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FUSED HECKE ALGEBRA AND ONE-BOUNDARY ALGEBRAS

LOÏC POULAIN D’ANDECY AND MERI ZAIMI

This paper gives an algebraic presentation of the fused Hecke algebra which
describes the centraliser of tensor products of the Uq(glN)-representation
labelled by a one-row partition of any size with vector representations. It is
obtained through a detailed study of a new algebra that we call the symmetric
one-boundary Hecke algebra. In particular, we prove that the symmetric
one-boundary Hecke algebra is free over a ring of Laurent polynomials
in three variables and we provide a basis indexed by a certain subset of
signed permutations. We show how the symmetric one-boundary Hecke
algebra admits the one-boundary Temperley–Lieb algebra as a quotient, and
we also describe a basis of this latter algebra combinatorially in terms of
signed permutations with avoiding patterns. The quotients corresponding
to any value of N in glN (the Temperley–Lieb one corresponds to N = 2)
are also introduced. Finally, we obtain the fused Hecke algebra, and in
turn the centralisers for any value of N , by specialising and quotienting the
symmetric one-boundary Hecke algebra. In particular, this generalises to the
Hecke case the description of the so-called boundary seam algebra, which is
then obtained (taking N = 2) as a quotient of the fused Hecke algebra.
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1. Introduction

The usual Hecke algebra Hn(q) appears in the quantum Schur–Weyl duality [14]
describing the centralisers of tensor powers of the vector representation of the
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quantum group Uq(glN ). If we denote L N the vector representation of dimension N
of Uq(glN ), there is a surjective morphism

Hn → EndUq (glN )((L N )⊗n).

The Hecke algebra Hn does not depend on N and plays its role for glN for any N .
The dependence on N of the centraliser appears in the description of the kernel of
the above map. Indeed, for a given N , the centraliser of Uq(glN ) is isomorphic to the
quotient of Hn by the q-antisymmetriser on N + 1 points. This q-antisymmetriser
is a minimal central idempotent of HN+1 (the quotient is trivial if n ≤ N ) and
generates the kernel for any n ≥ N + 1. In particular, for N = 2, the resulting
algebra is the well-known Temperley–Lieb algebra.

We would like to generalise the whole picture for tensor products of more general
representations of Uq(glN ). The fused Hecke algebra was introduced in [7] for this
purpose. For k⃗ = (k1, . . . , km) a vector of positive integers, we have a surjective
morphism

(1-1) Hk⃗ → EndUq (glN )(L N
(k1)

⊗ L N
(k2)

⊗ · · · ⊗ L N
(km)),

where L N
(k) is the k-th q-symmetrised power of L N (in other words, the irreducible

representation of Uq(glN ) indexed by the one-row partition of size k) and Hk⃗ is
called the fused Hecke algebra. Again, the algebra Hk⃗ does not depend on N and for
large N is exactly the centraliser. The dependence of the centralisers on N appears
in the kernel of the surjective map, of which an explicit description is conjectured
in [7] and proved in some cases, including the ones we will study in this paper.
For N = 2, the centralisers can be called the fused Temperley–Lieb algebras in
our terminology. They appear in several recent works and are also known as seam
algebras, valenced Temperley–Lieb algebra or Jones–Wenzl algebras [1; 10; 27].

There is no known presentation by generators and relations for the fused Hecke
algebra Hk⃗ in general and in turn no known presentation for the Uq(glN )-centralisers
(see [10] for a study of this question for the Jones–Wenzl algebras, that is, for
Uq(gl2)-centralisers),

This paper is concerned with the case where only the first representation in (1-1)
is fused. Namely we fix k > 0 and n ≥ 0, and we denote by Hk,n the fused Hecke
algebra corresponding to the following centraliser:

(1-2) Hk,n → EndUq (glN )(L N
(k) ⊗ (L N )⊗n).

This situation is commonly referred to as the one-boundary case. Such one-boundary
centraliser algebras have been studied especially for Uq(gl2), and also often with an
infinite-dimensional module (like a Verma module) as the first factor; see [4; 13; 15]
for recent works. For N = 2, the one-boundary case of the fused Temperley–Lieb
algebra is referred to as the boundary seam algebra [16; 17; 19] and is a quotient
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of the one-boundary Temperley–Lieb algebra or blob algebra [8; 18; 20]. The
presentation given in [19], even if not explicitly stated this way, can be seen as a
description of the centraliser (1-2) in the gl2 case.

The first main goal of this paper is to give an algebraic presentation of the fused
Hecke algebra Hk,n and of its quotients corresponding to the centralisers for any N .
In particular, we obtain the boundary seam algebra (N = 2) explicitly as a quotient
of the fused Hecke algebra Hk,n , and provide its generalisation for any N > 2.

The second main purpose of this paper is the introduction of a new algebra,
which we denote An and call the symmetric one-boundary Hecke algebra. Roughly
speaking, this 3-parameter algebra An allows to interpolate between all algebras Hk,n

for varying k. The word symmetric is meant to recall the fact that the representations
allowed at the boundary are the q-symmetric powers. The algebra An admits as a
quotient the 3-parameter one-boundary Temperley–Lieb algebra, which we denote
here Cn,2, and we also define naturally as quotients of An the generalisations Cn,N

corresponding to glN for any N > 2.
We now describe more precisely, step by step, the algebras involved in the paper.

It is well known, see, for example, [22], that the one-boundary centraliser in (1-2)
is a quotient of the affine Hecke algebra. Moreover, since the partition (k) made
of a line of k boxes has only two addable nodes, this quotient factors through a
cyclotomic quotient of level 2. This is the starting point of our constructions.

The starting point Hα1,α2,n . We start with the cyclotomic Hecke algebra of level 2
Hα1,α2,n defined over the ring C[q±1, α±1

1 , α±2
2 ] with three indeterminates. The

indeterminates α1 and α2 correspond to the eigenvalues of the boundary, or type B,
generator, while the eigenvalues of the other generators are q and −q−1.

The algebra Hα1,α2,n has a standard basis indexed by the signed permutations and
we have a good understanding of the representation theory over the field of fractions
C(q, α1, α2). Namely, the algebra is semisimple and the irreducible representations
are indexed by bipartitions of n. Among these irreducible representations, four of
them are of dimension 1 and they correspond to the following bipartitions:

(□ · · ·□ ,∅),

(□...
□

,∅
)

, (∅ ,□ · · ·□),

(
∅ ,

□...
□

)
,

(q, α1), (−q−1, α1), (q, α2), (−q−1, α2).

Each of these one-dimensional representations corresponds to a choice of eigenval-
ues for the generators, as indicated above. Moreover, explicit expressions for the
minimal central idempotents corresponding to these representations are known (see
Section 2B). These idempotents live in the algebra Hα1,α2,n extended over the field
of fractions C(q, α1, α2), and by simply removing the denominators in these explicit
expressions, we obtain central quasiidempotents in the algebra Hα1,α2,n well defined
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over the ring of polynomials. These quasiidempotents are denoted E (x,y)
n , where

(x, y) are the corresponding eigenvalues, and will be crucial to all our constructions.
Indeed all algebras involved in the paper are obtained by quotienting by some of
these quasiidempotents, as summarised in the picture below.

Hα1,α2,n (
α1 = q−2

α2 = q2k

)
E (−q−1,α2)

2

An A(k)
n

Cn,N C(k)
n,N

E (−q−1,α1)

N E (−q−1,α1)

N

E (q,α1)

k+1

E (q,α1)

k+1

The full lines represent genuine quotients, while dashed lines represent quotients
combined with a specialisation of the parameters α1, α2 as indicated in the diagram.
We briefly detail each step of the diagram.

The algebra An . The symmetric one-boundary Hecke algebra An is obtained from
Hα1,α2,n by quotienting out the quasiidempotent E (−q−1,α2)

2 . This quotient is the
main object of study of Section 2. Quite naturally from its definition, the irreducible
representations of the algebra An over the field of fractions are indexed by biparti-
tions with a one-row partition as the second component. Our first main result is
that the algebra An is free over C[q±1, α±1

1 , α±2
2 ] and we provide a basis in terms

of signed permutations with avoiding patterns. We conclude this section with a
technical fact, namely, that some of the remaining central quasiidempotents E (x,y)

n

can be renormalised in An while still being well defined over C[q±1, α±1
1 , α±2

2 ].
This will be important for what follows in order for the subsequently defined
quotients to behave well.

The algebras Cn,N . In Section 3, for N > 1, the symmetric one-boundary N -centra-
liser algebras Cn,N are defined by further quotienting An by one of the remaining (and
renormalised) quasiidempotent when n ≥ N (as well as the usual q-antisymmetriser
on N + 1 points). The relevant quasiidempotent is indicated in the diagram above
and this definition leads easily to the description of the representation theory over
the field of fractions: the irreducible representations are now indexed by bipartitions
(λ, µ) where µ is a one-row partition and λ has strictly less than N rows.

The algebras Cn,N include the one-boundary Temperley–Lieb algebra, which is
the case N =2, and provide its natural generalisation for general N . The name comes
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from the fact that the algebra Cn,N somehow interpolates the Uq(glN )-centralisers
in (1-2) for fixed N and varying k. The case N = 2 is examined in more details and
again, we show that Cn,2 is free over the ring C[q±1, α±1

1 , α±2
2 ] with a basis also

given in terms of signed permutations with certain avoiding patterns (this is where
the renormalisation mentioned above is important). This description can be seen
as a one-boundary generalisation of the description of the usual Temperley–Lieb
algebra in terms of usual permutations with avoiding patterns.

The algebras A(k)
n . Section 4 is mainly devoted to the algebraic description of the

fused Hecke algebra Hk,n . For this purpose, we define the algebra A(k)
n as a special-

isation of An followed by a quotient by another (renormalized) quasiidempotent for
n ≥ k +1. The specialisation replaces α1 and α2 by the eigenvalues of the boundary
generator in the fused Hecke algebra. Their values are indicated in the diagram
above together with the relevant quasiidempotent. The main result of the section is
that the algebras A(k)

n and Hk,n are isomorphic. This leads to a presentation of the
fused Hecke algebra in terms of generators and relations. Again, a basis of A(k)

n in
terms of signed permutations with avoiding patterns is provided.

The algebras C(k)
n,N . Lastly, in Section 5, the algebras C(k)

n,N are defined by naturally
completing the square of the picture above. Namely, they are defined either as
specialisations and quotients of Cn,N , or equivalently as quotients of A(k)

n . The
algebras C(k)

n,N are shown to be isomorphic to the Uq(glN )-centraliser in (1-2) and this
provides an algebraic description of the centraliser. We show that we have reobtained
naturally with C(k)

n,2 the boundary seam algebra of [19] and thus the algebras C(k)
n,N

can be seen as the glN -generalisations. Following our results, a natural definition
of the algebra C(k)

n,2 over C[q±1
] is given (and here we differ from [19]) and it is

shown to be free over C[q±1
] with a basis given explicitly.

2. The symmetric one-boundary Hecke algebra

We will use the notations

[r ]x =
xr

− x−r

x − x−1 = xr−1
+ xr−3

+ · · · + x1−r and [r ]x ! = [2]x . . . [r ]x .

We will be working with the ring R = C[q±1, α±1
1 , α±1

2 ], where q, α1, α2 are
indeterminates, and with its field of fractions F = C(q, α1, α2).

2A. The cyclotomic Hecke algebra of level 2. Let n ≥ 0. We define the algebra
Hα1,α2,n as the algebra over R with generators gi for i = 0, 1, . . . , n−1 and defining
relations
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gi gi+1 gi = gi+1 gi gi+1, 1 ≤ i ≤ n − 2,(2-1)

g0 g1 g0 g1 = g1 g0 g1 g0,(2-2)

gi g j = g j gi , |i − j | ≥ 2,(2-3)

(gi − q)(gi + q−1) = 0, 1 ≤ i ≤ n − 1,(2-4)

(g0 − α1)(g0 − α2) = 0.(2-5)

By convention, Hα1,α2,0 = R. The algebra is a quotient of the affine Hecke algebra
of type A by the last relation. It is called a cyclotomic Hecke algebra of level 2 since
this last relation is a quadratic characteristic relation for g0. For what is recalled
below about Hα1,α2,n , see, e.g., [11].

