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This paper is a theoretical and numerical study of the stability of light-weight low-cost elastomeric
isolators for application to housing, schools and other public buildings in highly seismic areas of the de-
veloping world. The theoretical analysis covers the buckling of multilayer elastomeric isolation bearings
where the reinforcing elements, normally thick and inflexible steel plates, are replaced by thin flexible
reinforcement. The reinforcement in these bearings, in contrast to the steel in the conventional isolator
(which is assumed to be rigid both in extension and flexure), is assumed to be completely without flexural
rigidity. This is of course not completely accurate but allows the determination of a lower bound to the
ultimate buckling load of the isolator. In addition, there are fewer reinforcing layers than in conventional
isolators which makes them lighter but the most important aspect of these bearings is that they do not
have end plates again reducing the weight but also they are not bonded to the upper and lower support
surfaces. The intention of the research program of which this study is a part is to provide a low-cost
light-weight isolation system for housing and public buildings in developing countries.

1. Introduction

The recent earthquakes in India, Turkey and South America have again emphasized the fact that the major
loss of life in earthquakes happens when the event occurs in developing countries. Even in relatively
moderate earthquakes in areas with poor housing many people are killed by the collapse of brittle heavy
unreinforced masonry or poorly constructed concrete buildings. Modern structural control technologies
such as active control or energy dissipation devices can do little to alleviate this but it is possible that
seismic isolation could be adapted to improve the seismic resistance of poor housing and other buildings
such as schools and hospitals in developing countries [Kelly 2002].

The theoretical basis of seismic isolation [Kelly 1997] shows that the reduction of seismic loading
produced by the isolation systems depends primarily on the ratio of the isolation period to the fixed base
period. Since the fixed base period of a masonry block or brick building may be of the order of 0.1 second,
an isolation period of 1 sec. or longer would provide a significant reduction in the seismic loads on the
building and would not require a large isolation displacement. For example, the current UBC code for
seismic isolation [UBC 2007, Chapters 16, 17] has a formula for minimum isolator displacement which,
for a 1.5 second system, would be around 15 cm (6 inches).

The problem with adapting isolation to developing countries is that conventional isolators are large,
expensive, and heavy. An individual isolator can weight one ton or more and cost as much as $10,000 for
each isolator. To extend this valuable earthquake-resistant strategy to housing and commercial buildings,
it is necessary to reduce the cost and weight of the isolators.
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The primary weight in an isolator is due to the steel reinforcing plates, which are used to provide
the vertical stiffness of the rubber-steel composite element. A typical rubber isolator has two large end-
plates (25 mm) and 20 thin reinforcing plates (3 mm). The high cost of producing the isolators results
from the labor involved in preparing the steel plates and the laying-up of the rubber sheets and steel
plates for vulcanization bonding in a mold. The steel plates are cut, sand-blasted, acid cleaned, and then
coated with bonding compound. Next, the compounded rubber sheets with the interleaved steel plates
are put into a mold and heated under pressure for several hours to complete the manufacturing process.
The purpose of this program of the research of which this is a part is to suggest that both the weight
and the cost of isolators can be reduced by using fiber reinforcing sheets [Kelly 1999], no end plates
and no bonding to the support surfaces. Since the demands on the bonding between the rubber and the
reinforcing plates are reduced, a simpler and less expensive manufacturing process can be used.

The manufacturing process for conventional isolators has to be done very carefully because the testing
requirements in the current codes for seismic isolation require that the isolators be tested prior to use for
very extreme loading conditions. The bond between the rubber and the steel reinforcement and between
the rubber and the end plates must be very good for the bearing to survive these tests [Gent and Meinecke
1970]. The effect of a large shear displacement of the isolator is to generate an unbalanced moment that
must be balanced by tensile stresses. The compression load is carried through the overlap region between
top and bottom surfaces and the unbalanced moment is carried by tension stresses in the regions outside
the overlap as shown in the diagram in Figure 1.

The bearings being studied here do not have these tension stresses. The primary reason for this is the
fact that the top and bottom surfaces can roll off the support surfaces and no tension stresses are produced.
The unbalanced moments are resisted by the vertical load through offset of the force resultants on the
top and bottom surfaces.

