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α2
β2

α1 β1
γ1

γ2

e

Figure 5. A trisection diagram of a disk bundle over S2 with Euler
number −2.

homology of X is the homology of the complex

0 → Lα ⊕ Lβ ⊕ Lγ → H1(6)
0

−→ Z,

giving H1(X) = 0, H2(X) ∼= Z and H3(X) = 0. Note that the rightmost differential
in always zero when working with coefficients in Z.

In H1(6, ∂6) = ⟨α1, β1, α2, β2, e⟩, we have Jα = ⟨α1, α2, e⟩, Jβ = ⟨β1, β2, e⟩,
Jγ = ⟨α1 − β1, α2 − 2β1 + β2, e − β2⟩; for Jγ , we obtain these expressions by
considering a complete collection of arcs and curves for Cγ made of γ1, γ2 and an
arc joining the two boundary components avoiding the γi . Pairwise intersections
are Jα ∩Jβ = ⟨e⟩, Jβ ∩Jγ = ⟨e − β2⟩, Jγ ∩Jα = ⟨2α1 − α2 − e⟩. The relative
homology of X is the homology of the complex

Z
0

−→

⊕
ν ̸=ν′

Jν ∩Jν′ →

⊕
ν

Jν → H1(6, ∂6) → 0,

where ν, ν ′
∈{α, β, γ }, giving H1(X, ∂ X)=0, H2(X, ∂ X)∼=Z and H3(X, ∂ X)=0.

Note that the leftmost differential in always zero when working with coefficients
in Z.

A generator of H2(X) is given by (α2, β2 − 2β1, −γ2) ∈ Lα ⊕ Lβ ⊕ Lγ . Using
this generator, we can compute the intersection form of X :

⟨α2, β2 − 2β1⟩6 + ⟨α2, −γ2⟩6 + ⟨β2 − 2β1, −γ2⟩6 = 2.

We now consider the monodromy of the open book on ∂ X . We set a1 = (α1, α2),
a2 = (β1, β2) and a3 = (γ1, γ2). Starting with R0 = 0 and e1 = e, we compute
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α x

β

y
γ

e′

e

Figure 6. A trisection diagram.

R1 = (0 0), so that e2 = e, then R2 = (0 −1) and e3 = e − β2, and finally
R3 = (−2 1) and e4 = e−2α1 +α2. Utilizing the basis (α1, α2, e) of Jα , this gives
R = (1) and shows that the action of the monodromy on H1(61, ∂61) is trivial.
Now starting with ε1 = 0, we get ε2 = 0, ε3 = −β2 and ε4 = α2 − 2α1 − 2ζ , where
ζ = γ1 + β1 − α1 is a generator of Jα/Lα that we use as basis. Hence S = (−2).
Finally, the homology of ∂ X is the homology of the complex

0 → Z
0

−→ ⟨e⟩ −2
−→ ⟨ζ ⟩

0
−→ Z → 0,

giving H1(∂ X) = Z/2Z and H2(∂ X) = 0.

Example 2. Let X be the 4-manifold defined by the trisection diagram (6; α, β, γ )

in Figure 6.
In H1(6) = ⟨α, β, x, y⟩, we have Lα = ⟨α⟩, Lβ = ⟨β⟩, Lγ = ⟨−α + β + y⟩.

Pairwise intersections are trivial and we get H1(X; Z) = ⟨x⟩ ∼= Z, H2(X; Z) = 0
and H3(X; Z) = 0.

In H1(6, ∂6) = ⟨α, β, e, e′
⟩, we have Jα = ⟨α, e, e′

⟩, Jβ = ⟨β, e, e′
⟩, Jγ =

⟨β − α, α + e, e′
⟩. This gives H1(X, ∂ X) = 0, H2(X, ∂ X) = 0 and H3(X, ∂ X) =

Jα ∩Jβ ∩Jγ
∼= Z.