The algebra Hα1,α2,n is free as an R-module and has a basis labelled by the
elements of the Coxeter group of type Bn . We will abuse notations and denote Bn

this Coxeter group. Its elements can be viewed as signed permutations, that is,
those permutations ω on the set {−n, −n + 1, . . . ,−1, 1, 2, . . . , n} such that we
have ω(−i) = −ω(i) for all i ∈ {1, 2, . . . , n}. We can represent the elements of Bn

by words b = b1 b2 . . . bn where each of the numbers 1, 2, . . . , n appears once and
is possibly barred (see, e.g., [25]). In this representation, bi is the image of i by ω,
where the bar notation is understood as a negative sign. The group Bn contains
n! 2n elements.

We denote by si the transposition of i and i +1 in Bn (which thus also transposes
−i and −(i+1)), and by s0 the transposition of −1 and 1. The group Bn is generated
by si with i = 0, . . . , n − 1. For an element ω ∈ Bn , we write it as a reduced
expression, that is, as a product si1 . . . sik with minimal k. We set gω = gi1 . . . gik in
Hα1,α2,n . The element gω does not depend on the choice of the reduced expression,
and the set {gω}ω∈Bn forms an R-basis of Hα1,α2,n . A standard choice of reduced
forms leads to an explicit expression for the basis as the following product of sets:

(2-6)
{

1,

g0

}
·


1,

g1,

g1 g0,

g1 g0 g1

 ·



1,

g2,

g2 g1,

g2 g1 g0,

g2 g1 g0 g1,

g2 g1 g0 g1 g2


· · · · ·



1,

gn−1,
...

gn−1 . . . g1 g0,

gn−1 . . . g1 g0 g1,
...

gn−1 . . . g1 g0 g1 . . . gn−1


.

Introducing the following notation for 0 ≤ m ≤ n:

[n, m] = gn . . . gm+1gm and [n, −m] = gn . . . g1 g0 g1 . . . gm,

the basis elements can be written as

[n1, m1][n2, m2] . . . [nk, mk], with 0 ≤ n1 < n2 < · · ·< nk ≤ n−1 and |mi |≤ ni .
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The algebra Hα1,α2,n−1 is naturally a subalgebra of Hα1,α2,n , the one generated by
g0, . . . , gn−2, where elements of Bn−1 are naturally identified with elements of Bn

leaving invariant the letter n.

Hecke algebra of type A. The algebra generated by g1, . . . , gn−1 with defining
relations (2-1), (2-3), (2-4) is the usual Hecke algebra Hn of type A, associated to
the symmetric group Sn on n letters. It is naturally identified as the subalgebra of
Hα1,α2,n generated by g1, . . . , gn−1, and a basis of Hn is the subset {gω}ω∈Sn , when
the symmetric group is naturally considered as a subgroup of Bn .

The basis of Hn is made of those elements in (2-6) which do not contain g0. The
basis (2-6) is well adapted to the inclusion Bn−1 ⊂ Bn . There is a different way to
produce a basis of Hα1,α2,n adapted to the inclusion Sn ⊂ Bn , which is the set of
elements:

(2-7) gω · g0 g1 . . . gi1 . . . g0 g1 . . . gik , ω ∈ Sn, n − 1 ≥ i1 > · · · > ik ≥ 0.

2B. Central quasiidempotents in Hα1,α2,n. For i = 0, 1, . . . , n − 1 and ω ∈ Bn ,
we denote ℓ(ω) the length of ω, which is the number of generators appearing
in any reduced expression of ω. We denote ℓ0(ω) the number of times that the
generator s0 appears in a reduced expression for ω. This does not depend on the
reduced expression since all braid relations in Hα1,α2,n are homogeneous in g0.

q-symmetriser and q-antisymmetriser in the Hecke algebra. First we discuss the
standard quasiidempotents in the usual Hecke algebra Hn generated by g1, . . . , gn−1.
Let x ∈ {q, −q−1

} and set

(2-8) 3x
n(g1, . . . , gn−1) =

∑
ω∈Sn

xℓ(ω)gω.

By convention, 3x
1 = 1. Using the basis in (2-6) without the elements containing g0,

we find the recursive formula

3x
n(g1, . . . , gn−1) = 3x

n−1(g1, . . . , gn−2)(1 + xgn−1 + · · · + xn−1gn−1 . . . g1).

It is well known and easy to check (see the proof of Proposition 2.1 below) that

3x
n(g1, . . . , gn−1) gi = gi3

x
n(g1, . . . , gn−1)

= x3x
n(g1, . . . , gn−1), i = 1, . . . , n − 1.

It follows that these two elements are central in Hn and are quasiidempotents,
namely,

(3x
n(g1, . . . , gn−1))

2
= q±

1
2 (n(n−1))

[n]q ! 3x
n(g1, . . . , gn−1), x = ±q±1.

To find the coefficient, one needs to replace each gi by x in the formula for the
quasiidempotents. This is easily done using their recursive formula. We refer to the
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element with x = q as the (unnormalised) q-symmetriser of Hn and to the element
with x = −q−1 as the (unnormalised) q-antisymmetriser of Hn .

The four quasiidempotents in Hα1,α2,n . Let x ∈ {q, −q−1
} and b ∈ {1, 2}. In what

follows, it will be convenient to consider the indices of α1, α2 modulo 2, so that
αb+1 = α1 when b = 2. We define

(2-9) E (x,αb)
n :=

∑
ω∈Bn

zω gω, zω := xℓ(ω)−ℓ0(ω)(−α−1
b+1)

ℓ0(ω).

By convention, E (x,αb)
0 = 1. Using the standard basis in (2-6), a recursive formula

for these elements is

(2-10) E (x,αb)
n = E (x,αb)

n−1

(
1 +

n−1∑
i=1

xn−i gn−1 . . . gi

− xn−1 α−1
b+1 gn−1 . . . g1 g0

(
1 +

n−1∑
i=1

x i g1 . . . gi

))
.

Using the basis (2-7) adapted to the embedding Hn ⊂ Hα1,α2,n , we also have

(2-11) E (x,αb)
n = 3x

n(g1, . . . , gn−1) · (1 − xn−1 α−1
b+1 g0 g1 . . . gn−1)

. . . (1 − xα−1
b+1 g0 g1)(1 − α−1

b+1 g0).

Explicit examples for small n are

E (x,αb)
1 = 1 − αb+1 g0,

E (x,αb)
2 = 1 + xg1 − αb+1 g0 − xαb+1(g1 g0 + g0 g1)

− x2αb+1 g1 g0 g1 + xα2
b+1 g0 g1 g0 + x2α2

b+1 g0 g1 g0 g1.

We recall the important facts about the elements E (x,αb)
n , implying in particular that

they are central quasiidempotents of Hα1,α2,n .

Proposition 2.1. Let x = ±q±1 and b ∈ {1, 2}. We have

(2-12) E (x,αb)
n g0 = g0 E (x,αb)

n =αb E (x,αb)
n and E (x,αb)

n gi = gi E (x,αb)
n = x E (x,αb)

n

for i = 1, . . . , n − 1, and

(2-13)

(E (x,αb)
n )2

= Pn(x, αb) E (x,αb)
n ,

Pn(x, αb) = q±
1
2 (n(n−1))

[n]q !

n−1∏
i=0

(
1 − q±2i αb

αb+1

)
.
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Proof. For any ω ∈ Bn and any i ∈ {0, 1, . . . , n −1}, we have ℓ(siω) = ℓ(ω)±1. If
ℓ(siω) > ℓ(ω), then we have gsi w = gi gw. Therefore we can write

(2-14) E (x,αb)
n =

∑
ω∈Bn

ℓ(si ω)>ℓ(ω)

(zω gω + zsi ω gi gω).

Note that under the hypothesis that ℓ(siω) > ℓ(ω), we must have zsi ω = xzω if
1 ≤ i ≤ n − 1 and zsi ω = −α−1

b+1 zω if i = 0. The defining relations (2-4) and (2-5)
imply that

(2-15) (g0 − αb)(1 − α−1
b+1 g0) = 0 and (gi − x)(gi + x−1) = 0

for i = 1, . . . , n − 1. Using the previous equations, we have, for example, if
1 ≤ i ≤ n − 1, that

(2-16) (gi − x) E (x,αb)
n =

∑
ω∈Bn

ℓ(si ω)>ℓ(ω)

(gi − x)(zω gω + xzωgi gω)

=

∑
ω∈Bn

ℓ(si ω)>ℓ(ω)

xzω(gi − x)(x−1
+ gi ) gω = 0.

The case i = 0 is similarly done. Moreover, similar arguments can be used when
considering instead the product E (x,αb)

n gi for 0 ≤ i ≤ n − 1. This proves (2-12).
Now the coefficient Pn(x, αb) in (2-13) is found by replacing g0 by αb and the

other gi ’s by x in the formula for E (x,αb)
n . The given formula for Pn(x, αb) follows

then easily from (2-11). □

Remark 2.2. Over the field of fractions F, or in a specialisation with Pn−1(x,αb) ̸=0,
we have also the recursive formula

(2-17) E (x,αb)
n = E (x,αb)

n−1 + x
E (x,αb)

n−1 gn−1 E (x,αb)
n−1

Pn−2(x, αb)

− x2(n−1)α−1
b+1

E (x,αb)
n−1 gn−1 . . . g1 g0 g1 . . . gn−1 E (x,αb)

n−1

Pn−1(x, αb)
.

2C. The symmetric one-boundary Hecke algebra An. We define below the main
object of this section that we call the symmetric one-boundary Hecke algebra.

Definition 2.3. Let n ≥0. We define the symmetric one-boundary Hecke algebra An

as the algebra over R which is the quotient of Hα1,α2,n by the relation

(2-18) E (−q−1,α2)

2 = 0.

It is understood that An = Hα1,α2,n if n = 0, 1.
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Using the explicit expression of E (−q−1,α2)

2 , this is equivalent to imposing the
following relation:

(2-19) g0 g1 g0 g1

= −q2α2
1 +qα2

1g1 +q2α1 g0 −qα1(g1 g0 +g0 g1)+α1g1 g0 g1 +qg0 g1 g0.

Semisimple representation theory. Here we extend the algebras Hα1,α2,n and An

over the field of fractions F , and denote them FHα1,α2,n and FAn to avoid any
confusion. The representation theory of FHα1,α2,n is well known [3; 12; 21], and
can be described in terms of bipartitions and Young tableaux.

A partition λ of n, denoted λ ⊢ n, is a decreasing sequence of positive integers
λ = (λ1, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 such that λ1 +· · ·+λk = n. We also
say that λ is a partition of size n and denote |λ| = n. We identify partitions with
their Young diagrams: the Young diagram of λ is a left-justified array of rows of
boxes such that the j -th row (we count from top to bottom) contains λ j boxes. The
number of nonempty rows is the length ℓ(λ) of λ. By convention, the empty set ∅
is the only partition of n = 0.

A standard tableau of shape λ is a bijective filling of the boxes of λ by numbers
1, . . . , n such that the entries strictly increase along any row and down any column
of the diagram. We denote by dλ the number of standard tableaux of shape λ. From
the representation theory of the symmetric group, or from the Robinson–Schensted
correspondence, we have

(2-20)
∑
λ⊢n

d2
λ = n!.

A bipartition of size n is a pair of partitions (λ, µ) such that |λ| + |µ| = n. We
denote Par2(n) the set of bipartitions of n. A standard tableau of shape (λ, µ) is
a bijective filling of the boxes of λ and µ by the numbers 1, . . . , n such that the
entries strictly increase along any row and down any column of the two diagrams.
The number of standard tableaux of shape (λ, µ) is easily seen to be

(2-21) dλ,µ =

(
n
|λ|

)
dλ dµ.