While these isolators can undergo large displacements there is a concern with their stability. The
conventional analysis for the buckling of isolators has focused only on isolators that are bolted at each
end to rigid surfaces [Imbimbo and Kelly 1997]. The analysis is also based on the assumption that the
steel reinforcing plates are essentially rigid but here the shims are very thin and bending of the shims
could have an effect on the stability of these bearings [UBC 2007]. In this paper we will study the
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Figure 1. Overlap area between the top and bottom of the bearing.
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Figure 2. System of strip isolators in wall building.

buckling of such a bearing and attempt to clarify the post-buckling behavior based on the postulate that
the vertical load in the buckled configuration is carried through the overlap area between top and bottom
and that the triangular areas outside the overlap area are free of stresses. The approach will be done first
for a bearing in the form of an infinite strip and then will be applied to a circular bearing. One reason
for studying the strip is that the solution can be easily checked by a two-dimensional numerical model
which might be considered as an experimental test.

Another benefit to using fiber reinforcement is that it would then be possible to build isolators in long
rectangular strips, whereby individual isolators could be cut to the required size [Kelly and Takhirov
2002]. All isolators are currently manufactured as either circular or square. Rectangular isolators in
the form of long strips would have distinct advantages over square or circular isolators when applied
to buildings where the lateral resisting system is walls. When isolation is applied to buildings with
structural walls, additional wall beams are needed to carry the wall from isolator to isolator. A strip
isolator would have a distinct advantage for retrofitting masonry structures and for isolating residential
housing constructed from concrete or masonry blocks. A possible layout of a complete system of strip
isolators is shown in Figure 2.

2. Theoretical underpinnings of the stability analysis

The theoretical analysis is concerned with the buckling of a long strip bearing in which the stress state is
essentially plain strain as shown in Figure 4; see [Kelly 2003]. When the bearing is displaced horizontally
the material begins to roll-off the supports and the vertical load is carried through the overlap area between
the top and bottom of the bearing as shown in Figure 3 and Figure 1. Thus the effective column cross-
sectional area is reduced and the buckling load and the vertical stiffness are reduced also. The bearing
shown in Figure 4 is a long strip fiber-reinforced bearing under vertical load and displaced horizontally
to a shear deformation of 100% shear strain in its short direction [Tsai and Kelly 2002]. The fiber sheets
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Figure 3. Fiber-reinforced strip bearing under vertical load and horizontal displacement test.
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Figure 4. An infinite strip pad of width 2b.

are distinctly shown in the figure and it is clear that they are flat in the region of overlap between top and
bottom. It is the postulate of this analysis that the vertical load is carried through the overlap area in the
same way as a conventionally reinforced bearing and that the two triangular regions under the roll-off
are stress free.

The process can be visualized as being conducted in a displacement controlled test machine where a
steadily increasing vertical displacement is imposed on the bearing. At the first stage the vertical force
needed to produce the displacement rises until the load reaches the buckling load whereupon the bearing
begins to buckle sideways and to roll-off at the ends, thus reducing the effective area.

To determine the relationship between the imposed vertical displacement and the resulting horizontal
displacement we use a relationship developed to analyze the interaction between the vertical stiffness
and the horizontal displacement of a bearing using the linear elastic equations for a multilayer elastomer
bearing. This result from [Tsai and Kelly 2005a]. provides the vertical displacement resulting from a
horizontal displacement of the top of a bearing, this being in addition to that caused directly by vertical
compression due to the axial load. This additional vertical displacement we will call the geometric part
of displacement and denote it by δG

v and the connection between this and the horizontal displacement is
given in [UBC 2007] as

δG
v =

πG As

4Pcrit

(
πp− sinπp
1− cosπp

)
δ2

h

h
, (2-1)
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where p = P/Pcrit, with P the applied vertical load and Pcrit = (π/h)(E Is G As)
1/2, leading to

δG
v =

1
4

(
G As

E Is

)1/2(πp− sinπp
1− cosπp

)
δ2

h . (2-2)

In the first instance to model the two-dimensional numerical experiment the analysis will be based
on an infinite strip with width 2b, rubber layer thickness t and n rubber layers for a total height h =
nt + (n− 1)ts , where ts is the thickness of the reinforcing elements (Figure 4).

The compression modulus of a single pad in the form of a long strip is

Ec = 4GS2, (2-3)

where the shape factor is S = b/t and the vertical stiffness of the whole bearing is

Kv =
4GS2(2b)

nt
. (2-4)

The two quantities G As and E Is are the effective shear stiffness per unit length and the effective
bending stiffness per unit length of the bearing modeled as a continuous homogeneous beam and are
given by G As = G(2b)h/nt and

E Is = 4GS2 1
5

(2
3

b2
) h

nt
;

see [Kelly and Takhirov 2004]. This leads to the buckling load in the undeflected configuration as

Pcrit =
4πGb3
√

15 nt2
. (2-5)