We define ϕ : Z[π1(X, ∗)] → Z[t±1
] by ϕ(x) = t . Let us compute the associated

twisted homology and torsion. Fix a lift ∗̃ of the basepoint ∗ . For ζ ∈ π1(6, ∗), we
denote by ζ̃ the lift of ζ starting at ∗̃. Since γ = α−1xyx−1αβα−1 in π1(6, ∗), we
have γ̃ = −α̃ + β̃ + t ỹ in Hϕ

1 (6, ∗). Hence, in Hϕ

1 (6, ∗) = ⟨α̃, β̃, x̃, ỹ⟩, we have
Lϕ

α = ⟨α̃⟩, Lϕ
β = ⟨β̃⟩, Lϕ

γ = ⟨−α̃ + β̃ + t ỹ⟩. From the complex

0 → Lϕ
α ⊕ Lϕ

β ⊕ Lϕ
γ → Hϕ

1 (6, ∗) → Hϕ

0 (∗) → 0,

we get Hϕ

0 (X; Z[t±1
]) ∼= Z[t±1

]/(t − 1) ∼= Z and Hϕ
i (X; Z[t±1

]) = 0 for i > 0.
This implies that the homology of X with coefficients in Q(t) is trivial, so that the
torsion won’t depend on the choice of a homology basis. Set c2 = (α̃, β̃, γ̃ ),
c1 = (α̃, β̃, x̃, ỹ) and c0 = (∗̃) as complex bases for the above complex and
b1 = (α̃, β̃, γ̃ ) and b0 = ((t − 1)∗̃) as bases of the images of the boundary map.
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Then the torsion is given by

τϕ(X) =

[
b1

c2

]−1[b1b0

c1

][
b0

c0

]−1

= −t (t − 1)−1
∈ Q(t)/Z[t±1

].

Finally, we consider the monodromy of the open book on ∂ X . We set a1 = α,
a2 = β and a3 = γ ; note that a3 = e′

− α +β in H1(6, ∂6). Starting with R0 = 0
and e1 =

( e
e′

)
, we get R1 =

( 0
0

)
and e2 = e1, then R2 =

( 1
0

)
and e3 =

( e+β
e′

)
, and

finally R3 =
(

−1
0

)
and e4 =

(
e−e′

+α
e′

)
. Utilizing the basis (e, e′, α) of J1, we obtain

et e4 =

(
1 0 0
0 1 0

)  1 0
−1 1

1 0

 =

(
1 0

−1 1

)
as the matrix giving the action of the monodromy in the basis (e, e′) of H1(61, ∂6).

To get the homology of ∂ X , we start with ε1 = (0, 0) and the computation gives
ε2 = (0, 0), ε3 = (β, 0), ε4 = (α − y, 0). It follows that the homology of ∂ X is the
homology of the complex

0 → Z
0

−→ ⟨e, e′
⟩

ξ
−→ ⟨x, y⟩

0
−→ Z → 0,

where ξ(e) = −y and ξ(e′) = 0. Thus H1(∂ X) ∼= H2(∂ X) ∼= Z.

Example 3. The quadrisection diagram (6; (ci )1≤i≤4) represents the manifolds
S2

×S2 (see for instance [Islambouli and Naylor 2024], or decompose each factor S2

into two disks and recover this quadrisection). We shall use it to recover the
homology with coefficients in Z and the intersection form of S2

× S2.
In H1(6) = ⟨c1, c2⟩, we have L1 = L3 = ⟨c1⟩ and L2 = L4 = ⟨c2⟩. All pairwise

intersections are trivial. The homology of S2
× S2 is the homology of the complex

Z → 0 →

⊕
1≤i≤4

L i → H1(6)
0

−→ Z,

giving H1(X) = 0, H2(X) ∼= Z2 and H3(X) = 0.
A basis of H2(S2

×S2) is given by (c1,0,−c1,0) and (0,c2,0,−c2) in
⊕

1≤i≤4 L i .
In this basis, we obtain the intersection form as

( 0
1

1
0

)
.

c3c1

c2

c4

Figure 7. A quadrisection diagram of S2
× S2.
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