The set of irreducible representations of FHα1,α2,n is indexed by the bipartitions
of size n, and we will denote V(λ,µ) the irreducible representations indexed by
(λ, µ) ∈ Par2(n) so that

Irr(FHα1,α2,n) = {V(λ,µ) | (λ, µ) ∈ Par2(n)}.

There are four one-dimensional representations of FHα1,α2,n for n ≥ 2 and the
parametrisation is made such that they correspond to the following bipartitions of n,
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with the given corresponding values, respectively, of g0 and of gi , i = 1, . . . , n −1:

(2-22)

(□ · · ·□ ,∅),

(□...
□

,∅
)

, (∅ ,□ · · ·□),

(
∅ ,

□...
□

)
,

g0 7→ α1, g0 7→ α1, g0 7→ α2, g0 7→ α2,

gi 7→ q, gi 7→ −q−1, gi 7→ q, gi 7→ −q−1.

Moreover, the branching rules expressing the restriction from Hα1,α2,n to Hα1,α2,n−1

are given by inclusion of bipartitions (or more precisely, of their Young diagrams),
as shown in the beginning of the Bratteli graph below. We refer to an appendix
in [7] for a discussion of Bratteli diagrams and of quotients of semisimple algebras
by central idempotents.

The parametrisation of the irreducible representations is uniquely fixed by these
requirements, and the dimension of the irreducible representation V(λ,µ) is the
number of standard tableaux of shape (λ, µ):

dim V(λ,µ) = d(λ,µ) =

(
n
|λ|

)
dλ dµ,

(∅ ,∅)

(□ ,∅) (∅ ,□)

(□□ ,∅) (□□ ,∅) (□ ,□) (∅ ,□□) (∅ ,□□)

(□□□ ,∅) (□□□ ,∅) (
□
□
□

,∅) (□□ ,□) (□□ ,□) (□ ,□□) (□ ,□□) (∅ ,□□□) (∅ ,□□□ ) (∅ ,
□
□
□

)

Thanks to its properties recalled in Proposition 2.1, the element E (x,αb)
m in FHα1,α2,m

is a nonzero element proportional to the minimal central idempotent corresponding
to the one-dimensional representation associated to (x, αb). It means that it is
nonzero in this one-dimensional representation of FHα1,α2,m and acts as 0 in any
other irreducible representation. Now if n ≥ m, it follows that E (x,αb)

m seen as
an element of Hα1,α2,n is nonzero in an irreducible representation if and only if
this irreducible representation contains in its restriction to Hα1,α2,m the given one-
dimensional representation. Therefore the quotient by E (x,αb)

m = 0 removes exactly
these irreducible representations.

In the particular case of FAn , which is the quotient of Hα1,α2,n by the relation
E (−q−1,α2)

2 = 0, we recall the indexing of one-dimensional representations set up
in (2-22), and we find that the disappearing representations are those V(λ,µ) with µ

having at least two nonempty rows. We summarise this discussion in the following
proposition.
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Proposition 2.4. The algebra FAn is semisimple with the following set of irre-
ducible representations:

Irr(FAn) = {V(λ,µ) | (λ, µ) ∈ Par2(n) and ℓ(µ) < 2}.

The Bratteli diagram for the algebras An is obtained from the Bratteli diagram
for the algebras Hα1,α2,n above, where all bipartitions with more than one row in
the second component are removed:

(∅ ,∅) 1

(□ ,∅) (∅ ,□) 2

(□□ ,∅) (□□ ,∅) (□ ,□) (∅ ,□□) 7

(□□□ ,∅) (□□□ ,∅) (
□
□
□

,∅) (□□ ,□) (□□ ,□) (□ ,□□) (∅ ,□□□) 34

The dimension of FAn can be easily calculated, by summing the squares of the
dimensions of the irreducible representations:

dim(FAn) =

n∑
i=0

∑
λ⊢n−i

(dim V(λ,(i)))
2
=

n∑
i=0

(
n
i

)2 ∑
λ⊢n−i

d2
λ =

n∑
i=0

(
n
i

)2

(n − i)!,

where we first split the sum according to the size of the second partition µ, which
must be a single line of i boxes, and then we use successively (2-21) and (2-20).
The dimensions for n = 0, 1, 2, 3 are written in the diagram above.

Remark 2.5. The above description of the representations of FAn is also valid for
many specialisations of the parameters α1, α2, q in An , namely, those specialisations
such that the algebra Hα1,α2,n is semisimple. This happens if q2 is not a root of
unity of order e ≤ n and α1 ̸= α2q±2i for i = 1, . . . , n − 1, see [2].

An R-basis of An . A word b = b1 b2 . . . bn of Bn is said to be 1̄2̄-avoiding if all
barred numbers in b appear in decreasing order, see [25]. Put differently, b avoids
the pattern 1̄2̄ if there are no two indices 1≤ i < j ≤n such that bi =m1 and b j =m2

with 0 < m1 < m2. For instance, 356̄14̄2̄ is 1̄2̄-avoiding in B6 while 354̄16̄2̄ is not
because of the subsequence 4̄6̄.

We will denote by Bn(1̄2̄) the subset of all signed permutations in Bn which are
1̄2̄-avoiding. A word b = b1 b2 . . . bn corresponding to a permutation in Bn(1̄2̄)

can be written as follows: choose i numbers in {1, 2, . . . , n} that will be barred,
choose i positions among n to place these barred numbers in decreasing order in b,
and then permute the remaining n − i numbers in the remaining n − i positions in b.
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It follows that

(2-23) |Bn(1̄2̄)| =

n∑
i=0

(n − i)!
(

n
i

)2

.

We are now ready to give a basis of An over R. Thus, this also gives a basis for
any specialisation of q, α1, α2 to nonzero complex numbers.

Theorem 2.6. The algebra An is free over R with basis given by the set of ele-
ments gω corresponding to 1̄2̄-avoiding signed permutations, i.e., the basis is

(2-24) {gω | ω ∈ Bn(1̄2̄)}.

Proof. We first prove that the set (2-24) is a spanning set

(2-25) An = spanR{gω | ω ∈ Bn(1̄2̄)}.

Since An is a quotient of Hα1,α2,n , it is clearly linearly generated by the set of
elements gω with ω ∈ Bn . To show that this spanning set can be reduced to (2-25),
we proceed by induction on the length of elements in Bn .

Any signed permutation ω∈ Bn of length ℓ(ω)<4 is such that at most one number
in {1, 2, . . . , n} is mapped to a barred number. Therefore, all signed permutations ω

with ℓ(ω)<4 are 1̄2̄-avoiding and the associated elements gω belong to the spanning
set (2-25).

Suppose now that all elements gω with ℓ(ω) ≤ m, for some fixed integer m ≥ 4,
belong to the span of the set (2-24). Consider an element gω with ℓ(ω) = m + 1
such that ω /∈ Bn(1̄2̄). It follows by [28, Lemma 2.1] that ω must contain s0 s1 s0 s1

in some reduced expression. This implies in turn that there is a reduced expression
for gω that contains g0 g1 g0 g1. Relation (2-19) can hence be used to express gω as
a linear combination of terms of length less than m + 1. By induction hypothesis,
we therefore conclude that gω can be written in terms of the set (2-24).

Now, since the set (2-24) is a spanning set of An over R, it is also a spanning
set of FAn over F . Moreover, the dimension of FAn over F was calculated after
Proposition 2.4 and it coincides with the cardinality of the spanning set. Therefore,
the set (2-24) is a basis of FAn and in particular is linearly independent over F .
Thus it is also linearly independent over R (since R ⊂ F). We conclude that the
set (2-24) is an R-basis of An . □

Remark 2.7. The elements of Bn which avoid the pattern 1̄2̄ are in fact the same
as the elements which do not contain s0 s1 s0 s1 in any reduced expression, see [28,
Lemma 2.1].
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2D. Quasiidempotents in An. Let n ≥ 2. In An , the element E (−q−1,α2)
n , which is

proportional to E (−q−1,α2)

2 is equal to 0. Thus among the four central quasiidempo-
tents E (x,αb)

n of Hα1,α2,n , only three remain nonzero in An:

E (−q−1,α1)
n , E (q,α2)

n , E (q,α1)
n .

In Hα1,α2,n , no common factor appears in the coefficients of these elements. This
will now be different in An , where a nontrivial common factor in the ring R may
sometimes be factored out. Thus we can define renormalised elements defined
over R by removing this common factor, and it will be important for later use to do
so. In fact, only the two first elements in the list above factorise generically over
the ring R, and this is the content of the following statement.

Proposition 2.8. Let n ≥ 2. In An we have

E (−q−1,α1)
n = α−1

2

n−2∏
i=0

(
1 −

α1

α2
q−2i

)
Ẽ (−q−1,α1)

n ,(2-26)

E (q,α2)
n = q

1
2 (n(n−1))

[n]q ! Ẽ (q,α2)
n ,(2-27)

where the renormalised elements are given by

(2-28) Ẽ (−q−1,α1)
n = 3n(g1, . . . , gn−1)

·

(
α2 + α1q−(n−2)

[n − 1]q −

n−1∑
i=0

(−1)i q−i g0 . . . gi

)
,

(2-29) Ẽ (q,α2)
n = Ẽ (q,α2)

n−1

(
(1 − q2)(1 + qgn−1 + · · · + qn−2gn−1 . . . g2)

+ qn−1gn−1 . . . g1(1 − α−1
1 g0)

)
,

with the convention that Ẽ (q,α2)

1 = E (q,α2)

1 = (1 − α−1
1 g0).

Proof. Step 1. First we prove (2-26). Denote x = −q−1 and

X0
n = (1 − xn−1 α−1

2 g0 g1 . . . gn−1)(1 − xn−2α−1
2 g0 g1 . . . gn−2) . . . (1 − α−1

2 g0).

Recall from (2-11) that we have

E (x,α1)
n = 3n · X0

n, 3n = 3x
n(g1, . . . , gn−1).

We use induction on n. For n = 2, the formula is easy to check by direct calculation.
We write the definition of E (x,α1)

2 and use the defining relation of An to replace
g0 g1 g0 g1. Now, let n ≥ 3 and write the above formula as

(2-30) E (x,α1)
n = 3n · (1 − xn−1 α−1

2 g0 g1 . . . gn−1) X0
n−1.
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Note that

3n = A·3x
n−1(g1, . . . , gn−2)= B ·3x

n−1(g2, . . . , gn−1) for some A, B ∈ Hα1,α2,n.

Besides, we have

3x
n−1(g2, . . . , gn−1) g0 g1 . . . gn−1 = g0 g1 . . . gn−13

x
n−1(g1, . . . , gn−2)

using the braid relations. Therefore, in (2-30), we can bring 3x
n−1(g1, . . . , gn−2) in

front of X0
n−1 and thus use the induction hypothesis. At this point, we have

(2-31) E (x,α1)
n = γn−13n · (1 − xn−1 α−1

2 g0 g1 . . . gn−1)

·

(
α2 + α1q−(n−3)

[n − 2]q −

n−2∑
i=0

x i g0 . . . gi

)
,

with the coefficient γn−1 given by the induction hypothesis. Now we are going to
use the defining relation of An in the following form:

(1 − q−1 g1) g0 g1 g0 = (1 − q−1 g1)(qα2
1 − qα1 g0 + α1 g0 g1)

and the fact that 3n = C · (1−q−1 g1) for some C ∈ Hα1,α2,n to make the following
calculation, recalling that 3n gk = x3n for k = 1, . . . , n − 1:

3n · g0 g1 . . . gn−1

n−2∑
i=0

x i g0 g1 . . . gi

= 3n · (qα2
1 − qα1 g0 + α1 g0 g1) g2 . . . gn−1

n−2∑
i=0

x i g1 . . . gi

= 3n · (xn−2qα2
1 − xn−2qα1 g0 + α1 g0 g1 . . . gn−1)

n−2∑
i=0

x i g1 . . . gi

= 3n ·

(
q−(n−3)xn−2α2

1[n − 1]q

+ q−(n−2)α1[n − 1]q g0 g1 . . . gn−1 − xn−2qα1

n−2∑
i=0

x i g0 g1 . . . gi

)
.

