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This paper presents the formulation of an analytical model of buckling restrained braces (BRBs) and its
implementation into a structural optimization procedure in order to design the protection system of an
existing structure. The procedure, based on a multi-performance approach, provides the minimum cost
design solution, through sizing and topology optimization of the BRBs, for the retrofit of an existing
structure. An analytical formulation for the BRBs is developed in order to introduce an efficient char-
acterization of these devices into the structural optimization procedure. The prediction provided by the
proposed analytical model is compared with the results of an experimental test campaign and the bilinear
model.

1. Introduction

Passive energy dissipators such as viscous-fluid dampers, viscous-elastic dampers, metallic ductile dampers
and friction dampers are widely used to reduce the dynamic response of civil engineering structures due
to seismic and wind loads. The effectiveness of the dampers depends on the capability to absorb the
structural vibration energy and to dissipate it through their inherent hysteresis behavior in order to reduce
structural damages [Soong and Dargush 1997]. Among these dissipating devices, buckling restrained
braces (BRBs) have been developed and applied for the seismic protection of building structures since
their hysteretic behavior could be kept stable for cyclic tensile and compressive loads and desirable
yielding forces are easily obtained by sizing their inner steel core. In addition they offer consistent
energy dissipation capability and easy manufacturing, installation and maintenance [Black et al. 2002;
Kiggins and Uang 2006; Lopez and Sabelli 2004; Sabelli 2001; Sabelli et al. 2003; Wada et al. 1998].
The optimal mechanical characteristics of the dampers depend on the structural configuration in which
they are located, on the performance level and on the entity of the applied horizontal loads. Sizing and
topology optimization procedures can be efficiently used in order to determine their characteristics and
their location in a generic structural scheme.

Recently, performance-based design is getting more importance, overcoming traditional prescriptive
design methods towards full reliability-based design methodologies. The present paper uses performance-
based design concepts and casts them into a multiple-objective optimization procedure. In many studies,
mono- or multi-optimization tools have been applied to the structural design [Frangopol 1995; Breitung
et al. 1998; Thoft-Christensen and Sorensen 1987; Fu and Frangopol 1990]. In particular, the structural
optimization procedure developed in [Bonessio 2010] has been here specialized into a specific procedure
to retrofit an existing structure with a BRB system. The procedure provides the minimum cost design
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solution through the optimization of the braces characteristics and locations on the structure, while re-
specting several performance requirements. The proposed approach is based on a complete mechanical
representation of the existing frame and the braces [Lomiento et al. 2010].

In many studies, the simple bilinear representation of the cyclic behavior of BRBs has shown to
underestimate their actual capacity in the small deformation range [Tremblay et al. 2004; Fahnestock
et al. 2004]. More accurate models, generally used to perform nonlinear time history analyses, prevent
a closed-form definition of parameters commonly used in optimization procedures, such as effective
stiffness and damping. For the BRBs, an original mechanical model based on experimental data is here
proposed and formulated in a closed form to be easily integrated into the optimization algorithm.

2. Structural optimization procedure

The general procedure is schematized in four consecutive phases as follows:
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2.1. Phase 1: Design analysis phase. In this phase the variables involved in the optimization process are
identified and defined as design variables and performance variables. The design variables are the final
objectives of the optimization process while the performance variables are used to check the conformity
of the structure with the performance requirements. The axial stiffness of the braces and their dissipative
capacity together with their location in plan and in elevation are considered as design variables. The
behavior of each dissipative brace is characterized by an effective damping ratio and an effective stiffness
that will be optimized by the proposed algorithm.
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The generic structural scheme consists in a three-dimensional structure with p floors (k = 1 . . . p) and
m columns ( j = 1 . . .m) for a total of n = p(m− 1) structural bays, available to allocate the braces; the
i-th brace (i = 1 . . . n) is located in the i-th structural bay, pinned or bolted to the frame.

The design variables to be optimized are stored in two vectors. The first one is the n× 1 vector k:

k = [k1 k2 . . . ki . . . kn]T (2-1)

where ki is the normalized axial stiffness of the i-th brace, given by:

ki =
Ki

K ref
i

(2-2)

Ki is the axial stiffness of the i-th brace and K ref
i is the axial stiffness associated with a conventional

cross-sectional area used as a reference to initialize the procedure. The second n×1 vector ξ is defined as

ξ = [ξ1 ξ2 . . . ξi . . . ξn]T (2-3)

where ξi is the damping ratio of the i-th brace. The total stiffness matrix Ktot (k, ξ), condensed on the
lateral displacement, and the total damping ratio of the structure ξtot (k, ξ) are considered as performance
variables. The performance variables need to be express as a function of the design vectors k and ξ in
order to be implemented in the optimization algorithm. These correlations are proposed by Bonessio,
where parametric analyses on the global stiffness matrix and on the total damping have been performed
[Bonessio 2010].