The vertical displacement due to pure compression of the bearing in the undeflected configuration,
denoted by δC

v , corresponding to this load is

δC
v =

Pcrit

Kv
=

π

2
√

15
t. (2-6)

It is quite unexpected that this displacement depends only on the thickness of a single layer. Since the
dimension b cancels in this calculation, this means that if the width 2b is replaced by the overlap area
when the bearing displaces sideways, namely 2b− δh , the compressive part of the vertical displacement
remains unchanged. When the imposed vertical displacement is increased beyond π t/(2

√
15), the addi-

tional vertical displacement must be accommodated by a geometric displacement related to the horizontal
deformation of the column as a whole [Marsico 2008]. The relation between the horizontal displacement
and the geometrical part of the vertical displacement in terms of the stiffness quantities for the long strip
reduces to

δG
v =

π
√

15
16

t
b2 δ

2
h . (2-7)

This result is the geometric part of the vertical deflection of the bearing when it is displaced hori-
zontally at the buckling load but it can be used to provide the horizontal displacement due to increased
vertical displacement in the test machine by replacing 2b by the reduced area 2b− δh , giving

δ2
h

(b− δh/2)2
=

16

π
√

15t

(
δv −

π

2
√

15
t
)
. (2-8)
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The solution for δh/(2b) is

δh

2b
=

√
2
15(x − 1)1/2

1+
√

2
15(x − 1)1/2

, (2-9)

where

x =
δv

π t/2
√

15
. (2-10)

Substitution of this result back into the expression for Pcrit based on the reduced area, denoted by
Pcrit(δh), and normalization by the value of Pcrit based on the original area P0

crit leads to

Pcrit(δh)

Pcrit
= p(δh)=

(
1−

δh

2b

)3

, (2-11)

which, after substitution of the result for δh/(2b), reduces to

p(δh)=
(

1+
√

2
15(x − 1)1/2

)−3
. (2-12)

The interesting point about this result is that it suggests that the buckling of the unbonded isolator is
an example of classical imperfection sensitive buckling. The slope of the force displacement curve at the
point of instability is negative infinity. The approximation of the post-buckling load immediately after
buckling is

p(δh)= 1− 3
√

2
15(x − 1)1/2. (2-13)

The post-buckling load, due the negatively infinite derivative just after buckling, drops very aggres-
sively.

3. Numerical experiment

The analysis given in the previous section was based on the idea that the isolator is placed in a displace-
ment controlled test machine and subjected to a steadily increasing vertical displacement which was
denoted there by δv . This displacement manifests itself in the bearing in two parts, the first which is due
to the axial shortening of the bearing due to pure compression and denoted by δC

v and the second due
to the end shortening when the load reaches the critical load denoted by δG

v . When the displacement at
which the load reaches the critical load is further increased the bearing can accommodate the increased
vertical displacement by lateral displacement and this lateral displacement denoted there by δh can be
calculated from the end shortening part of the total vertical displacement. To verify that this approach is
at least qualitatively correct a finite element analysis was carried out on a simple model of a long strip
isolator.

The numerical experiment was done using the finite element program MARC [1988]. The model
is two-dimensional, corresponding to a long strip isolator and the reinforcing plates are modeled by
rebar elements which have an axial stiffness but no bending resistance. This is an extreme case of plate
flexibility but it is used to simplify the numerical analysis. The model has contact elements at the top
and bottom surfaces that allow it roll off the rigid supports and a small horizontal load is applied at the
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top to act as an imperfection and cause it to displace to one side when the load gets close to the buckling
load [Tsai and Kelly 2005b].

The result is shown in the sequence of diagrams in Figure 5. The zone at the top where the surface has
lost contact is directly above the bottom corner and the same in reverse at the bottom. The two triangular
regions below and above the two roll out areas are free of stresses. When the vertical load is plotted
against the vertical displacement as shown in Figure 6 the load rises linearly until it gets close to the
buckling load then levels and then as the increased vertical displacement causes lateral displacement to
develop the vertical load decreases with the reduction in the overlap area between the top and the bottom
of the bearing. In effect the column is buckling with a steadily decreasing cross-sectional area. This then
is, at least qualitatively, the behavior that we will attempt to reproduce analytically for a strip bearing
and a circular bearing in the next two sections.