We have used the braid relations to move g1 . . . gi through g0 g1 . . . gn−1 (getting
g2 . . . gi+1), and that

∑n−2
i=0 x i g1 . . . gi = q−(n−2)

[n − 1]q when all g’s are replaced
by x = −q−1.

It remains only to use this formula in (2-31) and to collect the various terms.
Omitting γn−13n , one finds directly that the coefficient in front of g0 g1 . . . gi

when i < n − 1 is −x i (1 − q−2(n−2)α1/α2). Then easy manipulations give that the
coefficients in front of 1 and in front of g0 g1 . . . gn−1 are respectively,(

1 − q−2(n−2) α1

α2

)
(α2 + α1q−(n−2)

[n − 1]q) and −

(
1 − q−2(n−2) α1

α2

)
xn−1.

This concludes the verification of (2-26).
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Step 2. Now we prove (2-27) with similar methods, using induction on n. Once
again, the case n = 2 is directly verified using the explicit expression for E (q,α2)

2
and the defining relation of An to replace g0 g1 g0 g1. For n ≥ 3, the recursive
formula (2-10) allows us to write

(2-32) E (q,α2)
n = E (q,α2)

n−1

(
1 +

n−1∑
i=1

qn−i gn−1 . . . gi − qn−1 α−1
1 gn−1

. . . g1 g0

(
1 +

n−1∑
i=1

q i g1 . . . gi

))
.

Then, we use in (2-32) the defining relation of An , which can be rewritten as

(−α−1
1 )(1 − α−1

1 g0) g1 g0 g1 = q(1 − α−1
1 g0)(−q + g1 − α−1

1 g1 g0),

together with the fact that E (q,α2)

n−1 = C · (1 − α−1
1 g0) for some C ∈ Hα1,α2,n to get

(2-33) E (q,α2)
n = E (q,α2)

n−1

(
1 +

n−1∑
i=2

qn−i gn−1 . . . gi + qn−1gn−1 . . . g1(1 − α−1
1 g0)

+ qn+1gn−1 . . . g2(−q + g1 − α−1
1 g1 g0)

·

(
1 +

n−1∑
i=2

q i−1g2 . . . gi

))
.

Recalling that E (q,α2)

n−1 gk = q E (q,α2)

n−1 for k = 1, . . . , n − 2, we can use the braid
relations and the Hecke relation to obtain

E (q,α2)

n−1 gn−1 . . . g2

(
1+

n−1∑
i=2

q i−1g2 . . . gi

)
= E (q,α2)

n−1 qn−2
(

1+

n−1∑
i=2

qn−i gn−1 . . . gi

)
,

E (q,α2)

n−1 gn−1 . . . g2 g1(1 − α−1
1 g0)

(
1 +

n−1∑
i=2

q i−1g2 . . . gi

)
= E (q,α2)

n−1 qn−2
[n − 1]q gn−1 . . . g2 g1(1 − α−1

1 g0).

Replacing these results in (2-33) and combining terms together, it is found that

E (q,α2)
n = E (q,α2)

n−1 qn−1
[n]q

(
(1 − q2)

(
1 +

n−1∑
i=2

qn−i gn−1 . . . gi

)
+ qn−1gn−1 . . . g1(1 − α−1

1 g0)

)
.

The proof is completed by using the induction hypothesis on E (q,α2)

n−1 . □
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3. The one-boundary Temperley–Lieb algebra and its glN -generalisations

Let N ≥ 2. In this section we define the symmetric one-boundary N -centraliser
algebras Cn,N as quotients of the algebra An . The meaning of this definition
will be clear from the point of view of representation theory, and will result in a
natural description of the semisimple representation theory of Cn,N . Besides, our
motivation and the origin of the terminology comes from the use we will make of
the algebras Cn,N to describe Uq(glN )-centralisers in Section 5.

We will then study in details the case N = 2, showing that we recover the generic
3-parameter one-boundary Temperley–Lieb algebra, for which we will describe a
basis using the signed permutations from the preceding section.

3A. Definition. We have defined in (2-8) the q-antisymmetriser 3
−q−1

N+1 (g1, . . . , gN )

of the usual Hecke algebra generated by g1, . . . , gN . From Section 2D we have

(3-1) Ẽ (−q−1,α1)
n

= 3n(g1, . . . , gn−1) ·

(
α2 + α1q−(n−2)

[n − 1]q −

n−1∑
i=0

(−1)i q−i g0 . . . gi

)
,

which is a renormalisation in An of the quasiidempotent Ẽ (−q−1,α1)
N . We propose:

Definition 3.1. We define the symmetric one-boundary N -centraliser algebra Cn,N

to be the quotient of the algebra An by the relations

Ẽ (−q−1,α1)
N = 0,(3-2)

3
−q−1

N+1 (g1, . . . , gN ) = 0.(3-3)

It is understood that Cn,N = An when n < N .

Semisimple representation theory. Here we extend the algebra Cn,N over the field
of fractions F and denote it FCn,N . The description below is also valid for speciali-
sations of the parameters satisfying the semisimplicity conditions for Hα1,α2,n in
Remark 2.5.

Proposition 3.2. The algebra FCn,N is semisimple with the following set of irre-
ducible representations

Irr(FCn,N ) = {V(λ,µ) | (λ, µ) ∈ Par2(n) with ℓ(λ) ≤ N − 1 and ℓ(µ) ≤ 1}.

Proof. In the algebra Cn,N , we have

E (−q−1,α1)
N = 0 and E (−q−1,α2)

2 = 0.

Reproducing the same reasoning as in the preceding section before Proposition 2.4,
we find that cancelling these two elements kills the irreducible representation V(λ,µ)
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of FHα1,α2,n if and only if either λ has strictly more than N − 1 rows or µ has
strictly more than one row.

It remains to argue that, in the remaining irreducible representations the last rela-
tion (3-3) cancelling the q-antisymmetriser in N generators g1, . . . , gN is satisfied.
This can be checked rather directly, using the explicit description of the irreducible
representations of Hα1,α2,n [3; 12; 21] and using the same sort of methods than
those used in [7] for the q-symmetriser.

Otherwise, note that the claim is equivalent to the fact that the one-dimensional
representation of FHN+1 given by g1, . . . , gN 7→ −q−1 (that is, indexed by a
one-column partition) does not appear when we restrict to FHN+1 the irreducible
representations of FHα1,α2,N+1 indexed by bipartitions (λ, µ) with ℓ(λ) ≤ N − 1
and ℓ(µ) ≤ 1. These restrictions are expressed in terms of Littlewood–Richardson
coefficients (see, e.g., [5; 24]). This implies in particular the easy claim above since,
by what is called the Pieri rule, the Littlewood–Richardson coefficient dν

λ,µ is 0
with λ and µ as above and ν the one-column partition of length N + 1. □

The Bratteli diagram for the algebras FCn,N is thus obtained from the Bratteli
diagram for the algebras FAn given before, removing all bipartitions with N rows
or more in the first component. The dimension of FCn,N is then calculated as

dim(FCn,N ) =

n∑
i=0

(
n
i

)2 ∑
λ⊢i

ℓ(λ)<N

d2
λ .

For N = 2, the algebra FCn,2 will be studied in details in the next subsection.
For N = 3, the sum of the squares of dλ’s in the formula above is the Catalan

number 1
i+1

(2i
i

)
. Moreover, the series of dimensions start with 1, 2, 7, 33, 183 and

is the series labelled A086618 in [26]. We note that, similarly to the situation
N = 2 discussed in Remark 3.6, the dimension of FCn,3 is the number of signed
permutations of {−n, . . . ,−1, 1, . . . , n} which are 4321-avoiding [9].

In general, we may ask whether the algebra Cn,N is free over the ring R and
we may look for a basis indexed by a natural subset of signed permutations, for
example, those avoiding certain patterns. This is what we are going to do in details
for N = 2 in the next subsection.

Remark 3.3. The representation theory shows that over F the relation (3-3) is
actually implied by the others. This is not true over R but this is also true in any
specialisation such that the algebra Hα1,α2,n is semisimple (Remark 2.5).

3B. The case N = 2 (the Temperley–Lieb situation). The definition of Cn,N can
be written slightly differently and more explicitly when N = 2.

Proposition 3.4. The algebra Cn,2 is the quotient of the algebra Hα1,α2,n by the
relations:
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g1 g0 g1 = q(α1 + α2)(q − g1) − q2g0 + q(g0 g1 + g1 g0),(3-4)

gi gi+1 gi = q3
− q2(gi + gi+1) + q(gi gi+1 + gi+1 gi ), i = 1, . . . , n − 2.(3-5)

Proof. Using Proposition 2.8, the first relation is obtained easily by writing explicitly
Ẽ (−q−1,α1)

2 = 0. The second relation for i = 1 is 3−q−1

3 (g1, g2) = 0. It implies, by
suitable conjugation, the second relations for any i ≥ 1. The last statement is that
(3-4) implies the defining relation of An:

g0 g1 g0 g1 =−q2α2
1 +qα2

1g1+q2α1 g0−qα1(g1 g0+g0 g1)+α1g1 g0 g1+qg0 g1 g0.

This is easy to see since multiplying (3-4) on the left or on the right by g0 gives

(3-6) g0 g1 g0 g1 = g1 g0 g1 g0 = qα1α2(q − g1) + qg0 g1 g0,

which, combined with (3-4), produces the desired relation. □

A Temperley–Lieb presentation. We make the slight change of generators as

(3-7) e0 := α2 − g0, ei := q − gi , i = 1, 2, . . . , n − 1.

Then it is an easy exercise to check that the algebra Cn,2 can be equivalently presented
as generated by ei for i = 0, 1, . . . , n − 1 with the defining relations

e2
i = (q + q−1) ei , 1 ≤ i ≤ n − 1,(3-8)

e2
0 = (α2 − α1) e0,(3-9)

ei ej = ej ei , |i − j | ≥ 2,(3-10)

ei ei±1 ei = ei , 1 ≤ i, i ± 1 ≤ n − 1,(3-11)

e1 e0 e1 = (q−1α2 − qα1) e1.(3-12)

We recover a three-parameter version of the one-boundary Temperley–Lieb algebra,
or blob algebra, see for example [8; 16; 18; 19; 20].

Semisimple representation theory. We take N = 2 in the Proposition 3.2.

Proposition 3.5. The algebra FCn,2 is semisimple with the following set of irre-
ducible representations:

Irr(FCn,2) = {V(λ,µ) | (λ, µ) ∈ Par2(n) and ℓ(λ), ℓ(µ) ≤ 1}.

The Bratteli diagram for the algebras FCn,2 is obtained from the Bratteli diagram
for the algebras Hα1,α2,n , where all bipartitions with more than one row in any
component are removed. One finds the Pascal triangle, whose beginning is given
here:
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(∅,∅) 1

(□ ,∅) (∅ ,□) 2

(□□ ,∅) (□ ,□) (∅ ,□□) 6

(□□□ ,∅) (□□ ,□) (□ ,□□) (∅ ,□□□) 20

The dimension of FCn,2 is then easily calculated:

(3-13) dim(FCn,2) =

n∑
i=0

(
n
i

)2

=

(
2n
n

)
.

An R-basis of Cn,2. Now we produce an R-basis of Cn,2 in terms of signed permu-
tations, and also explicitly in terms of the generators.

We consider the signed permutations with the following avoiding patterns:
(±1, −2) and (±3, 2, ±1). This means that in the word b1 b2 . . . bn giving the
signed permutations (bi ∈ {±1, . . . ,±n} is the image of i), we never have:

• For i < j : bj < 0 and |bi | < |bj | (in words, a negative number bj is never
preceded by a smaller number when ignoring signs).

• For i < j < k: bj > 0 and |bi | > bj > |bk | (in words, a positive number is never
in the middle of a decreasing sequence of length 3, when ignoring signs).

We denote by Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) the set of signed permutations with
these avoiding patterns. These elements are called fully commutative top elements
in [28]. For example, 32̄451̄ is in this set for n = 5, while 32̄5̄41 is not for three
reasons: the subsequences 35̄, 2̄5̄ and 5̄41.