2.2. Phase 2: The engineering phase. Several engineering boundaries on design and performance vari-
ables are set in the form of inequalities and equations. The design boundaries are expressed as

k = [k1 k2 . . . ki . . . kn]T
≥ 0, (2-4)

ξ = [ξ1 ξ2 . . . ξi . . . ξn]T
≥ 0, (2-5)

ξi = fi (ki ) for i = 1 . . . n. (2-6)

Equations (2-4) and (2-5) express a physical limitation on stiffness and damping ratio, valid for all
type of braces. The set of equations (2-6) is specific for the particular type of braces used and represents
the correlation between effective stiffness and damping ratio, as formulated in the next paragraph for
the BRBs. The accuracy of the mechanical model of the braces influences the optimum values of the
design variables and consequently the efficiency of the earthquake protection system. The performance
boundaries are inequalities that involve the performance variables Ktot (k, ξ) and ξtot (k, ξ):

p̄ ≤ Ktot (k, ξ) · ū, (2-7)

ξtot (k, ξ)≤ ξ̄tot (2-8)

where p̄ is a vector of assigned lateral loads, for each performance level, ū is the vector of the maximum
allowable displacements, and ξ̄tot is the maximum allowed damping ratio.
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2.3. Phase 3: The objective selection phase. The definition of the objective of the design procedure
represents the goal of this phase. For this application the objective is the cost-minimization of the protec-
tion system. The cost W of the system is mainly associated with the size of the braces and consequently
related to their stiffness:

W (k)= cT k (2-9)

where the vector cT
= [c1 c2 . . . ci . . . cn] includes information about the geometry and the material

properties of the braces.

2.4. Phase 4: The solution phase. The final phase consists of the evaluation of the optimal numerical
values for the design variables. For instance, for the sizing and topology optimization of a BRB protection
system, a standard nonlinear programming (NLP) problem has to be solved. The sequential solution
technique is proposed as a tool to treat the NLP problem as a linear programming problem [Bonessio
2010]. The generic formulation of the problem, in agreement with the classical format of mathematical
programming, is expressed as follows, using equations (2-1) to (2-9):

Find k1, k2, . . . kn and ξ1, ξ2, . . . ξn

minimizing W (k)= cT k

subject to k ≥ 0,
ξ ≥ 0,
p̄ ≤ Ktot(k, ξ) · ū,
ξ1 = f1(k1), . . . , ξn = fn(kn).

(2-10)

The procedure is able to determine the stiffness ki and the damping ratio ξi of the brace placed in the
i-th location of the frame, for a maximum of n braces in the n possible locations. In the allowable set of
values for each design variable ki , zero values is also included. This allows some of the n braces to be
eliminated so topology of the protection system can also be optimized.

3. Experimental characterization

3.1. Specimens and testing protocol. A total of 3 sets A, B and C of full-scale specimens were tested,
each set comprising two nominally identical specimens. Each specimen was composed of a central core
plate, which was confined in a concrete-filled square hollow square section with different characteristics
in terms the yield strength of core Fya, the cross sectional area A and the lengths Lb, Lc, Le, L t, Ly

referred to different portions of the brace, as shown schematically in Figure 1.
The devices were tested at the Caltrans SRMD Testing Facility, at the University of California San

Diego campus, that consists of a 6 DOFs shaking table specifically designed for full scale testing of
isolators and energy dissipators. The displacement range of the table in longitudinal direction is ±1.22 m
with a maximum horizontal capacity of 9,000 kN. The peak velocity of the table longitudinal motion is
1.8 m/s. The installation procedure of the devices on the testing machine is consistent with the standard
installation of BRBs. The ends of each brace were spliced to a cruciform gusset bracket by high-strength
bolts. Both the gusset plates on the specimen and on the connection were sandblasted to a Class B faying
surface [AISC 1998]. Figure 2 shows the testing rig configuration. More information about the testing
rig is provided in [Benzoni and Seible 1998].
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Figure 1. Layout of the central core plate of the test specimens.
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Figure 2. SRMD testing rig configuration.

A matrix of performed tests is presented in Table 1. The loading sequence was chosen accordingly to
the Recommended Provisions for Buckling-Restrained Braces [SEAOC-AISC 2001].