4. Vertical displacement of the top of a bearing for an infinite strip

The total vertical displacement on the top of the bearing is equal to the sum of the vertical displacement
depending on the geometry and the one depending on the applied load as δt

v = δ
G
v + δ

0
v . In particular the

value of δ0
v = Ph/E As for an infinite strip is

δ0
v =

Ptr t2

8Gb3 . (4-1)

The analysis of the experimental behavior of the bearing can be subdivided into three steps. First the
lateral displacement, δh , is not present and the vertical load, P , with 0≤ P < Pcrit, is applied (Figure 7,
left). As P grows it becomes equal to the critical load on the total area (Figure 7, middle); at this point the
horizontal displacement, δh , begins to develop and the vertical load, P , is then the critical load calculated
on the reduced area (Figure 7, right). See [Marsico and Kelly 2009].

When the horizontal displacement is not applied, the vertical displacement depending on the geometry
(as in steps 1 and 2) is equal to 0; then the total vertical displacement is

δt
v = 0+

Ptr t2

8Gb3 =
Ptr t2

8Gb3 . (4-2)

However, the displacement depending on the load changes from step 1 to step 2, because of the
increasing load. Thus the total vertical displacement in step 2 is

δt
v = 0+

π t

2
√

15
=

π t

2
√

15
. (4-3)

In step 3, the shortening on the top of the bearing will depend on the horizontal displacement and on
the reduced area and will be

δt
v =

π

16
t

(b− δh/2)2
√

15δ2
h +

π t

2
√

15
. (4-4)

Introducing

x =
δh

2b
and

Pcrit(Ar)

Pcrit
=

(
1−

δh

2b

)3
= (1− x)3 = y2,
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for x ≥ 0 and δ = π t/2
√

15, we can plot y1 = δ
t
v/(2b) = δ

(
1 + 15

4 x2(1 − x)2
)

versus y2 and y1 =

δt
v/(2b) versus x . The behavior of the bearing is clarified in Figure 8, where the solid line represents the

critical load increasing versus the vertical displacement produced while the dash line plots the horizontal
displacement causing the critical load to decrease because the reduction of the area. The ratio wc is
defined as the critical load applied on the reduced area normalized with respect to the critical load on the
total area.

Figure 5. Sequence of buckling and post-buckling configurations showing stress-free
triangular zones.
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5. Application of post-buckling analysis to circular bearing

Although the strip isolator has been suggested as the preferred form use with low-cost housing in devel-
oping countries there may be cases where it may be more convenient to use a circular isolator. For a
circular bearing of radius R the parameters that differ from those of the strip bearing are the compression
modulus Ec, the shape factor S and the effective moment of inertia Ieff. The modulus is

Ec = 6GS2, (5-1)

where the shape factor S is R/(2t). The bending stiffness E Ieff in this case is

E Ieff = Ec
(1

3 I
)
, (5-2)

P Pcrit Pcrit(Ar)

δvδv δv

Figure 7. Behavior of the bearing under increasing load. From left to right, steps 1, 2
and 3.
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Figure 8. Critical load, horizontal and vertical displacement for an infinite strip bearing.

where I is the actual moment of inertia. The critical load in the undeformed configuration is given by

P0
crit =

√
2

nt
πG ASr, (5-3)

where the radius of gyration r equals R/2. The vertical stiffness of the bearing in the undeflected position
is

Kv =
Ec A
nt

, (5-4)

so the vertical displacement at the point of buckling is

δv =
π t

3
√

2
. (5-5)

As in the case of the strip, this depends only on the thickness of a single layer.
We can assume that (2-2) continues to hold for the circular bearing under lateral displacement and thus

the connection between the geometric part of the vertical displacement and the horizontal deformation
after buckling will be

δG
v =

π

2
√

2

t
R2 δ

2
h . (5-6)

This is the form the relationship would take if the full circle is taken as the overlap area. When we apply
(2-2) to the actual overlap area we need to assume that the horizontal displacement is large enough that
some of the parameters of the circular area will need to be modified. For example the factor 6 in the
expression for the compression modulus and the one third factor in the effective moment of inertia must
be estimated and although we will use the correct shape factor of overlap area, we observe that the shape
of the overlap area is intermediate between a strip and a circle and the two corresponding factors for
the strip are 4 and 0.2, respectively. In this case then we will use 5 in the estimate of the compression
modulus and 0.25 for the effective moment of inertia.
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5.1. Geometrical properties of overlap area. The overlap area is given by twice the circular sector cen-
tered in the center of the circular bearing subtracted of a triangle as shown in Figure 9 and it is equal
to Ar = 2R2(α − sinα cosα). The horizontal displacement of the bearing, dh , can be expressed as a
function of α, in the form 2R cosα = δh , giving α = arccos(δh/2R), and since sinα =

√
1− cos2 α, the

overlap area becomes

Ar = 2R2(arccos x − x
√

1− x2
)
, (5-7)

with x = δh/2R, as plotted in Figure 10, left. In the absence of horizontal displacement (δh = 0), we
have arccos x = π/2, and therefore it is useful to write

Ar = πR2
( 2
π

arccos x − 2
π

x
√

1− x2
)
.