In terms of the standard basis elements (2-6), it is proved in [28, Corollary 5.6]
that the set gω with ω ∈ Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) corresponds to all elements
of the form

(3-14) [n1, m1][n2, m2] . . . [nr , mr ],

with
{

0 ≤ n1 < n2 < · · · < nr ≤ n − 1 and mi ≤ ni ,

0 = m1 = · · · = ms < ms+1 < · · · < mr .

The cardinality of the set Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) has been calculated in [28,
Proposition 5.9] or [19, Appendix B], and it is found that

(3-15) |Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄)| =

(
2n
n

)
.
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Remark 3.6. An alternative description of Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) is as fol-
lows. A signed permutation is in particular a permutation of {−n, . . . ,−1, 1, . . . , n}.
For these permutations on 2n elements, there is the usual meaning of being
321-avoiding (no strictly decreasing subsequence of length 3 in the sequence
of images b−n . . . b−1 b1 . . . bn). We leave to the reader to check that the set
Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) coincides with the set of signed permutations which
are 321-avoiding as permutations of {−n, . . . ,−1, 1, . . . , n}. See [9] for a proof
that this latter set is indeed of cardinal

(2n
n

)
.

Theorem 3.7. The algebra Cn,2 is free over R with basis consisting of elements
in (3-14), that is,

(3-16) {gω | ω ∈ Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄)}.

One can replace each generator gi by ei in the expressions in (3-14) and this
clearly also gives a basis of Cn,2. This basis can be found in [19, Appendix B].

Proof. We proceed similarly to the proof of Theorem 2.6. All signed permutations
ω ∈ Bn with length ℓ(ω) < 3 avoid the patterns in (3-16). It is shown in [28]
(see Theorem 4.1 and Corollary 5.6) that an element ω which does not avoid the
patterns of (3-16) contains in a reduced expression s1 s0 s1 or si si+1 si for i ≥ 1.
This means that the defining relations (3-4) and (3-5) can be used to express gω

in terms of elements of smaller length. Using induction on the length, we can
therefore conclude that (3-16) is a spanning set for Cn,2 over R. The rest follows by
comparing the cardinality (3-15) with the dimension (3-13) of FCn,2. □

3C. Quasiidempotents in the one-boundary Temperley–Lieb algebra Cn,2. Let

n ≥ 2. Among the four central quasiidempotents of Hα1,α2,n , the two E (−q−1,αi )
n are

equal to 0 in Cn,2. The one with α2 was cancelled to define An , and the one with α1

was cancelled to define Cn,2. So only the following two remain:

E (q,α1)
n , E (q,α2)

n .

It turns out that the expression of these two remaining quasiidempotents in Cn,2

simplifies compared to their original definition in Hα1,α2,n and a global factor
appears, as shown in the following result. Note that the following result was already
true in An only for E (q,α2)

n (Proposition 2.8). So the novelty here is that it becomes
also true for E (q,α1)

n in Cn,2. Below, we use again the notation modulo 2 for the
indices of αb.

Proposition 3.8. Let n ≥ 2 and b ∈ {1, 2}. In Cn,2 we have

(3-17) E (q,αb)
n = q

1
2 (n(n−1))

[n]q ! Ẽ (q,αb)
n ,
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where the renormalised element is given recursively by

(3-18) Ẽ (q,αb)
n = Ẽ (q,αb)

n−1

(
(1 − q2)(1 + qgn−1 + · · · + qn−2gn−1 . . . g2)

+ qn−1gn−1 . . . g1(1 − α−1
b+1 g0)

)
,

with the convention that Ẽ (q,αb)

1 = E (q,αb)

1 = (1 − α−1
b+1 g0).

Proof. The case n = 2 is easily verified by a direct calculation in C2,2. Now suppose
that the formula (3-17) is true for some n ≥ 2. To show that it is true for n + 1,
one can use the recurrence relation (2-10) for E (q,αb)

n+1 in Hα1,α2,n+1 and then replace
g1 g0 g1 using the defining relation (3-4) of Cn+1,2. With the help of the property
E (q,αb)

n g0 = αb E (q,αb)
n , the result simplifies to

E (q,αb)

n+1 = E (q,αb)
n

(
1+qgn +· · ·

+qn−1gn . . . g2 −qn+3gn . . . g2(1+qg2 +· · ·+qn−1g2 . . . gn)

+qngn . . . g1(1+q2
+q3g2 +· · ·+qn+1g2 . . . gn)(1−α−1

b+1 g0)
)
.

The remaining terms can be simplified using the Hecke relation (2-4), the braid
relations (2-1) and (2-3), and the property E (q,αb)

n gi = q E (q,αb)
n for i = 1, . . . , n −1

to arrive at

(3-19) E (q,αb)

n+1 = E (q,αb)
n qn

[n + 1]q
(
(1 − q2)(1 + qgn + · · · + qn−1gn . . . g2)

+ qngn . . . g1(1 − α−1
b+1 g0)

)
.

The proof is completed by using the induction hypothesis. □

4. The fused Hecke algebra

Let k ≥ 1. We briefly recall the definition of the fused Hecke algebra Hk,n in
the particular case where only the k first strands are fused, and refer to [6; 7; 23]
for more details. The fused Hecke algebra Hk,n is defined for a nonzero complex
number q satisfying

(4-1) q2i
̸= 1, i = 1, . . . , k,

since denominators of the form q2i
− 1, with i = 1, . . . , k, appear in its definition.

Equivalently, we will consider Hk,n to be defined over the ring generated by C[q±1
]

and (q2i
− 1)−1 for i = 1, . . . , k:

(4-2) C(k)
[q±1

] = C[q±1, (q2
− 1)−1 . . . (q2k

− 1)−1
].

Remark 4.1. The fused Hecke algebra can also be defined for q =±1 (and is called
the algebra of fused permutations in [7]), but we will not consider this possibility
here, since this would require to replace from the beginning the algebra Hα1,α2,n of
Section 2 by a different algebra.
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4A. Definition of Hk,n. Let n ≥ 0. We denote Hk+n the Hecke algebra associated
to the symmetric group Sk+n , with generators σi , i = 1, . . . , k+n−1. Its definition
was given at the end of Section 2A, in terms of generators gi ’s, but we change the
names of the generators to avoid any confusion. We define it over C(k)

[q±1
].

The standard basis elements of Hk+n are denoted σω, where ω ∈ Sk+n . Recall
that σω = σi1 . . . σil if ω = si1 . . . sil is a reduced expression in terms of the adjacent
transpositions si = (i, i + 1).

The (normalised) q-symmetriser of the algebra Hk is

(4-3) Pk =

∑
ω∈Sk

qℓ(ω)σω∑
ω∈Sk

q2ℓ(ω)
=

q−k(k−1)/2

[k]q !

∑
ω∈Sk

qℓ(ω)σω,

and is well defined over the ring C(k)
[q±1

], see (4-2). We see the q-symmetriser Pk

as an element of Hk+n through the natural embedding of Sk in Sk+n , where Sk

acts on the first k letters.
The q-symmetriser is a primitive central idempotent of Hk such that we can

write Pk σi = σi Pk = q Pk for i = 1, . . . , k − 1 and Pk Pi = Pi Pk = Pk for all i ≤ k.
It satisfies the recursive formula

(4-4) qk−1
[k]q Pk = Pk−1(1+qσk−1+q2 σk−1 σk−2+· · ·+qk−1 σk−1 σk−2 . . . σ1).

Definition 4.2. The fused Hecke algebra Hk,n is the algebra of the form Pk Hk+n Pk .

A basis of the algebra Hk,n is indexed by the double cosets Sk\Sk+n/Sk of the
subgroup Sk in Sk+n . In each of these cosets, there is a unique representative of
minimal length (see [11]), and we will identify the set of double cosetsSk\Sk+n/Sk

with the set of minimal-length representatives. The standard basis of Hk,n is

{Pk σω Pk | ω ∈ Sk\Sk+n/Sk}.

The dimension of the algebra Hk,n is the number of double cosets in Sk\Sk+n/Sk ,
or of what were called fused permutations in [7]. It is the number of ways to connect
a row of n + 1 dots to another such row, with the requirement that k edges start
and k edges arrive at the first dot of each row, while the usual rule of a single edge
at each dot applies for the other dots. It will be convenient to draw and to refer to
the first dot as an ellipse. So from now on, we have two lines each consisting of
one ellipse followed by n dots.

To count such fused permutations, one has first to choose how many edges from,
say, the top ellipse will go to a dot. This is choosing i ∈ {1, 2, . . . , min{k, n}}. Then
one needs to chose i bottom dots among n where to put these i edges and i top dots
among n which will be connected to the bottom ellipse. Finally, one can choose an
arbitrary permutation diagram between the remaining two lines of n − i dots which
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are not connected to the ellipses. It follows from this discussion that

(4-5) dim(Hk,n) =

min{k,n}∑
i=0

(n − i)!
(

n
i

)2

.

For any word x in the generators σi of Hk+n and their inverses σ−1
i , the diagram-

matic representation of the element Pk x Pk of Hk,n is obtained by drawing the usual
braid-like picture for x between two rows of k + n dots, and then fusing in one
large dot (or ellipse) the k first top dots and similarly for the k first bottom dots.
For example, we define the following elements of Hk,n:

Si := k

1

. . .

i − 1 i i + 1 i + 2

. . .

n

(4-6)

S0 := k

1 2

. . .

n

(4-7)

T := k

1 2

. . .

n

(4-8)

where i = 1, 2, . . . , n − 1, which algebraically correspond to

Si = Pk σk+i Pk = Pk σk+i = σk+i Pk,(4-9)

S0 = Pk σk σk−1 . . . σ2 σ 2
1 σ2 . . . σk−1 σk Pk,(4-10)

T = Pk σk Pk .(4-11)

We have used that σk+i commutes with Pk when i ≥ 1.

Eigenvalues of the generator S0. We will need to know the characteristic equation
satisfied by S0 in order to relate the algebra Hk,n to a cyclotomic quotient Hα1,α2,n

for the correct values of α1, α2.

Proposition 4.3. In Hk,n we have

(4-12) (S0 − q2k Pk)(S0 − q−2 Pk) = 0.

Proof. First, we show the following relation between S0 and T :

(4-13) S0 = (q − q−1) qk−1
[k]q T + Pk .

To check this, we start with the defining formula for S0 and use the quadratic relation
for σ1. We find

S0 = (q − q−1) Pk σk σk−1 . . . σ2 σ1σ2 . . . σk−1 σk Pk

+ Pk σk σk−1 . . . σ 2
2 . . . σk−1 σk Pk .
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Using the braid relations and the property of Pk , the first term becomes

(q − q−1) Pk σ1 σ2 . . . σk−1 σk σk−1 . . . σ2 σ1 Pk = (q − q−1) q2(k−1) Pk σk Pk

= (q − q−1) q2(k−1) T .

We proceed similarly with the remaining term, which ultimately gives (4-13).
The proof of the proposition is concluded by calculating the eigenvalues of T .

We have

(4-14) (T − q Pk)(T + q−k
[k]

−1
q Pk) = 0.

To check this equality, we first use the recurrence relation for Pk to write

σk Pk σk =q−k+1
[k]

−1
q Pk−1 σk(1+qσk−1+q2 σk−1 σk−2+· · ·+qk−1 σk−1 . . . σ1) σk .

Then we proceed as follows, using Pk Pk−1 = Pk , the braid relations and σi Pk = q Pk

if i < k:

T 2
= Pk σk Pk σk Pk = q−k+1

[k]
−1
q Pk(1+ (q +q3

+q5
+· · ·+q2k−1

−q−1) σk) Pk

= q−k+1
[k]

−1
q Pk + (q −q−k

[k]
−1
q )T .

This concludes the verification. □

The semisimple representation theory of Hk,n . Here we work over C(q) (or we
assume that q2 is not a root of unity of order ≤ k + n).