Displacement level D1 D2 D3 D4 D5 D6

Number of cycles 6 4 4 4 2 2

A1 12.7 20.3 38.1 50.8 77.7 88.1
A2 12.7 20.3 38.1 50.8 77.7 88.1

Brace specimen


A3 12.7 20.3 38.1 50.8 81.3 95.3
A4 12.7 20.3 38.1 50.8 81.3 95.3
A5 12.7 20.3 38.1 50.8 81.3 88.1
A6 12.7 20.3 38.1 50.8 81.3 88.1

Table 1. Shake table peak input displacements (mm).
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3.2. Experimental and theoretical results. Experimental results in terms of effective stiffness and damp-
ing ratio are reported in Figures 3 and 4. Each parameter is presented as a function of the ductility
level µ1 and compared with a theoretical value obtained from a bilinear model. The force-deformation
relationship of BRBs is generally presented in literature as a bilinear relationship characterized by three
terms: an elastic stiffness K1, a plastic stiffness K2 = αK1, where α is the post-yielding ratio, and a
yielding displacement

dy =
Fy

K1
,

where Fy is the yielding force [Black et al. 2002; Kiggins and Uang 2006; Sabelli et al. 2003]. Using
the bilinear model the relationship between the effective secant stiffness and the damping ratio with
ductility can be written in a closed form. Accordingly, the theoretical value of the effective stiffness Keff

is obtained as a function of the displacement ductility µ1:

Keff =

K1 for 0≤ µ1 < 1,

K1
1+α (µ1−1)

µ1
for µ1 ≥ 1,

(3-1)

with µ1 = dmax/dy , where dmax is the maximum displacement experienced during a deformation cycle.
Similarly the damping ratio is given by

ξeff =

0 for 0≤ µ1 < 1,
2
π

(1−α) (µ1−1)
[1+α (µ1−1)]µ1

for µ1 ≥ 1.
(3-2)

In Figure 3, Keff normalized to the elastic stiffness K1 is reported versus the ductility term µ1. The
trend line, obtained as least-squares fit of the experimental data, is lower than the theoretical prediction
(solid line) for ductility levels lower than 6. The peak variation in the ductility range between 1 and
2 is about 30%. In Figure 4, the theoretical values for ξeff under-estimates the experimental values for
ductility levels lower than 2, while over-estimates test results for higher ductility.
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Figure 3. Normalized effective stiffness versus displacement ductility.
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Figure 4. Damping ratio versus displacement ductility.

The relationship between the damping ratio and the effective stiffness generally indicated in equation
(2-6) can be expressed as

ξeff =
2
π

(1−α) (µ1− 1)

[1+α (µ1− 1)]2

Keff

K1
(3-3)

The values of ξeff/(Keff/K1) computed by this equation are compared with the experimental results
in Figure 5 where the disagreement between theoretical and experimental data is clearly visible.

The theoretical ratio ξeff/(Keff/K1) underestimates the experimental evidence for displacement duc-
tility lower than 2.5 and overestimates the response for higher ductility levels.
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Figure 5. Ratio ξeff/(keff/K1) versus displacement ductility.
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4. Discussion of experimental results and proposed model

Some of the previous observations can be organized and generalized in order to suggest an alternative
analytical model of the device performance. In Figure 6 the force-displacement loops for specimen
A1 are reported. The same curves are reorganized in Figure 7 after a bias with respect to the negative
displacement at zero force. It can be noted the difference between the idealized and the actual response
in the transition from the elastic to the plastic behavior. This difference is the main cause of the poor
agreement between theoretical and experimental values for the effective stiffness and the damping ratio.

In Figure 8(a), in order to compare the effective force-displacement performance with the theoretical
response, only the portion of the cycles with increasing force is plotted with a continuous line. The
similarity of the curves for different specimens appears evident by using normalized forces F/Fy and
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Figure 6. Experimental data for specimen A1.
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Figure 7. Experimental data and idealized response for specimen A1.
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displacement ductility µ1 = d/dy . The average values and the relative 95% confidence interval are
reported in Figure 8(b).