The overlap area length, lr , is equal to twice 2R arccos x , so we can obtain the first shape factor Sr

plotted in Figure 10, right, as the ratio between the loaded area and the forced-free area, given by

Sr =
2R2(α− sinα cosα)

4Rαt
=

R
2t

(
1− x

√
1−x2

arccos x

)
. (5-8)

5.2. Moment of inertia. The moment of inertia for a circular sector with area R2α is

I ẏ ẏ =

∫ R

0

∫ α

−α

r dr dθ (r cos θ)2 = 1
4 R4(α+ 1

2 sin 2α
)
. (5-9)

Transporting to the centroidal axis, this becomes

Iyy =
1
4 R4(α+ 1

2 sin 2α
)
− R2α

(
2
3 R

sinα
α

)2
, (5-10)
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and then shifting to the center of the overlap area it becomes

Iyy =
R4

4

(
arccos

( δh

2R

)(
1+ 4 cos2 δ2

h

4R2

)
−

(
1−

δ2
h

4R2

)1/2 δh

2R

)
. (5-11)

Now we take the moment of inertia of a triangle with base 2R sinα and height R cosα (Figure 9), which
is given by I T

yy =
1
6 R4 sinα cos3 α, and we subtract it from Iyy . This leads to the moment of inertia for

the overlap area Ar , given as a function of the lateral displacement by

Iyy(overlap) =
R2

2

(
arccos x(1+ 4x2)− (1− x2)1/2x

( 13
3 +

2
3 x2)). (5-12)
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When the displacement is zero, the bearing is in the undeformed position, so x = 0 and α = π/2,
and the moment of inertia is that of a complete circle. On the other hand, when the bearing reaches its
maximum horizontal displacement, equal to the diameter 2R, we have x = 1 and α = 0. Figure 11, left,
shows the function f (x)= 2Iyy(overlap)/π for 0< x < 1.

5.3. Vertical displacement. The compression modulus can be approximated to Ec = 5GS2 and the ef-
fective inertia to Ieff =

1
4 Iyy(overlap), so substituting the values in (2-2), the vertical displacement δG

v will
be

δG
v = Rαtπ

√
tr

5Ar Iyy(overlap)h
δ2

h . (5-13)

To obtain the vertical displacement depending on the load when the bearing moves, we need the critical
load on the reduced area, which is Pcrit(Ar ) = (Gπ S/2tr )

√
5Ar Iyy(overlap). Thus

δ0
v =

Pcrit(Ar )tr
Ec As

=
π
2

√
5Ar Iyy(overlap) tr

5S Ar h
. (5-14)

Adding the two terms and simplifying, we get for the total vertical displacement the value

δt
v = δ

G
v + δ

0
v =

π
√

5Ar

(
Rαt

√
tr

Iyy(overlap)h
δ2

h +

√
Iyy(overlap) tr

2h

)
. (5-15)

The buckling and post-buckling behavior for the circular bearing with the properties of the overlap
area exactly calculated is shown in Figure 11, right.

6. Conclusions

The theoretical analysis has provided estimates of the buckling behavior of bearings that are reinforced
with a flexible fiber reinforcement and not bonded to the structure or the foundation. We have shown
that the instability of this type of bearing is similar to that of classical imperfection sensitive instability
with a buckling load that decreases very rapidly due to the negative infinity of the force displacement
curve just after the buckling load is reached.

For example if the vertical displacement is increased to five times that at the point of buckling, the post-
buckling load is only 20% of the buckling load. This suggests that this kind of bearing will have to be
designed very conservatively. In real terms a bearing made of a rubber compound with a shear modulus
G = 0.70 MPa (100 psi), a shape factor S = b/t = 10 and a second shape factor S2 = 2b/(nt)= 2, the
pressure at buckling according to (2-5) is pcrit = Pcrit/(2b)= 2πGS2/(

√
15 n), which equals 11.2 MPa

(1622 psi); this in turn means that the design pressure should be no more than 2.23 MPa (325 psi). This
is somewhat less than is used in steel reinforced bearings for large modern isolated buildings but will
adequate for low-cost housing and especially for strip bearings supporting masonry wall buildings. We
also note that the strip bearings will be arranged in orthogonal directions in the isolation layout as shown
in Figure 2 and that only those bearings with their narrow direction in the direction of movement will
buckle. In the long direction the bearings are very stable.
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