The algebra C(q)Hk,n is semisimple and its irreducible representations were
described in [7]. They are indexed by partitions λ ⊢ k + n such that λ1 ≥ k (that is,
the first line of λ contains at least k boxes). For example, for n = 0, there is a single
irreducible representation, indexed by a line of k boxes. The branching rules are
given by inclusion of partitions. For example, when k = 3, the beginning of the
Bratteli diagram is as follows:

1

1 1

1 2 1 1

1 3 3 1 3 2 1

n = 0

n = 1

n = 2

n = 3

We have shaded the three fixed boxes in the first row of each partition. Next to
each partition is the dimension of the corresponding irreducible representation.
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We emphasise that the dimension is not the number of standard tableaux strictly
speaking, but is the number of standard fillings of the nonshaded boxes by 1, . . . , n.

It is easy to see that, when 2 ≤ n ≤ k, there are three one-dimensional represen-
tations for Hk,n . They are given by the following partitions:

λ = (k + n) : S0 7→ q2k, Si 7→ q,(4-15)

λ = (k, 1n) : S0 7→ q−2, Si 7→ −q−1,(4-16)

λ = (k, n) : S0 7→ q−2, Si 7→ q,(4-17)

where we give the associated values of the elements S0 and Si (i ≥ 1). These are
easily obtained from the description in [7]. The case of λ = (k + n) is immediate
and the level n = 1 together with the given branching rules give all the other values
of S0. Calculating the eigenvalue of Si is also immediate from the description in [7]
since Si = Pk σk+i with σk+i commuting with Pk .

When n > k, there is only two remaining one-dimensional representations, the
one corresponding to λ = (k, n) being removed from the list (it would not make
sense for n > k).

Remark 4.4. Let n ≤ k. Anticipating a little bit, the algebra Hk,n is going to be
obtained (below) as a specialisation of the parameters α1, α2 of the algebra An .
This specialisation is semisimple over C(q), and thus we have a bijection between
the irreducible representations of C(q) Hk,n and the representations described in
Section 2:

Irr(FAn) = {V(λ,µ) | (λ, µ) ∈ Par2(n) with ℓ(µ) ≤ 1}.

The bijection maps (λ, µ) to the partition made of a first line of k + |µ| boxes,
and with the diagram of λ for the remaining lines. This is well defined since n, and
in turn |λ|, is less or equal to k.

If n > k, the specialisation of An is not semisimple anymore and the algebra Hk,n

will be obtained as a quotient of this nonsemisimple specialisation of An . Therefore
we cannot immediately identify the irreducible representations of Hk,n with a subset
of the irreducible representations of An as soon as n > k.

4B. An algebraic description of Hk,n. In this section, we use the algebra An from
Section 2 to obtain an algebraic presentation of the fused Hecke algebra Hk,n . We
are going to work with the following specialisation of the parameters α1, α2:

(4-18) α1 = q−2, α2 = q2k .

This is motivated by Proposition 4.3 since these two values are the eigenvalues of
the element S0. For these specific values, we have the following factorisation result
for one of the quasiidempotents of An , as a corollary of our results in Section 2D.
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Corollary 4.5. In Ak+1, when (α1, α2) are specialised as in (4-18), the element
E (q,α1)

k+1 factorises as
E (q,α1)

k+1 = [k + 1]q E ′(q,α1)

k+1 ,

where E ′(q,α1)

k+1 is in Ak+1 with coefficients in C[q±1
].

Proof. It is clear that E (q,α1)

k+1 − E (q,α2)

k+1 is divisible by (α1 − α2). With the given
specialisation, this means that it is divisible by q2(k+1)

−1 and thus by [k+1]q . Now
Proposition 2.8 shows that E (q,α2)

k+1 is also divisible by [k + 1]q (actually, already
over R). Thus we get the desired statement. □

This allows us to define, in the specialisation of Ak+1, the following element
with coefficients in C[q±1

]:

E ′(q,α1)

k+1 :=
1

[k + 1]q
E (q,α1)

k+1 .

Definition 4.6. The algebra A(k)
n is defined over C(k)

[q±1
] as the specialisation

of An corresponding to (4-18) with the additional defining relation if n > k:

(4-19) E ′(q,α1)

k+1 = 0.

Note that it is not clear at once if over C(q) the algebra A(k)
n is semisimple for

all n ≥ 0 since the specialisation (4-18) falls into the nonsemisimple regime (see
Remarks 2.5 and 4.4). However, note that the specialisation is semisimple if n ≤ k.
Moreover, for n >k, we have taken a quotient of the nonsemisimple specialisation, so
it may well be that we obtain again something semisimple. Actually, the algebra A(k)

n

over C(q) will turn out to be semisimple as a consequence of its isomorphism with
the fused Hecke algebra Hk,n which is known to be semisimple [7].

Remark 4.7. The additional relation when n ≥ k + 1 is the analogue in the
Hecke case of the additional relation that is needed to pass from the one-boundary
Temperley–Lieb algebra to the boundary seam algebra. We refer to [19] and [17]
where this additional relation was interpreted in terms of a quasiidempotent of the
one-boundary Temperley–Lieb algebra (see also Section 5C).

A spanning set of A(k)
n . First, we find a spanning set for A(k)

n . Consider the signed
permutations with the following avoiding patterns: 1̄2̄ and k + 1 k̄ . . . 1̄. We denote
by Bn(1̄2̄, k + 1 k̄ . . . 1̄) the subset of these signed permutations.

The first condition defining Bn(1̄2̄, k + 1 k̄ . . . 1̄) is the same as the one giving
the basis of An in Theorem 2.6. The second one adds the condition that in the
word b1 b2 . . . bn giving the signed permutations, we never have a strictly decreasing
sequence of length k + 1 of barred numbers. Both together mean that all barred
numbers appear in decreasing orders, and that at most k barred numbers are present.
So to count the number of elements in Bn(1̄2̄, k + 1 k̄ . . . 1̄), we reason as follows
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on the word b1 b2 . . . bn giving the signed permutation. We choose i numbers in
{1, . . . , n} that will be barred, with the condition that i ≤ k; then choose i positions
among n to place these barred numbers in decreasing order; and finally we choose
a permutation of the remaining n − i numbers to be placed (not barred) in the
remaining n − i positions. This gives

(4-20) |Bn(1̄2̄, k + 1 k̄ . . . 1̄)| =

min(k,n)∑
i=0

(
n
i

)2

(n − i)!.

Note that the above discussion shows the alternative description

(4-21) Bn(1̄2̄, k + 1 k̄ . . . 1̄) = Bn(1̄2̄) ∩ {ω ∈ Bn | ℓ0(ω) < k + 1}.

Let us emphasise that if n ≤k, then the set Bn(1̄2̄, k + 1 k̄ . . . 1̄) is the same as Bn(1̄2̄)

since there are no signed permutations in Bn with more than k barred numbers.

Proposition 4.8. The following set is a spanning set of A(k)
n :

(4-22) {gω | ω ∈ Bn(1̄2̄, k + 1 k̄ . . . 1̄)}.

Proof. Recall the basis {gω | ω ∈ Bn(1̄2̄)} of An from Theorem 2.6. There is a
unique basis element containing n occurrences of g0 and all the others contain
strictly less. In other words, there is a unique element ω ∈ Bn(1̄2̄) with maximal ℓ0,
which is ℓ0(w) = n. This element corresponds to the sequence n̄, n − 1, . . . , 1̄, and
the corresponding basis element is

(4-23) g0 · g1 g0 · . . . · gn−1 . . . g1 g0.

Lemma 4.9. The element (4-23) appears with coefficient (−1)n α−n
2 q(n−1)n

[n]q !

when E (q,α1)
n is expanded in the basis {gω | ω ∈ Bn(1̄2̄)} of An .

Proof. The proof is by induction on n. The statement is immediate when n = 1.
Then we use the recurrence formula for the quasiidempotent:

E (q,α1)

n+1 = E (q,α1)
n

(
1+

n∑
i=1

qn−i+1gn . . . gi −α−1
2 qngn . . . g1 g0

(
1+

n∑
i=1

q i g1 . . . gi

))
.

Using the induction hypothesis and keeping the only terms which can contribute to
the relevant coefficient, we have to study

−γn α−1
2 qng0 · g1 g0 · . . . · gn−1 . . . g1 g0 · gn . . . g1 g0

(
1 +

n∑
i=1

q i g1 . . . gi

)
,

where γn is the coefficient given by the induction hypothesis. For dealing with
the terms in the sum, note that they produce the appearance of g0 g1 g0 g1 (the
leftmost g0 is the g0 just to the left of gn). So we can use the defining relation (2-19)
of An and keep only the term not reducing the occurrences of g0. This amounts to
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simply replacing g0 g1 g0 g1 by qg0 g1 g0. Thus all g1’s in the sum are replaced by q .
Similarly, if an element gi hits the expression on the left of the parenthesis, it will
move through gn . . . g1 g0, gn−1 . . . g1 g0, . . . , becoming successively gi−1, gi−2

and so on until it becomes g1 and hits again a g0 g1 g0. The same reasoning as before
allows to replace it by q . So all generators g1, . . . , gn appearing in the parenthesis
are replaced by q and we are left with (1 + q2

+ · · · + q2n) = qn
[n + 1]q . □

The lemma implies that in the renormalised quasiidempotent E ′(q,α1)

k+1 , the coeffi-
cient in front of the element (4-23) with n = k + 1 is

(−1)k+1 α
−(k+1)
2 qk(k+1)

[k]q !,

since we have divided E (q,α1)

k+1 by [k + 1]q . This coefficient is invertible in the ring
C(k)

[q±1
].

Now we will show that every element gω with ℓ0(ω) ≥ k + 1 can be rewritten
in A(k)

n in terms of elements gω′ with ℓ0(ω
′) < k + 1. Indeed, if the number of

occurrences of g0 is at least k + 1 then write gω in the standard form (2-6) and pick
k + 1 consecutive occurrences of g0. Then using the braid relations we have

g j · gi . . . g1 g0 = gi . . . g1 g0 · g j+1 for all 0 < j < i.

This allows to find a subexpression of gω:

gi1 . . . g1 g0 · gi2 . . . g1 g0 · . . . · gik+1 . . . g1 g0, i1 < i2 · · · < ik+1.

Moving some gi ’s to the left using commutation relations, we see at once that the
element (4-23) with n = k + 1 appears. Thanks to the lemma and its consequence
stated just after, we can use the relation E ′(q,α1)

k+1 = 0 of A(k)
n to rewrite this element

in terms of gω′ with ℓ0(ω
′) < k + 1. Thus we have strictly reduced the number of

occurrences of g0, and by induction we conclude that A(k)
n is spanned by elements gω′

with ℓ0(ω
′) < k + 1.

Now if an element ω with ℓ0(ω) < k + 1 has the pattern 1̄2̄ then as shown in the
proof of Theorem 2.6 we can use the defining relation of An allowing to rewrite
g0 g1 g0 g1 to write gω in terms of gω′ with ω′

∈ Bn(1̄2̄). In doing so, note that the
0-length ℓ0 never increases since the relation we use rewrites g0 g1 g0 g1 in terms
of elements with 2 occurrences of g0 or less. □

Isomorphism theorem. We are now ready to state the main result of this section.

Theorem 4.10. For any n, an algebra isomorphism from A(k)
n to Hk,n is given by

(4-24) φ : A(k)
n → Hk,n, 1 7→ Pk, gi 7→ Si , i = 0, 1, . . . , n − 1.

Corollary 4.11. Over C(k)
[q±1

], the following set is a basis of A(k)
n and its image

by φ is a basis of Hk,n:

{gω | ω ∈ Bn(1̄2̄, k + 1 k̄ . . . 1̄)}.
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Proof. This follows from the fact that this set is a spanning set (Proposition 4.8)
with cardinality given by (4-20), which is equal to the dimension of Hk,n , and from
the isomorphism of A(k)

n with Hk,n . □

4C. Proof of Theorem 4.10.