The error of the bilinear model in terms of normalized forces over the whole ductility range is repre-
sented in Figure 9. As expected, the maximum errors occur at the yielding displacement. The average
curve indicates a peak error approximately 45% of the yielding force. To improve the agreement between
experimental and theoretical loops, a hysteretic function z was introduced. The function describes the
transition from the elastic and the plastic phase and a force-displacement relationship can be proposed as

F = α · K1 · d + (1−α) · Fy · z, (4-1)

where K1 is the elastic stiffness, Fy is the yield force, α is the ratio of post-yield stiffness to elastic
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Figure 8. Normalized force-displacement curves: (a) curves for all the specimens and
(b) average values and 95% confidence interval.
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Figure 9. Normalized errors of the bilinear model.
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Figure 10. Comparison between theoretical and experimental loops.

stiffness and z is the hysteretic internal strain-dependent function, ranging from −1 and 1, with the yield
surface represented by |z| = 1.

The function z is defined as

z =
1
2
·

(
ḋ
|ḋ|
−

d
|d|

)
+

1
2
·

(
ḋ
|ḋ|
+

d
|d|

)
·

[
1−

(
β + d̄/dy

β

)−β]
, (4-2)

where d̄ is the displacement measured from the last change in the velocity sign and the parameter β > 1
is obtained experimentally and controls the shape of the transition curve from the elastic to the plastic
phase. For the specific results of this study, the value β = 2 was used.

In Figure 10 the predicted force-displacement loops are presented with a dashed line in comparison
with the experimental curves for the brace type A1.

According with the proposed model, the relationship between the normalized effective stiffness and
the damping ratio with the displacement ductility µ1 can be written as

Keff = K1
γ +α (µ1− γ )

µ1
, (4-3)

ξeff =
2
π

(1−α) (µ1− δ)
[γ +α (µ1− γ )]µ1

, (4-4)

where

γ = 1−
(
β + 2µ1− x

β

)−β
< 1, (4-5)

x = 1−
(

1+
µ1

β

)−β
< 1, (4-6)

δ =
1
2

[
x +

β

1−β

(
β + 2µ1− x

β

)−β
−

β

1−β
+

x2

2

]
. (4-7)
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Figure 12. Damping ratio versus displacement ductility from experimental data and
proposed model.

Equations (4-3) and (4-4) for the effective stiffness and damping ratio appear similar to equations
(3-1) and (3-2), for the bilinear model, but take in account the smooth transition between the elastic
and the plastic phase by means of the parameters γ and δ. The normalized stiffness and damping ratio
predicted by using the proposed model fit well the experimental results, as shown in Figures 11 and 12,
respectively.

From equations (4-3) and (4-4) the relationship between the damping ratio and the effective stiffness
normalized to the elastic stiffness can be obtained as

ξeff =
2
π

(1−α) (µ1− δ)

[γ +α (µ1− γ )]2

Keff

K1
. (4-8)
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Values predicted by equation (4-8) are consistent with experimental results and are represented in
Figure 13 versus the displacement ductility.

Equation (4-8) can be expressed in an implicit form for a generic i-th BRB as

ξi = fBRB (ki ) (4-9)

where k1 = Keff/Ki is the normalized axial stiffness of the i-th BRB. Equation (4-9) is used in the opti-
mization procedure for the design of the BRBs, where ξi and ki are the design variables to be optimized.

5. Numerical case study for procedure validation

A simple structure is presented in order to show an application of the optimization procedure for BRBs
in conformity with the multi-performance design philosophy. The structure consists of a single span-two
floors frame subjected to horizontal loads. The whole system has 10 DOFs since the beam is assumed
axially rigid, as indicated in Figure 14. Values of the material properties for the beam and columns

�

6,67�

6,6/�

����������'�%�	����	����

Figure 14. MDOF frame case study.



BUCKLING RESTRAINED BRACES FOR MULTI-PERFORMANCE OPTIMUM DESIGN 87

elements were selected as follows: E = 30,000 MPa; Poisson ratio ν = 0.25. The beams have a length
of 4 m and a rectangular cross-sectional area of 30× 50 cm while the columns have a height of 3 m with
a rectangular cross-sectional area of 30× 50 cm. The optimization problem consists in the sizing of the
two BRBs, 5 m long, pinned to the frames. Two allowable locations for the braces are considered, 1st
floor and 2nd floor, for a total of 4 possible topology configurations for the braces (i.e., on each floor, on
the 1st floor only, on the 2nd floor only, and nowhere).

The design problem has four design variables, i.e., the damping ratios ξ1, ξ2 and the axial stiffnesses
k1 and k2 for the 1st and 2nd floor braces, respectively.

The optimization problem to be solved in this case study is a nonlinear programming problem ex-
pressed as

Find k1, k2, ξ1, ξ2

minimizing k1+ k2

subject to [k1 k2]≥ 0,

[ξ1 ξ2]≥ 0,

p̄ ≤ Ktot (k1, k2, ξ1, ξ2) · ū,

ξ1 = fBRB(k1),

ξ2 = fBRB(k2).

(5-1)

The vectors p̄ and ū represent the assigned seismic actions and the limit displacements defined for
each performance level. Four levels, named Operational (O), Immediate Occupancy (IO), Life Safety
(LS) and Collapse Prevention (CP), are considered [ASCE/SEI 2007]. The corresponding four levels of
seismic actions are associated with the probability of exceedance of 50%, 20%, 10% and 2% in 50 years,
respectively. Elastic spectra on soil type A from Eurocode 8 [CEN 2004] were used to represent seismic
actions. The four sets of limit displacements are consistent with the limit drifts of 0.2%, 0.5%, 1.5% and
2.5%.

The correlation between damping ratio and axial stiffness for each BRB is established through the
function fBRB as indicated in (4-9) by assuming the values of α and β equal to 0.007 and 2, respectively.

The sequential solution technique and then the simplex method is applied to determinate the optimal
values of the design variables, reported in Table 2 for each performance level.

The cross-sectional areas of the BRB central cores corresponding to the identified values of stiffness
and damping ratio are 2.54 cm2 and 1.61 cm2 for the 1st and 2nd floor respectively, being the area of the
1st floor brace 1.58 times the area of the 2nd floor brace.

In order to validate the obtained design solution, a nonlinear finite element model of the structure
equipped with BRBs has been carried out. For each performance level, seven ground motions were se-
lected by means of specialized software in order to obtain an average acceleration spectrum matching the
elastic design spectrum [Gasparini and Vanmarcke 1976]. The results in terms of displacement ductility
of the braces and average values of the interstorey drifts are reported in Table 3 for each performance
level.

From the results, it should be noted that the BRBs exceed the yielding displacement (µ1 ≥ 1) only
in the Life Safety and Collapse Prevention performance levels. The maximum displacement ductility
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Performance Normalized stiffness ki Damping ratio ξi
level 1st floor 2nd floor 1st floor 2nd floor

FO 2.46 1.56 5.0% 4.8%
O 2.16 1.38 12.9% 12.6%
LS 1.28 0.80 28.3% 27.7%
CP 0.85 0.55 34.5% 33.2%

Table 2. BRB characteristics for each performance level.

Performance Displ. ductility µ1,i Interstorey drift
level 1st floor 2nd floor 1st floor 2nd floor

FO 0.22 0.22 0.20% 0.20%
O 0.54 0.54 0.50% 0.50%
LS 1.64 1.62 1.49% 1.45%
CP 2.75 2.70 2.51% 2.33%

Table 3. Displacement ductility and interstorey drifts for each performance level.

demand is 2.75, corresponding to an effective damping ratio of 34.5%. According to the experimental
results, significant energy dissipation (ξ = 12.6% in Table 2) was found also for the Operational Per-
formance level, even if the yielding displacement has not been exceeded (µ1 = 0.54 in Table 3). The
average interstorey drift respects the imposed limits, and the drift-control performed by BRBs at the
upper level is even more effective, as it is evident by the lower values of interstorey drifts found at the
2nd floor.

6. Conclusion

The performance of three different typologies of BRBs at several levels of plastic deformation was studied.
Experimental results were compared with the bilinear model generally used for this kind of braces. A
significant difference between the actual and the predicted values, in terms of stiffness and dissipated
energy, was noticed, for the tested devices. By using the bilinear idealization for the force-displacement
loops of the BRBs, the predicted stiffness reached a peak 30% higher than the experimental one. The
dissipated energy appeared underestimated for ductility level lower than 2 and overestimated for higher
ductility level, with a maximum disagreement of approximately 15% for a ductility level around 3.

A simplified model for the force-displacement loops has been proposed and it proved able to estimate
the variation of stiffness and energy dissipated per cycle with the displacement induced in the brace. By
using this model, the relationship between stiffness and damping ratio of BRB systems was written in a
closed form expression, suitable for use in an optimization procedure for the design of BRB equipped
structures.

The optimization procedure allows the assessment of size and position of the braces for the retrofit of
an existing structure. The procedure follows a multi-performance approach, and the retrofitted structure
complies with several performance requirements. The design procedure and the proposed model were
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applied to a simple two-stories building and led to BRBs with a cross-sectional area 58% greater at the
first floor than at the second. The maximum ductility demand obtained was 2.75 at the first floor. In the
case study, the average interstorey drifts computed by a finite element analysis respected the imposed
limit values. The procedure appears feasible for the application on more complex structures.
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