The morphism property of φ. By definition, the projector Pk acts as the unit element
in Hk,n . We must verify that the elements Si ∈ Hk,n for i = 0, 1, . . . , n satisfy the
same defining relations (2-1)–(2-5), (2-19) and (4-19) as the elements gi ∈ A(k)

n .
Relations (2-1), (2-3) for i, j ̸= 0 and (2-4) directly follow from the definition of the
fused Hecke algebra. It is also readily apparent that (2-3) for i = 0 is verified, since
S0 and S j with j ≥ 2 are elements that each act on different strands. In diagrams,
we have (ignoring unaffected strands in the illustrations for simplicity):

(4-25)
k

1 i i + 1

k

. . . = k

1 i i + 1

. . . =

k

1 i i + 1

k

. . .

Consider now relation (2-2). We start by computing the following (again ignoring
unaffected strands):

(4-26) S1S0 S1 =

k

1 2

k

k

= k

1 2

Now, in order to show that (2-2) holds for the images, one must show that S0

commutes with S1S0 S1. This is seen using the isotopy of diagrams and the fact
that an ellipse can be replaced by a sum of braids acting on the k fused strands.
This means that the strand labelled 2, which encircles both the strand 1 and the k
fused strands, can be moved up or down around any middle ellipse and around all
encircled strands, and hence the commutativity. In diagrams, we have

(4-27)
k

1 2

k
= k

1 2

=

k

1 2

k

The quadratic relation (2-5) for g0 is preserved thanks to Proposition 4.3.
Then to show that relation (2-19) is preserved, we start with a lemma.
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Lemma 4.12. For k any positive integer, the following relations hold:

T S1T S1 − qT S1T = q1−k
[k]

−1
q (S1T − q−1S1T S1),(4-28)

S1T S1T − qT S1T = q1−k
[k]

−1
q (T S1 − q−1S1T S1).(4-29)

Proof. Similarly as has been done before in this section, one can use the algebraic
expressions of T and S1, the properties of the projector Pk as well as the braid
relations to show that

(4-30) T S1T = Pk σk σk+1 Pk σk Pk

= q1−k
[k]

−1
q (S1T S1 + qk−1

[k − 1]q Pk σk σk−1 σk+1 σk Pk).

Multiplying the previous equation by S1 on the right, and then using the Hecke
relation and braid relations, it is found that

(4-31) T S1T S1

= q1−k
[k]

−1
q

(
(q − q−1)S1T S1 + S1T + qk

[k − 1]q Pk σk σk−1 σk+1 σk Pk
)
.

So, combining the two previous results, relation (4-28) is found. To obtain (4-29),
multiply by S1 on the left instead. □

One can now use (4-13) to write equation (4-28) in terms of S0, which gives

(4-32) S0 S1S0 S1

= −q−2 Pk + q−3S1 + S0 − q−1(S0S1 + S1S0) + q−2S1S0 S1 + q S0 S1S0.

The previous relation corresponds to (2-19) with parameters α1 and α2 as in (4-18).
Finally, when n > k, we must show that the additional relation (4-19) is satisfied

in Hk,n . If E ′(q,α1)

k+1 were nonzero, this would imply that this element would also
be nonzero in the algebra Hk,n extended over C(q). This in turn would imply the
existence of a one-dimensional representation S0 7→ q−2 and Si 7→ q, i ≥ 1. We
already discussed the nonexistence of such a one-dimensional representation around
equations (4-15)–(4-17).

Surjectivity of φ. For i = 1, 2, . . . , min{k, n}, we define the element Ui ∈ Hk,n

which consists of the diagram where the i last strands of the top ellipse go out to
the i first bottom circles (without crossing each other), and similarly for the strands
of the bottom ellipse. It is illustrated as

(4-33) Ui := . . .

i + 1

. . .

n1 i − 1 i

, i = 1, 2, . . . , min{k, n}.
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Here it is understood that there are k − i straight strands in the gray zone. If we
denote

(4-34) σk,i := σk σk+1 . . . σk+i−1,

then the algebraic expression of the element Ui is given by

(4-35) Ui = Pk σk,i σk−1,i . . . σk−i+1,i Pk .

The elements Pk , Ui for i = 1, 2, . . . , min{k, n} and Si for i = 1, 2, . . . , n − 1
generate the fused Hecke algebra Hk,n . Indeed, a basis for Hk,n consists of the set
of fused braid diagrams corresponding to fused permutations, which were described
when counting the dimension (4-5) of Hk,n . A generic fused braid diagram can be
obtained by multiplying the element Ui on the left and on the right by elements S j

for j = 1, . . . , n − 1.
We are now ready to prove that the map φ is surjective. It suffices to show that

the generators of Hk,n belong to the image of φ. We already know that Pk and Si

for i = 1, . . . , n − 1 belong to the image by definition of the map φ. We will show
that it is also the case for the elements Ui by induction on i .

For i = 1, we have U1 = T , which belongs to the image because of (4-13).
Suppose now that Ui belongs to the image for some integer 1 ≤ i < min{k, n}.
Then, the following element of Hk,n also belongs to the image of φ:

(4-36) T S1S2 . . . Si Ui =

1 i − 1 i i + 1

. . .

. . .

i + 2 n

. . .

Using the algebraic expressions (4-11), (4-9) and (4-35) as well as the properties of
the projector Pk , we can write

(4-37) T S1S2 . . . Si Ui = Pk σk,i+1 Pk σk,i σk−1,i . . . σk−i+1,i Pk .

Using now the property (4-4) for the middle projector, we get

T S1S2 . . . Si Ui

= q1−k
[k]

−1
q

k∑
m=1

qk−m Pk σk,i+1(σk−1 σk−2 . . . σm) σk,i σk−1,i . . . σk−i+1,i Pk,

where the interior of the parenthesis in the case m = k is understood to be 1.
Separating the previous sum in two at m = k − i , and absorbing braid generators in
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the right-most projector Pk for the terms with m < k − i , we find

(4-38) T S1S2 . . . Si Ui

= [k]
−1
q [k − i]q Pk σk,i+1(σk−1 σk−2 . . . σk−i ) σk,i σk−1,i . . . σk−i+1,i Pk

+ q[k]
−1
q

k∑
m=k−i+1

q−m Pk σk,i+1(σk−1 σk−2 . . . σm)

· σk,i σk−1,i . . . σk−i+1,i Pk .

All terms in the sum of the previous equation do not act on the k−i first fused strands.
Therefore, these terms correspond to diagrams where only the i last fused strands go
out of the top and bottom ellipses, and they can be obtained from a multiplication of
the diagram Ui with diagrams S j . Hence, by the induction hypothesis, they belong
to the image of φ. Since we have supposed that i < k and since q2m

−1 is invertible
for m = 1, . . . , k, the first term in (4-38) is, up to an invertible factor:

(4-39) Pk σk,i+1 σk−1 σk,i σk−2σk−1,i . . . σk−iσk−i+1,i Pk

= Pk σk,i+1 σk−1,i+1 σk−2,i+1 . . . σk−i,i+1 Pk = Ui+1.

Therefore, the element Ui+1 belongs to the image of φ. By induction, we conclude
that all the elements Ui for i = 1, 2, . . . min{k, n} belong to the image.

Injectivity of φ. At this point, we have shown that φ : A(k)
n → Hk,n is a surjective

morphism. By comparing the cardinality (4-20) of the spanning set (4-22) for A(k)
n

with the dimension (4-5) of Hk,n , we deduce that dim(A(k)
n ) ≤ dim(Hk,n). Hence

both algebras have the same dimension and φ is an isomorphism.

4D. Towards a definition of A(k)
n over C[q±1]. The fused Hecke algebra Hk,n is

not directly defined over C[q±1
]. Nevertheless, the presentation by generators and

relations of Definition 4.6 could be taken as it is over C[q±1
]. However, note that

the resulting algebra would then not be free over C[q±1
] with the correct dimension,

that is, Corollary 4.11 would not be true over C[q±1
] since we used that [k]q ! is

invertible in C(k)
[q±1

] to prove Proposition 4.8.
So we believe that Definition 4.6 is not the correct one to take over C[q±1

]. The
key to this problem is the following conjectural result.

Conjecture 4.13. In Ak+1, when (α1, α2) are specialised to (q−2, q2k), the element
E (q,α1)

k+1 factorises as
(4-40) E (q,α1)

k+1 = [k + 1]q ! Ẽ (q,α1)

k+1 ,

where Ẽ (q,α1)

k+1 is in Ak+1 with coefficients in C[q±1
].

To support this conjecture, we have checked it explicitly for small values of k.
Note moreover that it generalises Corollary 4.5 which already identified the factor
[k + 1]q (but not the full q-factorial). Finally, we are able to prove this statement in
the quotient Cn,2 of An (see Section 5C).



110 LOÏC POULAIN D’ANDECY AND MERI ZAIMI

Just for this subsection, we are going to assume that this conjecture is true,
thereby allowing to define, when α1, α2 are specialised as before, an element
Ẽ (q,α1)

k+1 in An with coefficients in C[q±1
]. Now the correct definition over C[q±1

]

of the algebra A(k)
n that we promote is:

Definition 4.14. The algebra A(k)
n is the specialisation over C[q±1

] of An corre-
sponding to (α1, α2) = (q−2, q2k) with the additional defining relation if n > k:

(4-41) Ẽ (q,α1)

k+1 = 0.

Now, we can prove the analogue of Corollary 4.11.

Proposition 4.15. If Conjecture 4.13 holds, the algebra A(k)
n is free over C[q±1

]

with basis
{gω | ω ∈ Bn(1̄2̄, k + 1 k̄ . . . 1̄)}.

Proof. First the above set is now a spanning set over C[q±1
]. Indeed, following the

proof of Proposition 4.8, we see that we have now removed all factors in front of
the element in Ak+1 that we need to rewrite using Ẽ (q,α1)

k+1 = 0. So the same proof
works now over C[q±1

]. The freeness follows immediately from the already proved
isomorphism with Hk,n over the field of fractions C(q). □

5. Centralisers of Uq(glN) and the boundary seam algebra (N = 2)

Let N > 1 and let k > 0. In this final section, we combine the preceding sections to
complete the following square by defining the algebras C(k)

n,N :

An A(k)
n

Cn,N C(k)
n,N

and we show their connections with the centralisers of Uq(glN ) as discussed in the
introduction. We then study in details the case N = 2 to show that we have finally
recovered the so-called boundary seam algebra from [19].

As in the preceding section, we are going to work, unless otherwise specified
over the ring C(k)

[q±1
].

5A. Definition of C(k)
n,N . The following definition has two equivalent forms, due to

the two paths in the square above to reach C(k)
n,N . Recall that the specialisation and

the relation (5-1) were by definition how to go from An to A(k)
n , while the relations

(5-2)–(5-3) were by definition how to go from An to Cn,N .

Definition 5.1. Over the ring C(k)
[q±1

] we have:
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• The algebra C(k)
n,N is the specialisation of Cn,N for α1 = q−2 and α2 = q2k , with

the additional defining relation if n > k:

(5-1) E ′(q,α1)

k+1 = 0.

• Equivalently, the algebra C(k)
n,N is the quotient of A(k)

n by the relations

Ẽ (−q−1,α1)
N = 0,(5-2)

3
−q−1

N+1 (g1, . . . , gN ) = 0.(5-3)

Remark 5.2. Exactly as discussed in Section 4D for the algebra A(k)
n , we emphasise

that a good definition of C(k)
n,N over C[q±1

] would require to prove that the idempotent
E (q,α1)

k+1 factorises as
E (q,α1)

k+1 = [k + 1]q ! Ẽ (q,α1)

k+1 .

Then we would define C(k)
n,N by replacing (5-1) by Ẽ (q,α1)

k+1 = 0.

5B. Isomorphism with the centralisers. We start by relating C(k)
n,N to the fused

Hecke algebra Hk,n .

Proposition 5.3. The algebra C(k)
n,N is isomorphic to the quotient of Hk,n by the

relations

Pk 3N+1(σk, . . . , σk+N−1) Pk = 0,(5-4)

Pk 3N+1(σk+1, . . . , σk+N ) Pk = 0.(5-5)

Proof. From the isomorphism of A(k)
n with Hk,n , it remains only to prove that the

quasiidempotent Ẽ (−q−1,α1)
N and the antisymmetriser 3−q−1

N+1 (g1, . . . , gN ) of A(k)
n are

mapped to the correct elements in Hk,n .
First, it is directly seen that

(5-6) φ(3N+1(g1, . . . , gN )) = 3N+1(S1, . . . , SN )

= Pk 3N+1(σk+1, . . . , σk+N ) Pk .

Then, using an explicit basis for SN+1, it is seen that

(5-7) 3N+1(σk, . . . , σk+N−1)

=3N (σk+1, . . . , σk+N−1)(1−q−1 σk +· · ·+(−q−1)N σk σk+1 . . . σk+N−1).

Therefore, by definition of the elements Si and T and by the properties of Pk we
can write

(5-8) Pk 3N+1(σk, . . . , σk+N−1) Pk

= 3N (S1, . . . , SN−1)(Pk − q−1T + · · · + (−q−1)N T S1 . . . SN−1).
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Define the element t of A(k)
n by

(5-9) g0 = (q−1α2 − qα1) t + q2α1,

where we recall that α1 = q−2 and α2 = q2k . Since q2k
− 1 is invertible, this

indeed defines the element t . Then we can rewrite the formula (2-28) obtained for
Ẽ (−q−1,α1)

N as

(5-10) Ẽ (−q−1,α1)
N

= 3N (g1, . . . , gN−1) · (α2 − q2α1)

(
1 − q−1

N−1∑
i=0

(−q−1)i tg1 . . . gi

)
.

Note that, because of (4-13) (taking into account the specialisation of α1 and α2),
the image of t under the map φ is T . Therefore, by comparing (5-8) with (5-10), it
is seen that

(5-11) φ(Ẽ (−q−1,α1)
N ) = (q2k

− 1)Pk 3N+1(σk, . . . , σk+N−1) Pk .

We conclude using again that q2k
− 1 is invertible. □

Example. Take N = 2 and let us write the first relation (5-4) in diagrams like:

(5-12) k

1 2

− q−1 k

1 2

− q−1 k

1 2

+ q−2 k

1 2

+ q−2 k

1 2

− q−3 k

1 2

= 0.

In words, we plug in the usual q-antisymmetriser (here on 3 strands) using the last
strand coming out of the ellipse as a first strand. In terms of the generators U1 := T
and S1 of Hk,2, the previous relation is

(5-13) Pk − q−1T − q−1S1 + q−2S1T + q−2T S1 − q−3S1T S1 = 0.

A similar description works for any N ≥ 2.
The second relation (5-5) is just the usual q-antisymmetriser on N + 1 strands,

which is plugged in using the N + 1 first dots (and not using at all the strands
coming out of the ellipse).

Isomorphism with the centraliser. In this paragraph only, we will work over the field
of fractions C(q). Using the notations of the introduction, consider the centraliser

Zk,n,N = EndUq (glN )(L N
(k) ⊗ (L N )⊗n).

Combining what we have obtained so far with the results from [7] on these cen-
tralisers, we get the following description of Zk,n,N .
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Corollary 5.4. For all k, n, N as before, we have that Zk,n,N is isomorphic to C(k)
n,N .

Proof. From [7, Section 5], we have that the fused Hecke algebra Hk,n surjects onto
the centraliser Zk,n,N . Moreover, it is also clear from this construction that both
relations (5-4) and (5-5) are satisfied in the image (since the expressions between the
projectors are already 0 in the usual Schur–Weyl duality with Uq(glN )). Moreover,
it was proved in [7, Section 9] that, for q2 not a root of unity or over C(q), the first
relation (5-4) is enough to generate the kernel, and this proves that the quotient
of Hk,n by (5-4) and (5-5) is isomorphic to Zk,n,N . With Proposition 5.3, this
concludes the proof. □

Remark 5.5. The proof shows that, over C(q) or for q2 not a root of unity, the
second relation (5-5) is implied by the first. This was already noticed at the level
of Cn,N , where it was shown, using the semisimple representation theory in Section 3
that relation (5-2) implies (5-3).

Remark 5.6. The representation theory of C(k)
n,N over C(q) or when q2 is not a root

of unity is described as follows. Starting with the algebra A(k)
n , which is the fused

Hecke algebra, for which the irreducible representations were indexed by partitions
λ ⊢ k +n with λ1 ≥ k, we simply remove all those which have strictly more than N
lines. This is in agreement with the known decomposition of the tensor product of
Uq(glN )-representations. We will give more details for N = 2 in Section 5C below.

5C. The boundary seam algebra (N = 2). For N = 2, using the methods and the
terminology of [7], the centraliser Zk,n,2 could be called the fused Temperley–Lieb
algebra, since it can be described by multiplying the usual Temperley–Lieb algebra
by a suitable projector on the left and on the right. In our case here, where only
the first representation is fused, the fused Temperley–Lieb algebra was introduced
in [19] and called the boundary seam algebra (see also [16; 17]). We will show
how it is recovered as the algebra C(k)

n,2.
First, recall that the algebra Cn,2 was identified in Section 3 as the one-boundary

Temperley–Lieb algebra, using the following change of generators:

(5-14) e0 := α2 − g0, ei := q − gi , i = 1, 2, . . . , n − 1.

The presentation of Cn,2 in terms of these generators was given explicitly in equations
(3-8)–(3-12). Here we complete the presentation of C(k)

n,2 in terms of the same
generators.

Proposition 5.7. The algebra C(k)
n,2 is the specialisation of the one-boundary Tem-

perley–Lieb algebra Cn,2 corresponding to α1 =q−2 and α2 =q2k , and the additional
relation, if n ≥ k + 1:

(5-15) u1 u2 . . . uk+1 = 0,
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where, for m = 0, . . . , k,

um+1 :=

m−1∑
r=0

(−q)r
(

1−q2(m−r) α1

α2

)
em em−1 . . . em+1−r +(−q)mα−1

2 em em−1 . . . e0.

Proof. According to Definition 5.1, it remains to describe, if n ≥ k+1, the following
relation of C(k)

n,2 in terms of the generators e0, e1, . . . , en−1:

(5-16)
1

[k + 1]q
E (q,α1)

k+1 = 0.

We have done most of the work in Proposition 3.8 which gives that, for any 1≤m <n,
we have in Cn,2:

(5-17) E (q,α1)

m+1 = q
1
2 (m(m+1))

[m + 1]q ! Ẽ (q,α1)

m+1 ,

where Ẽ (q,α1)

m+1 is defined recursively by Ẽ (q,α1)

1 = (1 − α−1
2 g0) and

(5-18) Ẽ (q,α1)

m+1 = Ẽ (q,α1)
m

(
(1 − q2)(1 + qgm + · · · + qm−1gm . . . g2)

+ qm gm . . . g1(1 − α−1
2 g0)

)
.

We rewrite this recursive definition using (5-14) together with the properties
Ẽ (q,α1)

m e0 = (α2−α1)Ẽ (q,α1)
m and Ẽ (q,α1)

m ei = 0 for 1 ≤ i ≤ m−1. As an intermediate
step, it is found that, for 1 ≤ i ≤ m + 1,

(5-19) Ẽ (q,α1)
m qm+1−i (q − em)(q − em−1) . . . (q − ei )

= Ẽ (q,α1)
m

m+1−i∑
r=0

(−1)r q2(m+1−i)−r em em−1 . . . em+1−r .

Using (5-19) in (5-18), and rearranging sums, the result Ẽ (q,α1)

m+1 = Ẽ (q,α1)
m um+1 is

achieved with um+1 as in the proposition. Now up to some unnecessary invertible
power of q, the relation reads

[k]q ! Ẽ (q,α1)

k+1 = [k]q ! u1 u2 . . . uk+1 = 0.

The claim follows from the invertibility of [k]q ! in the ring C(k)
[q±1

]. □

The elements um and Ẽ (q,α1)
m appear in [17] (up to global factors of α2 and −q−1)

as generalised Wenzl–Jones factors and generalised Wenzl–Jones projectors respec-
tively for the one-boundary Temperley–Lieb algebra. Now, using the preceding
proposition, it can be directly verified that the following mappings give an antiiso-
morphism from C(k)

n,2 to the boundary seam algebra (with the notations of [17])

(5-20) e0 7→ qk−1(q − q−1) en, ei 7→ en−i , 1 ≤ i ≤ n − 1.
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Let us also mention that a recursive formula, similar to (2-17) in Hα1,α2,n , holds
for Ẽ (q,α1)

m when q is not a root of unity (or over C(q)) in a specialisation such that∏m−2
r=0

(
1 − q2r α1

α2

)
̸= 0:

(5-21) Ẽ (q,α1)
m =

(
1 − q2(m−1) α1

α2

)
Ẽ (q,α1)

m−1 − q
Ẽ (q,α1)

m−1 em−1 Ẽ (q,α1)

m−1∏m−3
r=0

(
1 − q2r α1

α2

) .

Semisimple representation theory. Here we work over C(q) or we assume that q2

is not a root of unity. The representation theory of the boundary seam algebra
C(k)

n,2 is easily obtained from the one of the fused Hecke algebra A(k)
n . Recall from

Section 4 that the irreducible representations of A(k)
n were indexed by partitions

λ ⊢ k +n with λ1 ≥ k. The quotient giving the boundary seam algebra C(k)
n,2 consists

simply in removing all those which have strictly more than two lines.
The beginning of the Bratteli diagram, for example, for k = 3, of the algebras

C(k)
n,2 is as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 4

n = 0

n = 1

n = 2

n = 3

n = 4

We can see the special behaviour starting at the value n = k +1 = 4. The irreducible
representations, at level n, are indexed by a positive integer h, which is the number
of boxes added in the second row, satisfying 0 ≤ 2h ≤ k + n. It is easy to see
recursively from the branching graph that the dimension of the corresponding
irreducible representation is (

n
h

)
−

(
n

h − k − 1

)
,

with the understanding that
( n

h−k−1

)
= 0 if h ≤ k. Note that comparing with [19],

our h is their 1
2(n + k − d). The dimension of the algebra is

(5-22) dim C (k)
n,2 =

(
2n
n

)
−

(
2n

n − k − 1

)
.
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Definition over C[q±1
]. We have originally defined C(k)

n,2 over C(k)
[q±1

]. The pre-
sentation put forward in Proposition 5.7 can be used without problem over C[q±1

].
In our notation, this means to define the algebra C(k)

n,2 over C[q±1
] as follows.

Definition 5.8. Over C[q±1
], the algebra C(k)

n,2 is the specialisation of Cn,2 for
α1 = q−2 and α2 = q2k , with the additional defining relation if n > k:

(5-23) Ẽ (q,α1)

k+1 = 0,

where the renormalised quasiidempotent Ẽ (q,α1)

k+1 was obtained in Proposition 3.8
and recalled in (5-18).

With this definition, we can prove that we get an algebra which is free over
C[q±1

] with dimension equal to (5-22). In fact, we may check that the following
set of elements is a C[q±1

]-basis:

[n1, m1][n2, m2] . . . [nr , mr ],

with
{

0 ≤ n1 < n2 < · · · < nr ≤ n − 1 and mi ≤ ni ,

0 = m1 = · · · = ms < ms+1 < · · · < mr , s < k + 1.

Without the condition s < k + 1 in the second line, we already know that this set
is a spanning set for Cn,2, see (3-14). The relation Ẽ (q,α1)

k+1 = 0 further allows to
rewrite any element [n1, 0][n2, 0] . . . [nk+1, 0] in terms of elements with fewer g0

(smaller s). This works over C[q±1
] since the element we need to rewrite appears

with an invertible coefficient in Ẽ (q,α1)

k+1 . We refer to the proof of Proposition 4.8 for
more details. The above set is of the correct cardinality [19, Appendix B], that is,
equation (5-22), and thus is a basis over C[q±1

].

Remark 5.9. If we specialise q to a complex number such that q2i
̸= 1 for

i =1, . . . , k, of course Definition 5.8 recovers Definition 5.1. But now Definition 5.8
allows to consider the cases where q2i

= 1 for some i = 1, . . . , k. We note that we
differ here from [19] where the defining relations, when q2i

̸= 1, were modified ac-
cording to the value of q and the dimension of the algebra resultingly depended on q .
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